

MODE SELECTION TABLE

Enable	Reset	Mode				
L	Н	Addressable Latch				
н	н	Memory				
L	L	8-Line Demultiplexer				
Н	L	Reset				

LATCH SELECTION TABLE

Add	ress Ir	nputs	Latch
С	в	Α	Addressed
L	L	L	Q0
L	L	н	Q1
L	н	L	Q2
L	н	Н	Q3
н	L	L	Q4
н	L	Н	Q5
н	Н	L	Q6
н	Н	Н	Q7

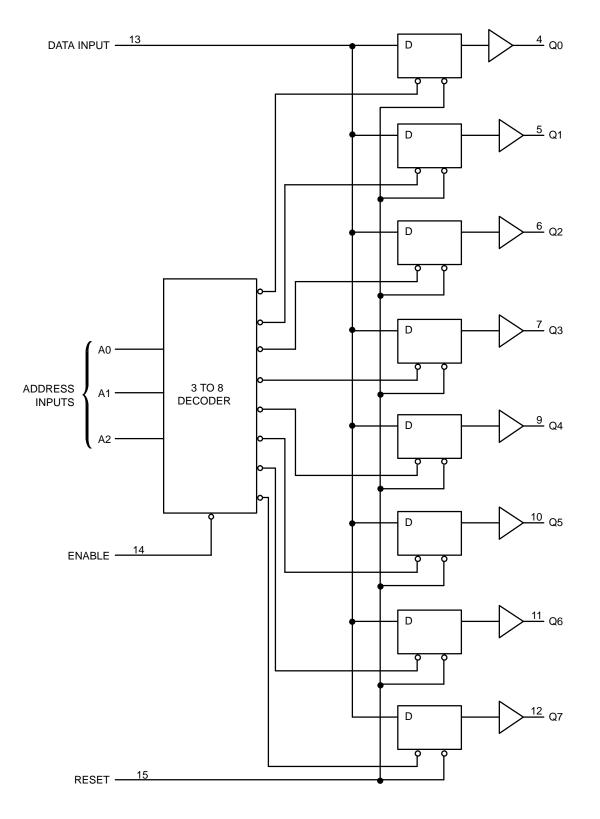


Figure 3. Expanded Logic Diagram

MAXIMUM RATINGS

Symbol	Para	Value	Unit	
V _{CC}	Positive DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	Digital Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		–0.5 to V _{CC} +0.5	V
I _{IK}	Input Diode Current		-20	mA
I _{OK}	Output Diode Current		±20	mA
I _{OUT}	DC Output Current, per Pin		±25	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pins		±75	mA
PD	Power Dissipation in Still Air	SOIC Package TSSOP	200 180	mW
T _{STG}	Storage Temperature Range		-65 to +150	°C
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	> 2000 > 200 > 2000	V
I _{LATCHUP}	Latchup Performance	Above V_{CC} and Below GND at 125°C (Note 4)	±300	mA
θ_{JA}	Thermal Resistance, Junction-to-Ambient	SOIC Package TSSOP	143 164	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Tested to EIA/JESD22–A114–A

Tested to EIA/JESD22-A115-A
Tested to JESD22-C101-A
Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	3.6	V
V _{IN}	DC Input Voltage	0	5.5	V
V _{OUT}	DC Output Voltage	0	V _{CC}	V
T _A	Operating Temperature Range, all Package Types	-40	85	°C
t _r , t _f	Input Rise or Fall Time V_{CC} = 3.3 V ± 0.3 V	0	100	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

			V _{CC}	T _A = 25°C			-40°C ≤ 1	Γ _A ≤ 85°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 3.6	0.75 V _{CC} 0.7 V _{CC} 0.7 V _{CC}	- - -	- - -	0.75 V _{CC} 0.7 V _{CC} 0.7 V _{CC}	- - -	V
V _{IL}	Maximum Low–Level Input Voltage		2.0 3.0 3.6	- - -	- - -	0.25 V _{CC} 0.3 V _{CC} 0.3 V _{CC}	- - -	0.25 V _{CC} 0.3 V _{CC} 0.3 V _{CC}	V
V _{OH}	High-Level Output	I _{OH} = -50 μA	2.0	1.9	2.0	-	1.9	-	V
	Voltage	I _{OH} = -50 μA	3.0	2.9	3.0	-	2.9	-	
		$I_{OH} = -4 \text{ mA}$	3.0	2.58	-	-	2.48	-	
V _{OL}	Low-Level Output	I _{OL} = 50 μA	2.0	-	0.0	0.1	-	0.1	V
	Voltage	I _{OL} = 50 μA	3.0	-	0.0	0.1	-	0.1	
		I _{OL} = 4 mA	3.0	-	-	0.36	-	0.44	
I _{IN}	Input Leakage Current	$V_{IN} = 5.5 \text{ V or GND}$	0 to 3.6	-	-	±0.1	-	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per package)	$V_{IN} = V_{CC}$ or GND	3.6	1.0	1.0	2.0	-	-	μΑ

DC CHARACTERISTICS (Voltages Referenced to GND)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS Input $t_r = t_f = 3.0$ ns

					T _A = 25°C			$-40^\circ C \le T_A \le 85^\circ C$		
Symbol	Parameter	Test Conditions		Min Typ		Max	Min	Max	Unit	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Data to Output	V _{CC} = 2.7 V	C _L = 15pF C _L = 50pF	-	6.3 9.0	9.0 14.0	1.0 1.0	12.0 15.0	ns	
	(Figures 4 and 8)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	C _L = 15pF C _L = 50pF	-	5.6 8.0	8.0 12.0	1.0 1.0	11.0 14.0		
t _{PLH} , t _{PHL}	PHL Delay, Address Select	V _{CC} = 2.7 V	$C_L = 15pF$ $C_L = 50pF$	-	6.3 9.0	9.0 14.0	1.0 1.0	12.0 15.0	ns	
to Output (Figures 5 and 8)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$	-	5.6 8.0	8.0 12.0	1.0 1.0	11.0 14.0			
t _{PHL} [Maximum Propagation Delay, Enable to Output	V _{CC} = 2.7 V	$C_L = 15pF$ $C_L = 50pF$	-	6.3 9.0	9.0 14.0	1.0 1.0	12.0 15.0	ns	
	(Figures 6 and 8)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$	-	5.6 8.0	9.0 12.0	1.0 1.0	11.0 14.0		
t _{PHL}	Maximum Propogation Delay, Reset to Output	V _{CC} = 2.7 V	$C_L = 15pF$ $C_L = 50pF$	-	6.3 9.0	9.0 14.0	1.0 1.0	12.0 15.0	ns	
(Figures 6 a	(Figures 6 and 8)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$	-	5.6 8.0	9.0 12.0	1.0 1.0	11.0 14.0		
C _{IN}	Maximum Input Capacitance			-	6	10	_	10	pF	
					Typical	@ 25°C, V	V _{CC} = 3.3 V	-		
C _{PD}	Power Dissipation Capac				30			pF		

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

TIMING REQUIREMENTS Input $t_r = t_f = 3.0$ ns

			T _A = 25°C		$T_A = \le 85^{\circ}C$			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Max	Unit
tw	Minimum Pulse Width, Reset or Enable	V _{CC} = 2.7 V	4.5	-	-	5.0	-	ns
	(Figure 7)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	4.5	-	-	5.0	-	
t _{su}	Minimum Setup Time, Address or Data to Enable	V _{CC} = 2.7 V	4.0	-	-	4.0	-	ns
	(Figure 7)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	3.0	-	-	3.0	-	
t _h	Minimum Hold Time, Enable to Address or Data	V _{CC} = 2.7 V	2.0	-	-	2.0	-	ns
	(Figure 6 or 7)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.0	-	-	2.0	-	
t _{r,} t _f	Maximum Input, Rise and Fall Times	V _{CC} = 2.7 V	-	-	400	-	300	ns
	(Figure 4)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	-	-	300	-	300	

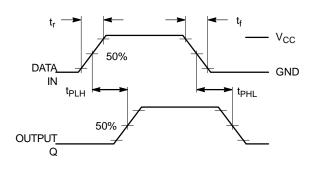
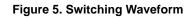
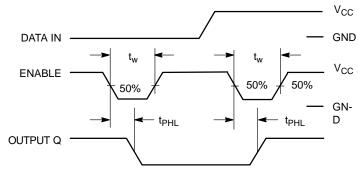




Figure 4. Switching Waveform

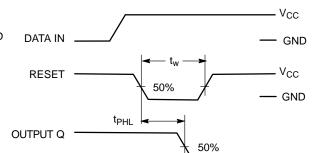
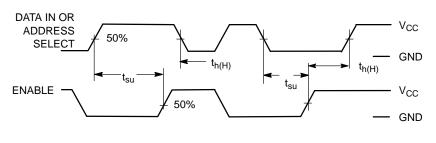
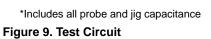



Figure 7. Switching Waveform


DEVICE

UNDER

TEST

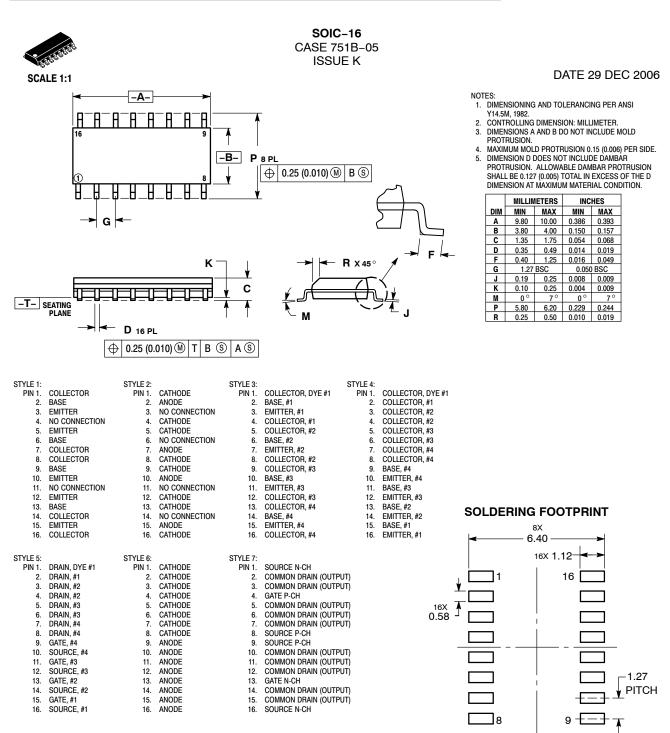
TEST POINT

 C_L^*

OUTPUT

ORDERING INFORMATION

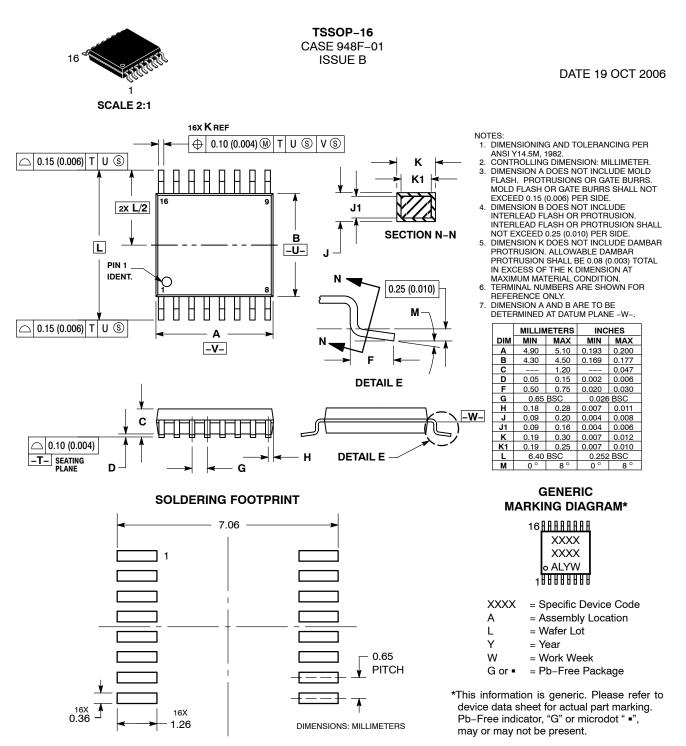
Device	Package	Shipping [†]
MC74LVX259DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74LVX259DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74LVX259DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74LVX259DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Tape Size	B ₁ Max	D	D ₁	Е	F	к	Р	P ₀	P ₂	R	т	w
8 mm	4.35 mm (0.179")	1.5 mm + 0.1 -0.0 (0.059"	1.0 mm Min (0.179")	1.75 mm ±0.1 (0.069 ±0.004")	3.5 mm ±0.5 (1.38 ±0.002")	2.4 mm Max (0.094")	4.0 mm ±0.10 (0.157 ±0.004")	4.0 mm ±0.1 (0.157 ±0.004")	2.0 mm ±0.1 (0.079 ±0.004")	25 mm (0.98")	0.6 mm (0.024)	8.3 mm (0.327)
12 mm	8.2 mm (0.323")	+0.004 -0.0)	1.5 mm Min (0.060)		5.5 mm ±0.5 (0.217 ±0.002")	6.4 mm Max (0.252")	4.0 mm ±0.10 (0.157 ±0.004") 8.0 mm ±0.10 (0.315 ±0.004")			30 mm (1.18")		12.0 mm ±0.3 (0.470 ±0.012")
16 mm	12.1 mm (0.476")				7.5 mm ±0.10 (0.295 ±0.004")	7.9 mm Max (0.311")	$\begin{array}{c} 4.0 \text{ mm} \\ \pm 0.10 \\ (0.157 \\ \pm 0.004") \\ 8.0 \text{ mm} \\ \pm 0.10 \\ (0.315 \\ \pm 0.004") \\ 12.0 \text{ mm} \\ \pm 0.10 \\ (0.472 \\ \pm 0.004") \end{array}$					16.3 mm (0.642)
24 mm	20.1 mm (0.791")				11.5 mm ±0.10 (0.453 ±0.004")	11.9 mm Max (0.468")	16.0 mm ±0.10 (0.63 ±0.004")					24.3 mm (0.957)

EMBOSSED CARRIER DIMENSIONS (See Notes 6 and 7)

Metric Dimensions Govern–English are in parentheses for reference only.
A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SOIC-16		PAGE 1 OF 1					
ON Semiconductor and (IN) are trac ON Semiconductor reserves the right	lemarks of Semiconductor Components Indu: to make changes without further notice to an	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation	and/or other countries. or guarantee regarding					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	TSSOP-16	-	PAGE 1 OF 1					
		stries, LLC dba ON Semiconductor or its subsidiaries in the United States						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

MC74LVX259D MC74LVX259DG MC74LVX259DR2 MC74LVX259DR2G MC74LVX259DT MC74LVX259DTG MC74LVX259DTR2 MC74LVX259DTR2G MC74LVX259M MC74LVX259MEL MC74LVX259MELG MC74LVX259MG