Precision Shunt Regulators with Reset in SOT23-3

Absolute Maximum Ratings Terminal Voltage (with respect to GND).

Terminal Voltage (with respect to GND),	Continuous Power Dissipation
All Pins Except SHUNT0.3V to (V _{SHUNT} + 0.3V)	SOT23-3 (derate 4mW/°C above +70°C)
Input Current (I _{SHUNT})60mA	Operating Temperature Range40°C to +85°C
Output Current (RESET/RESET)	Storage Temperature Range65°C to +160°C
Short-Circuit DurationContinuous	Lead Temperature (soldering, 10sec)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(I_{SHUNT} = 1mA, C_L = 0.1\mu$ F, $T_A = -40^{\circ}$ C to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
V _{SHUNT} Regulation Voltage (Note 1)	VSHUNT	I _{SHUNT} = 0 . 1 m A to 50mA	MAX633_L	T _A = +25°C	4.93	5.0	5.07	V
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.85		5.15	
			MAX633_T	T _A = +25°C	3.25	3.3	3.35	
				$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	3.20		3.40	
			MAX633_S	T _A = +25°C	2.96	3.0	3.04	
				S $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.91		3.09	
Minimum V _{SHUNT} for which		$T_A = 0^{\circ}C$ to	o +70°C	·	1.0			V
RESET is Valid (MAX6330)		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			1.2			V
V _{SHUNT} Tempco						40		ppm/°C
Minimum Shunt Current	ISHUNT(min)				100	60		μA
(Note 2) Maximum Shunt Current								
(Note 3)	ISHUNT(max)						50	mA
	Vтн	MAX633_L		T _A = +25°C	4.56	4.63	4.69	- V
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.50		4.75	
Reset Threshold Voltage		MAX633_T		T _A = +25°C	3.01	3.06	3.11	
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.97		3.15	
				T _A = +25°C	2.74	2.78	2.82	
		MAX633_S		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.70		2.86	
Reset Threshold Tempco						40		ppm/°C
V _{SHUNT} to Reset Delay		100mV over	rdrive, $C_L =$	15pF		20		μs
Reset Pulse Width					100	140	200	ms

Precision Shunt Regulators with Reset in SOT23-3

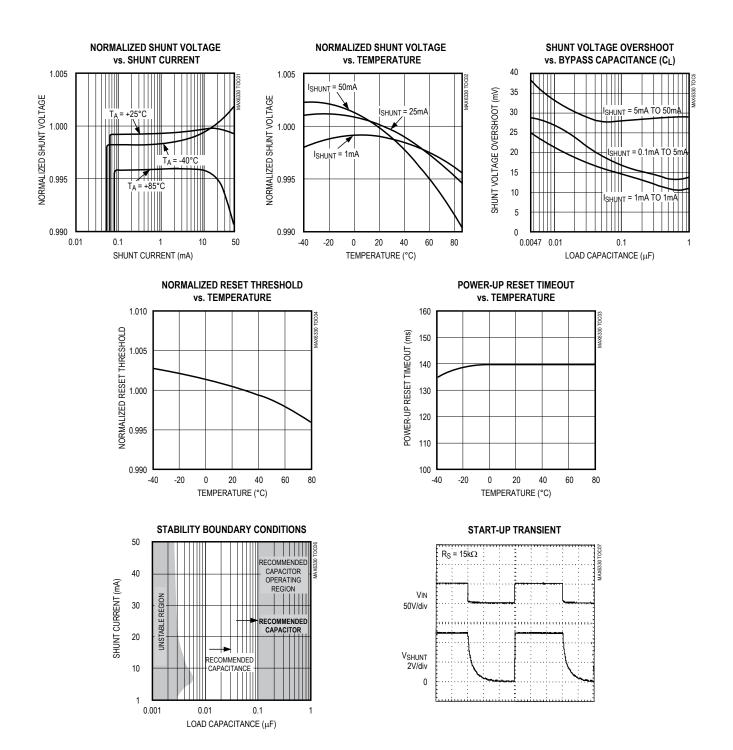
Electrical Characteristics (continued)

 $(I_{SHUNT} = 1 \text{ mA}, C_L = 0.1 \mu\text{F}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C}.)$

RESET/RESET Output Voltage Low (Note 4)	Vol	I _{SINK} = 3.2mA	MAX6330L, V _{TH(min)}		0.4	V
			MAX6331L, V _{TH(max)}			
		I _{SINK} = 1.2mA	MAX6330T/S, V _{TH(min)}		0.3	
			MAX6331T/S, V _{TH(max)}			
		MAX6330, V _{SHUNT} = 1V, I _{SINK} = 50μA, T _A = 0°C to +70°C			0.3	
		MAX6330, V _{SHUNT} = 1.2V, I _{SINK} = 50μA, T _A = -40°C to +85°C			0.3	
RESET/RESET Output Voltage High (Note 4)	Vон	I _{SOURCE} = 800µA	MAX6331L, V _{TH(min)}	0.8 x \/		
			MAX6330L, V _{TH(max)}	0.8 x V _{SHUNT}		
		I _{SOURCE} = 500µA	MAX6331T/S, V _{TH(min)}	0.8 x \/		v
			MAX6330T/S, V _{TH(max)}	0.0 X VSHUNT		
		MAX6331, 1.8V < V _{SHUNT} < V _{TH(min)} , I _{SOURCE} = 150µA		0.8 x V _{SHUNT}		

Note 1: It is recommended that the regulation voltage be measured using a 4-wire force-sense technique when operating at high shunt currents. For operating at elevated temperatures, the device must be derated based on a +150°C maximum allowed junction temperature and a maximum thermal resistance of 0.25°C/mW junction to ambient when soldered on a printed circuit board. The T_A = +25°C specification over load is measured using a pulse test at 50mA with less than 5ms on time.

Note 2: Minimum shunt current required for regulated V_{SHUNT} .


Note 3: Maximum shunt current required for regulated V_{SHUNT}.

Note 4: In a typical application where SHUNT serves as the system voltage regulator, note that both I_{SOURCE} for V_{OH} and I_{SINK} for V_{OL} come from V_{SHUNT} (see the *Typical Operating Circuit*).

Precision Shunt Regulators with Reset in SOT23-3

Typical Operating Characteristics

(Typical Operating Circuit, C_L = 0.1µF, I_{LOAD} = 0mA, T_A = +25°C, unless otherwise noted.)

Precision Shunt Regulators with Reset in SOT23-3

Pin Description

Р	PIN	NAME	FUNCTION
MAX6330	MAX6331	NANE	FUNCTION
1	1	GND	Ground
2	—	RESET	Inverting Reset Output. $\overline{\text{RESET}}$ remains low while V_{SHUNT} is below the reset threshold and for 140ms after V_{SHUNT} rises above the threshold.
—	2	RESET	Noninverting Reset Output. RESET remains high while V_{SHUNT} is below the reset threshold and for 140ms after V_{SHUNT} rises above the threshold.
3	3	SHUNT	Regulated Shunt Voltage (+5V, +3.3V, or +3.0V)

Detailed Description

Reset Output

A microprocessor's (μ P's) reset input starts the μ P in a known state. The MAX6330/MAX6331 μ P supervisory circuits assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions.

If a brownout condition occurs (V_{SHUNT} dips below the reset threshold), RESET goes low. When V_{SHUNT} falls below the reset threshold, the internal timer resets to zero and RESET goes low. The internal timer starts after VSHUNT returns above the reset threshold, and RESET then remains low for the reset timeout period.

The MAX6331 has an active-high RESET output that is the inverse of the MAX6330's RESET output.

Shunt Regulator

The shunt regulator consists of a pass device and a controlling circuit, as illustrated in Figure 1. The pass device allows the regulator to sink current while regulating the desired output voltage within a $\pm 1.5\%$ tolerance. The shunt current range (I_{SHUNT}) is 100µA to 50mA.

The pass transistor in the MAX6330/MAX6331 maintains a constant output voltage (V_{SHUNT}) by sinking the necessary amount of shunt current. When I_{LOAD} (see *Typical Operating Circuit*) is at a maximum, the shunt current is at a minimum, and vice versa:

$$I_{IN} = I_{SHUNT} + I_{LOAD} = (V_{IN} - V_{SHUNT}) / R_S$$

Consider the following information when choosing the external resistor R_S :

- 1) The input voltage range, (VIN)
- 2) The regulated voltage, (V_{SHUNT})
- 3) The output current range, (I_{LOAD})

Choose R_S as follows:

 $(V_{IN(max)} - V_{SHUNT (min)}) / (50mA + I_{LOAD(min)}) \le R_S \le (V_{IN(min)} - V_{SHUNT (max)}) / (100\mu A + I_{LOAD(max)})$

Choose the largest nominal resistor value for R_S that gives the lowest current consumption. Provide a safety margin to incorporate the worst-case tolerance of the

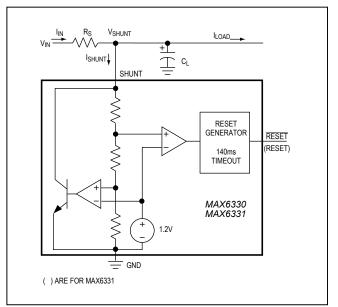


Figure 1. Functional Diagram

Precision Shunt Regulators with Reset in SOT23-3

resistor used. Ensure that the resistor's power rating is adequate, using the following general power equation:

 $P_{R} = I_{IN}(V_{IN(max)} - V_{SHUNT})$ $= I_{INRS}^{2}$ $= (V_{IN(max)} - V_{SHUNT})^{2} / R_{S}$

Applications Information

Negative-Going VSHUNT Transients

In addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, the MAX6330/ MAX6331 are relatively immune to short-duration negative-going V_{SHUNT} transients (glitches). Additional bypass filter capacitance mounted close to the SHUNT pin provides additional transient immunity.

Choosing the Bypass Capacitor, CL

The bypass capacitor (C_L) on the SHUNT pin can significantly affect the device's load-transient response, so choose it carefully. When a load transient occurs, the current for this load is diverted from the shunt regulator.

The maximum load current that can be diverted from the regulator is:

- ILOAD (diverted from regulator)
 - = I_{SHUNT(max)} I_{SHUNT(min)}
 - = 50mA 100µ́A
 - = 49.9mA

The shunt regulator has a finite response to this transient. The instantaneous requirements of the load change are met by the charge on C_L, resulting in overshoot/undershoot on V_{SHUNT}. The magnitude of this overshoot/undershoot increases with I_{SHUNT} and decreases with C_L. When V_{SHUNT} undershoots, the shunt current decreases to where it will only draw quiescent current (I_Q), and the shunt element turns off. At this point, V_{SHUNT} will slew toward V_{IN} at the following rate:

 ΔV_{SHUNT} / $\Delta t = (I_{IN} - I_{LOAD} - 60\mu A)$ / C_L

As V_{SHUNT} rises, it will turn on the shunt regulator when it can sink 100µA of current. A finite response time for the shunt regulator to start up will result in a brief overshoot of V_{SHUNT} before it settles into its regulation voltage. Therefore, I_{LOAD} should always be 100µA or more below I_{IN}, or V_{SHUNT} will not recover to its regulation point. To prevent this condition, be sure to select the correct series-resistor R_S value (see the *Shunt Regulator* section).

Figures 2, 3, and 4 show load-transient responses for different choices of bypass capacitors on V_{SHUNT} . These photos clearly illustrate the benefits and drawbacks of the capacitor options. A smaller bypass

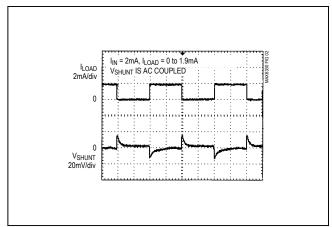


Figure 2. Load-Transient Response with $C_L = 0.22 \mu F$

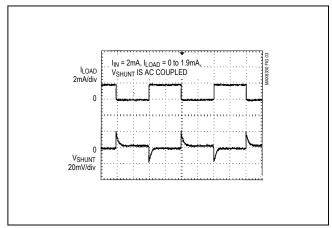


Figure 3. Load-Transient Response with $C_L = 0.033 \mu F$



Figure 4. Load-Transient Response with $C_L = 0.0047 \mu F$

Precision Shunt Regulators with Reset in SOT23-3

capacitor allows a sharper drop in V_{SHUNT} when the load transient occurs, and will suffer from a steeper overshoot when the device re-enters regulation. On the other hand, the increased compensation on a larger bypass capacitor will lead to a longer recovery time to regulation. The *Typical Operating Characteristics* graph Overshoot vs. Bypass Capacitance (C_L) illustrates this trade-off.

If the compensation of the bypass capacitor chosen is insufficient, the output (V_{SHUNT}) can oscillate. Before choosing a bypass capacitor for the desired shunt current, observe the stability boundary conditions indicated in the *Typical Operating Characteristics*. The minimum output capacitance is 0.03μ F to ensure stability over the full load-current range.

Adding Hysteresis

In certain circumstances, the MAX6330 can be trapped in a state that forces it to enter into and exit from a reset condition indefinitely. This usually occurs in systems where V_{SHUNT} is just below the device's trip threshold and the system draws less quiescent current under reset conditions than when operating out of reset. The difference in supply current when the device is in or out of reset can translate to a significant change in the voltage drop across R_S, which the MAX6330's built-in hysteresis may not overcome. A 100k Ω pull-up resistor will overcome this condition and add hysteresis (Figure 5). Note that adding this pull-up resistor to the MAX6330 will render RESET invalid with $V_{SHUNT} < 1V$, since this output loses sinking capability at this point, and the pull-up resistor would invalidate the signal. This does not present a problem in most applications, since most µPs and other circuitry are inoperative when V_{SHUNT} is below 1V.

Interfacing to µPs with Bidirectional Reset Pins

Microprocessors with bidirectional reset pins (such as the Motorola 68HC11 series) can contend with MAX6330's reset output. If, for example, the MAX6330's RESET output is asserted high and the μ P wants to pull it low, indeterminate logic levels may result. To correct this, connect a 4.7k Ω resistor between the RESET output and the μ P reset I/O (Figure 6). Buffer the RESET output to other system components. Also, R_S must be sized to compensate for additional current drawn by the μ P during the fault condition.

Shunt Current Effects on VSHUNT and V_{TH}

When sinking large shunt currents, power dissipation heats the die to temperatures greater than ambient. This may cause the V_{SHUNT} and V_{TH} tolerances to approach $\pm 3\%$ at high ambient temperatures and high shunt currents. Limit the die temperature to less than +150°C using $\Theta_{JA} = 0.25$ °C/mW.

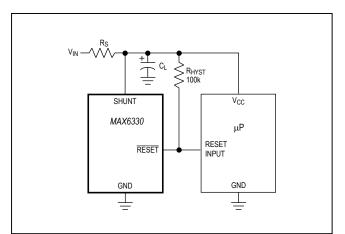


Figure 5. Adding Hysteresis to the MAX6330

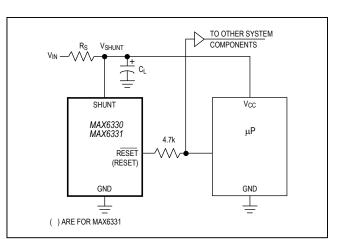


Figure 6. Interfacing to µPs with Bidirectional Reset I/O

Precision Shunt Regulators with Reset in SOT23-3

Chip Information

TRANSISTOR COUNT: 283

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
3 SOT23	U3+1	<u>21-0151</u>	<u>90-0179</u>

Precision Shunt Regulators with Reset in SOT23-3

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
2	4/14	No /V OPNs; Removed Automotive reference from Applications section	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX6330LUR+T MAX6330SUR+T MAX6330TUR+T MAX6331LUR+T MAX6331SUR+T MAX6331TUR+T