ABSOLUTE MAXIMUM RATINGS

	re Range65°C to +150°C (soldering, 10s)+300°C
--	---

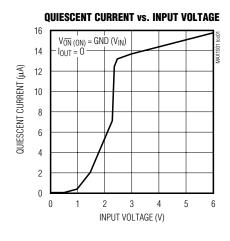
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

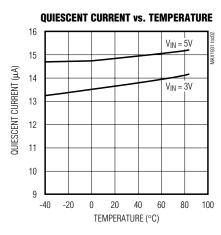
ELECTRICAL CHARACTERISTICS

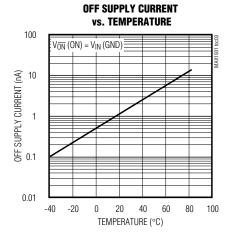
 $(V_{IN} = 5V, T_A = 0^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

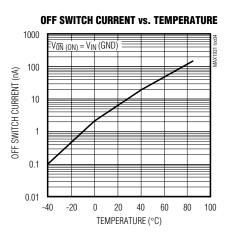
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Voltage	VIN			2.7		5.5	V
Quiescent Current	Io	$V_{\overline{ON}} = GND, I_{OUT} = 0$	Timer not running		14	35	μА
Quiescetti Cuttetti	iQ		Timer running		35		
Off Supply Current		$V\overline{ON} = VIN = VOUT = 5.5V$			0.001	1	μΑ
Undervoltage Lockout	UVLO	Rising edge, 100mV h	ysteresis	2.0		2.6	V
Off Switch Leakage		$V\overline{ON} = V_{IN}$ $V_{IN} = 5.5V$	T _A = +25°C		0.01	4	μA
		V _{IN} = 5.5V, V _{OUT} = GND	$T_A = 0$ °C to +85°C			20	μ/
		T _A = +25°C	$V_{IN} = 4.4V \text{ to } 5.5V$		60	110	
On-Resistance	Ron	T _A = 0°C to +85°C	V _{IN} = 4.4V to 5.5V			150	mΩ
			$V_{IN} = 3V$		72	180	
Current Limit	ILIMIT	Vout = 4.5V		640	850	1060	mA
Continuous Short-Circuit Current Limit	Isc	OUT shorted to GND			500	700	mA
ON Input Logic Low Voltage	VIL	V _{IN} = 2.7V to 5.5V				0.8	V
	\/	V _{IN} = 2.7V to 3.6V		2			V
ON Input Logic High Voltage	VIH	V _{IN} = 3.7V to 5.5V		2.4			V
ON Input Leakage		$V_{\overline{ON}} = V_{\overline{IN}}$ or GND				±1	μΑ
FAULT Output Logic Low Voltage	V _{OL}	I _{SINK} = 1mA, V _{IN} = 3V	,			0.4	V
FAULT Output High Leakage Current		V _{IN} = V _{FAULT} = 5.5V				1	μΑ
Fault-Blanking Timeout Period	t _{FB}	From overcurrent cond	dition to FAULT assertion	6	10	13	ms
Startup Time		$V_{IN} = 5V$, $C_{OUT} = 150$ from \overline{ON} driven low to 9	-		1		ms
Switch Turn-On Time	ton	ILOAD = 400mA			80	200	μs
Switch Turn-Off Time	toff	I _{LOAD} = 400mA		3	6	20	μs
Thermal Shutdown Threshold					165		°C

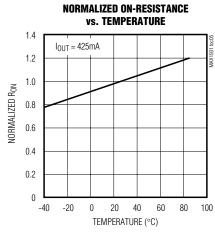
ELECTRICAL CHARACTERISTICS

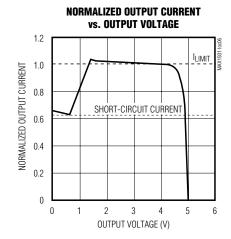

 $(V_{IN} = 5V, T_A = -40$ °C to +85°C, unless otherwise noted.) (Note 1)

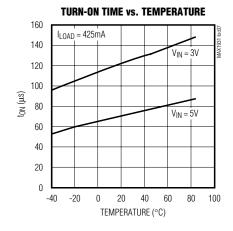

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage	VIN		3		5.5	V
Quiescent Current	IQ	$V_{\overline{ON}} = GND$, $I_{OUT} = 0$, timer not running			35	μΑ
Off Supply Current		$V_{\overline{ON}} = V_{IN} = V_{OUT} = 5.5V$			2	μΑ
Undervoltage Lockout	UVLO	Rising edge, 100mV hysteresis	2.0		2.9	V
Off Switch Leakage		$V_{\overline{ON}} = V_{IN} = 5.5V$, $V_{OUT} = GND$			20	μΑ
On-Resistance	Ron	V _{IN} = 4.4V to 5.5V			150	mΩ
On-nesistance	TION	V _{IN} = 3V			180	11122
Current Limit	ILIMIT	V _{OUT} = 4.5V	600		1100	mA
Continuous Short-Circuit Current Limit		OUT shorted to GND			750	mA
ON Input Logic Low Voltage	V _{IL}	$V_{IN} = 3V$ to 5.5V			0.8	V
ON Input Logic High Voltage	VIH	V _{IN} = 3V to 3.6V	2		V	
		V _{IN} = 3.7V to 5.5V	2.4			1 v
ON Input Leakage		VON = VIN or GND			±1	μΑ
FAULT Output Logic Low Voltage	VoL	ISINK = 1mA, VIN = 3V			0.4	٧
FAULT Output High Leakage Current		VIN = VFAULT = 5.5V			1	μΑ
Fault-Blanking Timeout Period	tFB	From overcurrent condition to FAULT assertion	6		14	ms
Switch Turn-On Time	ton	I _{LOAD} = 400mA			200	μs
Switch Turn-Off Time	toff	I _{LOAD} = 400mA	1		20	μs

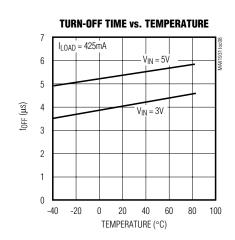

Note 1: Specifications to -40°C are guaranteed by design, not production tested.

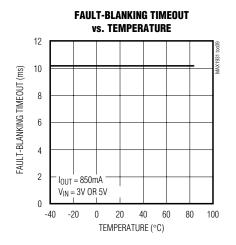

Typical Operating Characteristics

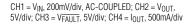

 $(V_{IN} = 5V, T_A = +25$ °C, unless otherwise noted.)

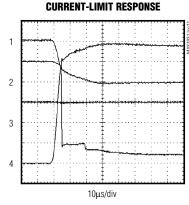




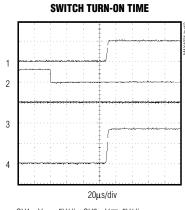




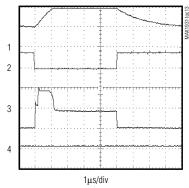



Typical Operating Characteristics (continued)

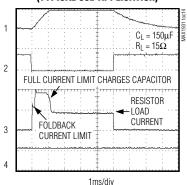
 $(V_{IN} = 5V, T_A = +25$ °C, unless otherwise noted.)



CURRENT-LIMIT AND FAULT RESPONSE 1 2 2 2 2ms/div



 $\begin{array}{l} CH1=V_{IN},\,200mV/div,\,AC-COUPLED;\,CH2=V_{OUT},\\ 5V/div;\,CH3=V_{\overline{FAULT}},\,5V/div;\,CH4=I_{OUT},\,1A/div \end{array}$


$$\begin{split} CH1 &= V_{OUT},\,5V/div;\,CH2 = V_{\overline{ON}},\,5V/div;\\ CH3 &= V_{\overline{FAULT}},\,5V/div;\,CH4 = I_{OUT},\,200mA/div \end{split}$$

 $\begin{array}{l} CH1=V_{OUT},\,5V/div;\,CH2=V_{\overline{ON}},\,5V/div;\\ CH3=V_{\overline{FAULT}},\,5V/div;\,CH4=I_{OUT},\,200mA/div \end{array}$

STARTUP TIME (TYPICAL USB APPLICATION)

$$\begin{split} & \text{CH1} = \text{V}_{\text{OUT}}, \, 5\text{V/div}; \, \text{CH2} = \text{V}_{\overline{\text{ON}}}, \, 5\text{V/div}; \\ & \text{CH3} = \text{I}_{\text{OUT}}, \, 500\text{mA/div}; \, \text{CH4} = \text{V}_{\text{FAULT}}, \, 5\text{V/div} \end{split}$$

Pin Description

PIN	NAME	FUNCTION
1, 3, 9	IN	Input. P-channel MOSFET source. Connect all IN pins together and bypass with a 1µF ceramic capacitor to ground.
2, 4, 8, 10	OUT	Switch Output. P-channel MOSFET drain. Connect all OUT pins together and bypass with a 0.1µF capacitor to ground.
5	ŌN	Active-Low Switch On Input. A logic low turns the switch on.
6	GND	Ground
7	FAULT	Fault-Indicator Output. This open-drain output goes low when the device is in thermal shut-down, undervoltage lockout, or on a sustained (>10ms) current-limit condition.

Figure 1. Functional Diagram

Detailed Description

The MAX1931 P-channel MOSFET power switch limits output current to 0.64A (min) to 1.06A (max). When the output current is increased beyond the current limit (ILIMIT), the current also increases through the replica switch (IOUT / 6500). The current-limit error amplifier compares the voltage to the internal 1.24V reference and regulates the current back to the ILIMIT.

This switch is not bidirectional; therefore, the input voltage must be higher than the output voltage.

Continuous Short-Circuit Protection

The MAX1931 is a foldback short-circuit-protected switch. In the event of an output short-circuit or current-overload condition, the current through the switch is foldback-current-limited to 500mA continuous.

Thermal Shutdown

The MAX1931 features thermal shutdown. The switch turns off and the FAULT output goes low immediately (no fault blanking) when the junction temperature exceeds +165°C. When the MAX1931 cools 20°C, the switch turns back on. If the fault short-circuit condition is not removed, the switch cycles on and off, resulting in a pulsed output.

FAULT Indicator

The MAX1931 provides a fault output (\overline{FAULT}). A 100k Ω pullup resistor from \overline{FAULT} to IN provides a logic control signal. This open-drain output goes low when any of the following conditions occur:

- The input voltage is below the undervoltage lockout (UVLO) threshold.
- The die temperature exceeds the thermal shutdown temperature limit of +165°C.
- The device is in current limit and the 10ms faultblanking period is exceeded.

Fault Blanking

The MAX1931 features 10ms fault blanking. Fault blanking allows current-limit faults, including momentary short-circuit faults that occur when hot-swapping a capacitive load, and also ensures that no fault is issued during power-up. When a load transient causes the device to enter current limit, an internal counter starts. If the load fault persists beyond the 10ms fault-blanking timeout, the FAULT output asserts low. Ensure that the MAX1931's input is adequately bypassed to prevent input glitches from triggering spurious FAULT outputs. Input voltage glitches less than 150mV do not cause a

spurious FAULT output. Load-transient faults less than 10ms (typ) do not cause a FAULT output assertion.

Only current-limit faults are blanked. Die overtemperature faults and input voltage droops below the UVLO threshold cause an immediate fault output.

Applications Information

Input Capacitor

To limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN to GND. A 1 μ F ceramic capacitor is adequate for most applications; however, higher capacitor values further reduce the voltage drop at the input (see Figure 2).

Output Capacitor

Connect a 0.1µF capacitor from OUT to GND. This capacitor helps prevent inductive parasitics from pulling OUT negative during turn-off.

Layout and Thermal Dissipation

To optimize the switch-response time to output short-circuit conditions, it is very important to keep all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close to the device as possible (no more than 5mm).

All IN and all OUT pins must be connected with short traces to the power bus. Wide power bus planes provide superior heat dissipation through the switch IN and OUT pins. Figure 3 shows suggested pin connections for a single-layer board.

Under normal operating conditions, the package can dissipate and channel heat away. Calculate the maximum power dissipation as follows:

$$P = (I_{LIMIT})^2 \times R_{ON}$$

where I_{LIMIT} is the preset current limit (1.1A max) and R_{ON} is the on-resistance of the switch (150m Ω max).

When the output is short-circuited, foldback-current-limiting activates and the voltage drop across the switch equals the input supply. The power dissipated across the switch increases, as does the die temperature. If the fault condition is not removed, the thermal-overload protection circuitry activates (see the *Thermal Shutdown* section). Wide power-bus planes connected to IN and OUT and a ground plane in contact with the device help dissipate additional heat.

Chip Information

TRANSISTOR COUNT: 715

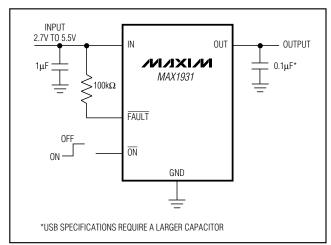


Figure 2. Typical Application Circuit

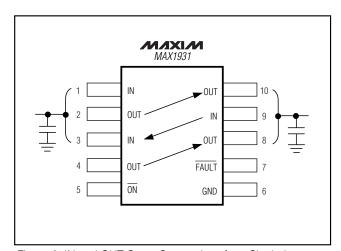
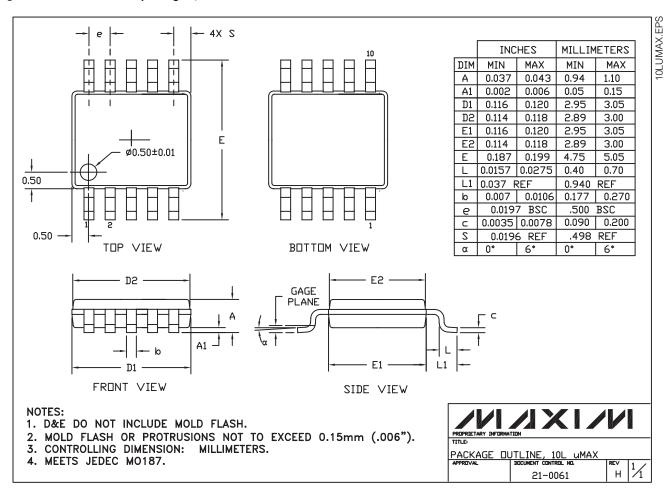



Figure 3. IN and OUT Cross Connections for a Single-Layer Board

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Note: MAX1931 does not have an exposed pad.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX1931EUB+ MAX1931EUB+T