ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +6V
RIN to GND	±25V
EN, ROUT, INVALID to GND	0.3V to (V _{CC} + 0.3V)
Continuous Power Dissipation ($T_A = +7$	
SOT23-5 (derate 7.1mW/°C above +7	70°C)571mW

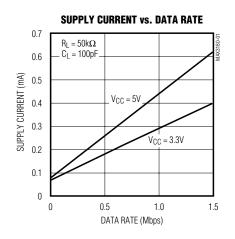
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

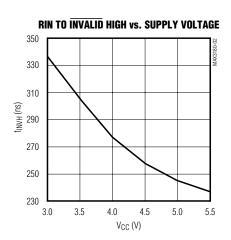
ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +5.0V \text{ and } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC CHARACTERISTICS	-		1			1	
Supply Voltage	VCC		3.0		5.5	V	
Supply Current	Icc	VCC = 3.3V or 5V, RIN = VCC or GND, no load		0.5	5	μA	
LOGIC INPUT (EN)						1	
Logic Threshold Low	VIL				0.8	V	
Logic Threshold High		V _{CC} = 3.3V	2.0			V	
Logic miesnola high	VIH	$V_{CC} = 5.0V$	2.4				
Leakage Current	IEN			±0.01	±1.0	μA	
LOGIC OUTPUT							
INVALID Output Voltage Low	VIOL	I _{SINK} = 1.6mA			0.4	V	
INVALID Output Voltage High	VIOH	ISOURCE = 1.0mA	V _{CC} - 0.6			V	
RECEIVER INPUT							
Input Voltage Range	VRIN		-25		25	V	
Input Threshold Low	VITL	$V_{CC} = 3.3V$	0.6	1.2		- V	
		$V_{CC} = 5.0V$	0.8	1.5			
land at Three sheld Llink	VITH	V _{CC} = 3.3V		1.5	2.4	. v	
Input Threshold High		$V_{CC} = 5.0V$		1.8	2.7		
Input Hysteresis	VHYST			300		mV	
RIN Threshold to INVALID	Vitori	Positive threshold			2.7	7 V	
Output High	VITOH	Negative threshold	-2.7				
RIN Threshold to INVALID Output Low	VITOL		-0.3		0.3	V	
Input Resistance	R _{RIN}		3	5	7	kΩ	
RECEIVER OUTPUT							
Output Leakage Current	IROUT	Receiver disabled		±0.05	±10	μA	
Output Voltage Low	VOL	I _{SINK} = 1.6mA			0.4	V	
Output Voltage High	Vон	ISOURCE = 1.0mA	V _{CC} - 0.6	V _{CC} - 0.1		V	

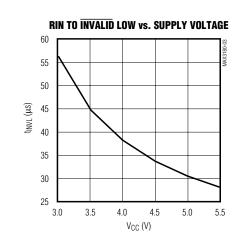

ELECTRICAL CHARACTERISTICS (continued)

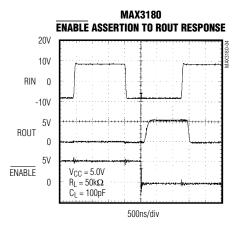
 $(V_{CC} = +3.0V \text{ to } +5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +5.0V \text{ and } T_A = +25^{\circ}C.)$ (Note 1)


PARAMETER SYMBO		OL CONDITIONS		TYP	MAX	UNITS
TIMING CHARACTERISTICS	1					
Maximum Data Rate		$C_L = 50 pF$	1.5			Mbps
Receiver Propagation Delay, High-to-Low	tphL.	RIN to ROUT; $C_L = 150pF$		0.15		μs
Receiver Propagation Delay, Low-to-High tPLH		RIN to ROUT; $C_L = 150pF$	0.15			μs
Receiver Skew	t _{RS}	t _{PHL} - t _{PLH} , Figure 1	50			ns
Receiver Output Enable Time	troe			200		ns
Receiver Output Disable Time t _{ROD}				200		ns
Receiver Positive or Negative Threshold to INVALID High				250		ns
Receiver Positive or Negative Threshold to INVALID Low				30		μs

Note 1: Specifications are 100% tested at $T_A = +25$ °C. Limits over temperature are guaranteed by design.

(V_{CC} = +5V, T_A = +25°C, unless otherwise noted.)


Typical Operating Characteristics



MAX3180-MAX3183

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN		NA	ME		FUNCTION
FIN	MAX3180	MAX3181	MAX3182	MAX3183	FUNCTION
1	ĒN	-	ĒN	-	Receiver Output Enable
	-	INVALID	-	INVALID	Output of the Valid Input Detector
2	GND	GND	GND	GND	Ground
3	ROUT	ROUT	-	-	Inverting Receiver Output
3	-	-	ROUT	ROUT	Noninverting Receiver Output
4	RIN	RIN	RIN	RIN	Receiver Input
5	Vcc	Vcc	Vcc	Vcc	Supply Voltage

M/IXI/M

Detailed Description

The MAX3180–MAX3183 are EIA/TIA-232 and V.28/ V.24 communications receivers that convert RS-232 signals to CMOS logic levels. The devices operate on a supply voltage of +3V to +5.5V and have a 1.5Mbps data rate capability. They achieve a 0.5µA typical supply current. The MAX3180/MAX3182 have a receiver enable control (EN), while the MAX3181/MAX3183 contain a signal invalid output (INVALID). The MAX3180/ MAX3181 invert the ROUT signal relative to RIN. The MAX3182/MAX3183 are not inverted. The devices come in SOT23-5 packages.

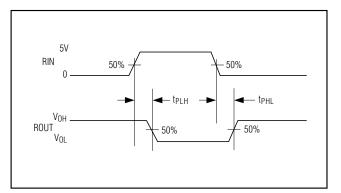


Figure 1. Receiver Propagation-Delay Timing

Signal Invalid Detector

If no valid signal levels appear on RIN for 30µs (typ), INVALID goes low. This event typically occurs if the RS-232 cable is disconnected or if the connected peripheral transmitter is turned off. INVALID goes high when a valid level is applied to the RS-232 receiver input. Figure 2 shows the input levels and timing diagram for INVALID operation.

Enable Input

MAX3180-MAX3183

The MAX3180/MAX3182 feature an enable input. Drive $\overline{\text{EN}}$ high to force ROUT into a high-impedance state. In this state, the devices ignore incoming RS-232 signals. Drive $\overline{\text{EN}}$ low for normal operation.

Power-Supply Decoupling

In most circumstances, a $0.1\mu F$ VCC bypass capacitor is adequate for power-supply decoupling. Connect the bypass capacitor as close to the IC as possible.

Chip Information

TRANSISTOR COUNT: 41

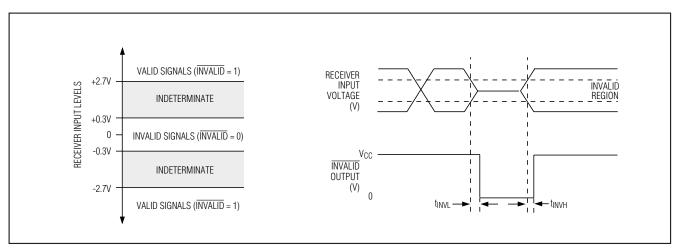
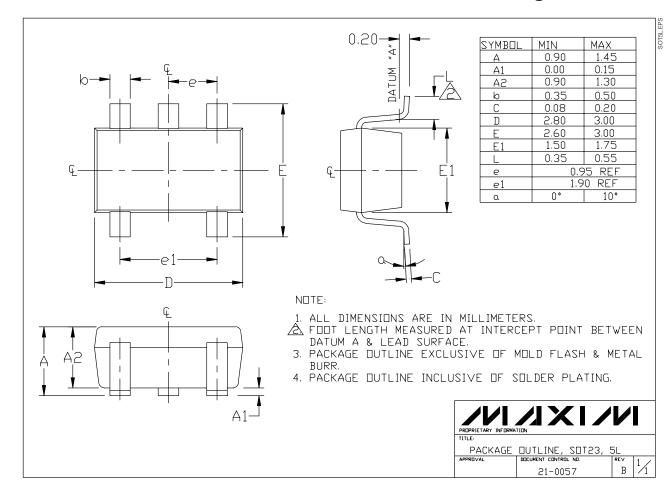



Figure 2. Input Levels and INVALID Timing

_Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

6

MAX3180-MAX3183

Printed USA *MAXIM* is a registered trademark of Maxim Integrated Products.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated: MAX3180EUK+T MAX3181EUK+T MAX3182EUK+T