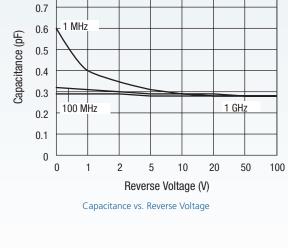
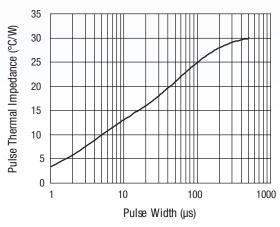

Operating Characteristics


T = 25 °C, unless otherwise noted


Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Reverse current	I _R	$V_{R} = 200 \text{ V}$			10	μΑ
Capacitance	C _{T30}	V _R = 30 V, f = 1 MHz			0.3	pF
Resistance	R _{s10}	I _F = 10 mA, f = 100 MHz			3	Ω
Resistance	R _{s100}	I _F = 100 mA, f = 100 MHz		1.0	1.5	Ω
Forward voltage	V _F	I _F = 10 mA		0.8		V
Carrier lifetime	T _L	I _F = 10 mA		700		ns
I-Region width	W			50		μm
CW thermal resistance	Θ_{JC}				40	°C/W
Pulse thermal resistance	$\Theta_{\mathtt{P}}$	Single 1 µs pulse		3.5		°C/W

Typical Performance Data @ 25 °C, unless otherwise noted

Series Resistance vs. Current @ 100 MHz

Typical Pulse Thermal Impedance

Absolute Maximum Ratings

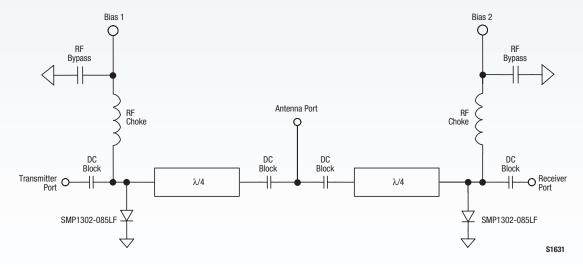
0.8

Characteristic	Value		
Reverse voltage	200 V		
Forward current at 25 °C	1.5 A		
CW power dissipation at 25 °C	3 W		
1μs pulse power dissipation	30 W		
Storage temperature range	-65 °C to +200 °C		
Operating temperature range	-40 °C to +150 °C		

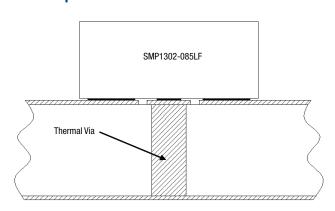
Performance is guaranteed only under the conditions listed in the specifications table and is not guaranteed under the full range(s) described by the Absolute Maximum specifications. Exceeding any of the absolute maximum/minimum specifications may result in permanent damage to the device and will void the warranty.

T-R Switch Performance

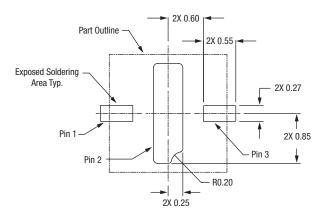
Frequency	2010-2025 GHz		
Insertion loss (Tx-ANT)	0.42 dB		
Insertion loss (ANT-Rx)	0.45 dB		
Isolation (Rx-Tx)	37 dB		
Isolation (Tx-Rx)	37.8dB		
0.1 dB Tx compression	46 dBm (Pulsed)		
1.0 dB Tx compression	>50 dBm (Pulsed)		
Tx-Rx IIP3	>80 dBm		
Tx CW input power	41 dBm		
Tx Peak input power ⁽²⁾	>49.5 dBm		
Rx CW input power	41 dBM		
Tx-Rx switching speed ⁽¹⁾	<0.85 μs		
Tx input return loss	27.8 dB		
Rx input return loss	28.8 dB		

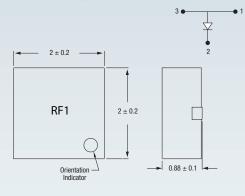

- 1. Based on complementary pulsed bias current waveforms under RF conditions.
- 2. Measured with 8 μs RF pulse width, 0.5% duty cycle, 50 Ω ANT load.
- 3. F1 = 2.0155 GHz @ 10 dBm, F2 = 2.0195 GHz @ 10 dBm.

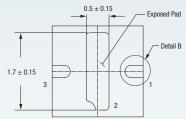
High Power Switch Design Application

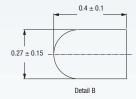

A T-R switch incorporating SMP1302 PIN diodes covering 2.0155 GHz to 2.0195 GHz has been designed and tested. The switch operated safely at transmitter power of 41dBm CW (12.6 W) with low insertion loss (0.42 dB) and high receiver isolation (37 dB). 1 dB compression occurred at higher than 50 dBm. In the receive state the switch performed with 0.45 dB insertion loss and 37.8 dB transmitter isolation.

The circuit is based on a quarter wave design utilizing two shunt connected SMP1302 diodes. In the transmit state the Bias 1 is set at 0 mA and Bias 2 is set at 50 mA; in the receive state Bias 1 is set at 50 mA and Bias 2 is set at 0 mA.


T-R Switch Circuit Diagram


Microstrip Mount




Land Pattern

Outline Drawing

Note: Dimensions are in millimeters.

Application Notes

For additional information, please refer to the following Application Notes.

Solder Reflow Information

Discrete Devices and IC Switch/Attenuators Tape and Reel Package Orientation

Through our Green Initiative,[™] we are committed to manufacturing products that comply with global government directives and industry requirements.

Skyworks is continuously innovating RF, analog and mixed-signal ICs. For the latest product introductions and information about Skyworks, visit our Web site at **www.skyworksinc.com**

For additional information on our broad overall product portfolio, please contact your local sales office or email us at sales@skyworksinc.com.

Skyworks Solutions, Inc.

20 Sylvan Road, Woburn, MA 01801

USA: (781) 376-3000 • Asia: 886 2 2735 0399 x 990 Europe: 33 (0)1 41443660 • Fax: (781) 376-3100 Email: sales@skyworksinc.com • www.skyworksinc.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Skyworks:

SMP1302-075LF SMP1302-027LF SMP1302-017LF SMP1302-005LF SMP1302-004LF SMP1302-085LF-EVB