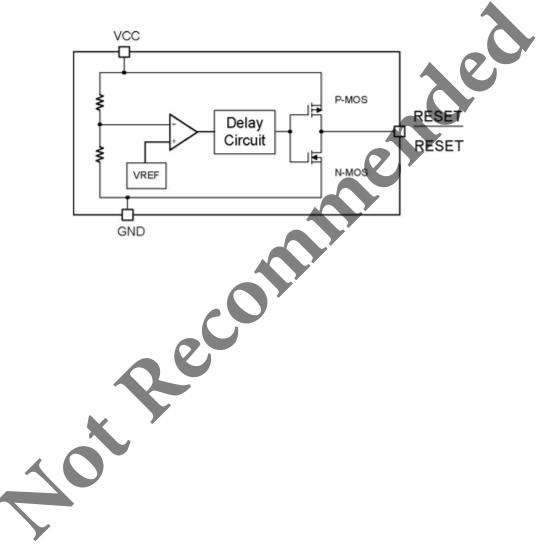


ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	LIMIT	UNIT		
Terminal Voltage (with respect to GND)	V _{cc}	GND - 0.3 to GND +6.5	V		
RESET low output voltage	V _{RESET}	GND - 0.3 to V _{CC} +0.3	V		
Input Current, V _{CC}	I _{CC}	20	mA		
RESET Output Current	Ι _ο	5	mA		
Power Dissipation	P _D	$(T_J-T_A)/R_{\theta JA}$	mW		
Operating Junction Temperature Range	T _{J.OPR}	-40 ~ +125	°C		
Storage Temperature Range	T _{STG}	-65 ~ +150	°C		
Lead Soldering Temperature (260°C)	t _{LEAD}	10	s		
	·		•		

THERMAL PERFORMANCE			
PARAMETER	SYMBOL	MAXIMUM	UNIT
Thermal Resistance from Junction to Case	$R_{ ext{ heta}JC}$	110	°C/W
Thermal Resistance from Junction to Ambient (Note 1)	R _{0JA}	250	°C/W

ELECTRICAL CHARACTERISTICS ($V_{cc} = 5V$, $T_A = 25^{\circ}C$ unless otherwise noted)						
PARAMETER	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNIT
Input Supply Voltage	T _A =-40°C~+85°C	Vcc	1.0		6	V
Supply Current	V _{CC} =V _{TH} + 1V	I _{cc}		25	35	μA
	TS3809CXD		3.02	3.08	3.15	
Reset Threshold	t Threshold TS3809CXE V _{TH}	V _{TH}	2.87	2.93	3.00	V
	TS3809CXF		2.57	2.63	2.69	
Reset Threshold Temperature Coefficient	T ₄ =0~+85°C	V _{THT}		50		ppm/°C
Set-up Time	$V_{CC} = 0 - (V_{TH} - 100mV)$	t _{SET}	1			μs
V _{cc} to Reset Delay	V _{CC} = V _{TH} ~ (V _{TH} - 100mV)	t _{RD}		20		μs
Reset Active Timeout Period	T _A =0∼+85°C	t _{DELAY}	140	200	260	ms
RESET Output Voltage Low	$1.8V < V_{CC} < V_{TH(MAX)},$ $I_{SINK} = 1.2mA$ $1.2V < V_{CC} < 1.8V,$ $I_{SINK} = 50\mu A$	- V _{OL}			0.3	V
<u>RESET</u> Output Voltage High	$V_{CC} > V_{TH(MAX)},$ $I_{SOURCE} = 500 \mu A$	V _{он}	0.8 V _{CC}			V
Hysteresis at V_{CC}	Input Voltage	V _{HVS}		40		mV

Note :


1. $R_{\theta JA}$ is measured the PCB copper area of approximately $1in^2$ (Multi-layer). Needs to connect to V_{SS} pin.

ORDERING INFORMATION

RESET VOLTAGE	PART NO.	PACKAGE	PACKING
3.08V	TS3809CXD RFG	SOT-23	3,000pcs / 7" Reel
2.93V	TS3809CXE RFG	SOT-23	3,000pcs / 7" Reel
2.63V	TS3809CXF RFG	SOT-23	3,000pcs / 7" Reel

BLOCK DIAGRAM

CHARACTERISTICS CURVES

 $(T_c = 25^{\circ}C \text{ unless otherwise noted})$

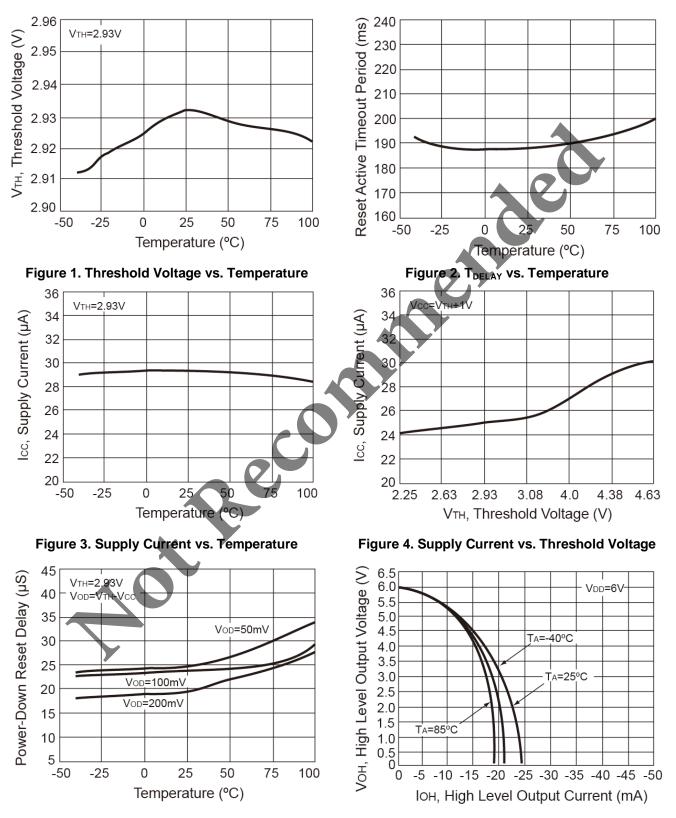


Figure 5. Power-Down T_{DELAY} vs. Temperature

Figure 6. Output Voltage vs. Output Current

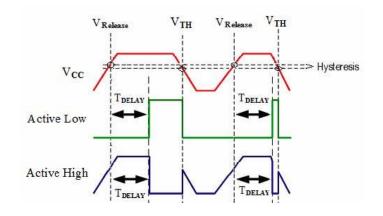
APPLICATION INFORMATION

Negative-Going V_{CC} transients in addition to issuing a reset to the μP during power-up, power-down, and brownout conditions, the TS3809 are relatively immune to short-duration negative-going V_{CC} transients (glitches).

The TS3809/3810 does not generate a reset pulse. The graph was generated using a negative going pulse applied to V_{CC} , starting 0.5V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the maximum pulse width a negative going V_{CC} transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 100mV below the reset threshold and lasts 20µS or less will not cause a reset pulse. A 0.1µF bypass capacitor mounted as close as possible to the V_{CC} pin provides additional transient immunity.

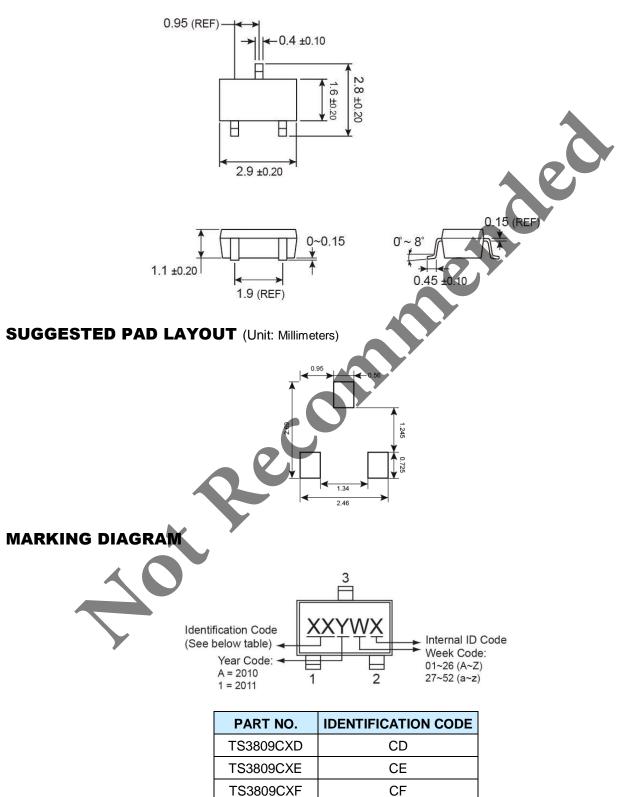
FUNCTION DESCRIPTION

A microprocessor's reset input starts the μ P in a known state. The TS3809 assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V_{CC} has risen above the reset threshold. The TS3809 have a push-pull output stage.


ENSURING A VALID RESET OUTPUT DOWN TO V_{cc}=0

RESET is guaranteed to be a logic low for $V_{CC} > 1.0V$. Once V_{CC} exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period; after this interval, RESET goes high. If a brownout condition occurs (V_{CC} dips below the reset threshold), RESET goes low. Any time V_{CC} goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The internal timer starts after V_{CC} returns above the reset threshold, and RESET remains low for the reset timeout period. When V_{CC} falls below 1V, the TS3809 reset output no longer sinks current - it becomes an open circuit. Therefore, high impedance CMOS logic input connected to reset can drift to undetermined voltages. This present no problem in most applications since most μ P and other circuitry is inoperative with V_{CC} below 1V. However, in applications where reset must be valid down to 0V, adding a pull down resistor to reset causes and stray leakage currents to flow to ground, holding reset low (Figure 2.) R1's value is not critical; 100K is large enough not to load reset and small enough to pull RESET to ground. For the TS3809 if reset is required to remain valid for $V_{CC} < 1V$.

BENEFITS OF HIGHLY ACCURATE RESET THRESHOLD


Most μ P supervisor ICs has reset threshold voltages between 5% and 10% below the value of nominal supply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the supply is 10% below nominal. When using ICs rated at only the nominal supply ±5%, this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset many or may not be asserted.

TIMMING DIAGRAM

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Taiwan Semiconductor:

TS3809CXA TS3809CXB TS3809CXC TS3809CXD TS3809CXE TS3809CXF TS3809CXG TS3809CXA RFG TS3809CXD RFG TS3809CXF RFG TS3809CXC RFG TS3809CXC RFG TS3809CXE RFG