. ..

Test Methodology			Clas	s	
Human Body Model (per JESD22-A114)		3A (Minimum)			
Machine Model (per EIA/JESD22-A115)		A (Minimum)			
Charge Device Model (per JESD22-C101)		IV (Minimum)			
Table 4. Electrical Characteristics (T _C = 25°C unless otherwise)	se noted)				
Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 68 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate - Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}			1	μAdc
On Characteristics			•		
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 250 μAdc)	V _{GS(th)}	1	2	3	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _D = 950 mAdc)	V _{GS(Q)}	2	2.8	4	Vdc
Drain-Source On-Voltage $(V_{GS} = 10 \text{ Vdc}, I_D = 2.2 \text{ Adc})$	V _{DS(on)}	0.1	0.21	0.3	Vdc
Dynamic Characteristics ⁽¹⁾	·				
Reverse Transfer Capacitance (V_{DS} = 28 Vdc \pm 30 mV(rms)ac @ 1 MHz, V_{GS} = 0 Vdc)	C _{rss}	_	1.5		pF

Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 950 mA, P_{out} = 23 W Avg., f1 = 2112.5 MHz, f2 = 2122.5 MHz and f1 = 2157.5 MHz, f2 = 2167.5 MHz, 2-carrier W-CDMA, 3.84 MHz Channel Bandwidth Carriers, ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3 measured in 3.84 MHz Channel Bandwidth @ ±10 MHz Offset. PAR = 8.5 dB @ 0.01% Probability on CCDF.

Power Gain	G _{ps}	14.5	15.9	17.5	dB
Drain Efficiency	η_D	26	27.6	—	%
Intermodulation Distortion	IM3	_	-37	-35	dBc
Adjacent Channel Power Ratio	ACPR	_	-39.5	-38	dBc
Input Return Loss	IRL	_	-16	-9	dB

1. Part is internally matched both on input and output.

Figure 1. MRF6S21100HR3(SR3) Test Circuit Schematic

Table 5. MRF6S21100HR3(SR3) 7	Test Circuit Com	ponent Designations	ঃ and Values
-------------------------------	------------------	---------------------	--------------

Part	Description	Part Number	Manufacturer
B1	Ferrite Bead	2743019447	Fair-Rite
C1	1.0 μF, 50 V Tantalum Capacitor	T491C105M050AT	Kemet
C2	10 µF, 50 V Electrolytic Capacitor	EEV-HB1H100P	Panasonic
C3	1000 pF 100B Chip Capacitor	ATC100B102JT500XT	ATC
C4, C13	0.1 µF 100B Chip Capacitors	CDR33BX104AKWY	Kemet
C5	5.1 pF Chip Capacitor	ATC100B5R1JT500XT	ATC
C6, C7	15 pF Chip Capacitors	ATC100B150JT500XT	ATC
C8	6.8 pF Chip Capacitors	ATC100B6R8JT500XT	ATC
C9, C10, C11, C12	22 µF, 35 V Tantalum Capacitors	T491X226K035AT	Kemet
C14	100 µF, 50 V Electrolytic Capacitor	515D107M050BB6AE3	Vishay/Sprague
R1	1.0 kΩ, 1/8 W Chip Resistor	CRCW08051000FKTA	Vishay
R2	10 Ω, 1/8 W Chip Resistor	CRCW080510R0FKTA	Vishay

Figure 2. MRF6S21100HR3(SR3) Test Circuit Component Layout

Figure 3. 2-Carrier W-CDMA Broadband Performance @ Pout = 23 Watts Avg.

Figure 4. 2-Carrier W-CDMA Broadband Performance @ Pout = 55 Watts Avg.

is operated at V_{DD} = 28 Vdc, P_{out} = 23 W Avg., and η_D = 27.6%.

MTTF calculator available at http://www.freescale.com/rf. Select Tools/ Software/Application Software/Calculators to access the MTTF calculators by product.

Figure 12. MTTF versus Junction Temperature

Figure 14. 2-Carrier W-CDMA Spectrum

 V_{DD} = 28 Vdc, I_{DQ} = 950 mA, P_{out} = 23 W Avg.

f MHz	Z_{source}	Z_{load}_{Ω}
2080	2.44 - j6.3	1.83 - j3.0
2110	2.25 - j6.1	1.74 - j2.8
2140	2.09 - j5.8	1.61 - j2.6
2170	1.98 - j5.6	1.59 - j2.5
2200	1.85 - j5.4	1.52 - j2.3

 Z_{source} = Test circuit impedance as measured from gate to ground.

Figure 15. Series Equivalent Source and Load Impedance

Part	Description	Part Number	Manufacturer
B1	Ferrite Bead	2743019447	Fair-Rite
C1	1.0 µF, 50 V Tantalum Capacitor	T491C105M050AT	Kemet
C2	10 µF, 50 V Electrolytic Capacitor	EEV-HB1H100P	Panasonic
C3	1000 pF 100B Chip Capacitor	ATC100B102JT500XT	ATC
C4, C13	0.1 µF 100B Chip Capacitors	CDR33BX104AKWY	Kemet
C5	5.1 pF Chip Capacitor	ATC100B5R1JT500XT	ATC
C6, C7	15 pF Chip Capacitors	ATC100B150JT500XT	ATC
C8	6.8 pF Chip Capacitors	ATC100B6R8JT500XT	ATC
C9, C10, C11, C12	22 μ F, 35 V Tantalum Capacitors	T491X226K035AT	Kemet
C14	100 µF, 50 V Electrolytic Capacitor	515D107M050BB6AE3	Vishay/Sprague
R1	1.0 kΩ, 1/8 W Chip Resistor	CRCW08051000FKTA	Vishay
R2	10 Ω, 1/8 W Chip Resistor	CRCW080510R0FKTA	Vishay

Figure 17. MRF6S21100HR3(SR3) Test Circuit Component Layout - TD-SCDMA

 $V_{DD} = 28 \text{ Vdc}, I_{DQ} = 800 \text{ mA}$

f MHz	z_{source}	${\sf Z}_{\sf load}$
1950	1.04 - j4.28	1.38 - j3.90
1960	1.07 - j4.31	1.41 - j3.92
1970	0.96 - j4.13	1.29 - j3.71
1980	0.82 - j3.71	1.12 - j3.34
1990	0.79 - j3.34	1.07 - j2.96
2000	0.82 - j3.15	1.08 - j2.75
2010	0.88 - j3.16	1.12 - j2.76
2020	0.84 - j3.30	1.11 - j2.86
2030	0.83 - j3.47	1.12 - j3.01
2040	0.91 - j3.71	1.22 - j3.20
2050	0.91 - j3.90	1.25 - j3.34
2060	0.81 - j3.81	1.15 - j3.27
2070	0.76 - j3.45	1.09 - j2.92

 $Z_{source} =$ Device input impedance as measured from gate to ground.

Figure 22. Series Equivalent Source and Load Impedance — TD-SCDMA

PACKAGE DIMENSIONS

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
7	Jan. 2007	Added "TD-SCDMA" to data sheet description paragraph, p. 1
		 Removed Lower Thermal Resistance and Low Gold Plating bullets from Features section as functionality is standard, p. 1
		 Removed Forward Transconductance from On Characteristics table as it no longer provided usable information, p. 2
		• Updated Part Numbers in Table 5, Component Designations and Values, to RoHS compliant part numbers, p. 3
		 Adjusted scale for Fig. 5, Two-Tone Power Gain versus Output Power, to better match the device's capabilities, p. 5
		 Removed lower voltage tests from Fig. 11, Power Gain versus Output Power, due to fixed tuned fixture limitations, p. 6
		 Replaced Fig. 12, MTTF versus Junction Temperature with updated graph. Removed Amps² and listed operating characteristics and location of MTTF calculator for device, p. 7
		 Added TD-SCDMA test circuit schematic, component designations and values, component layout, typical characteristic curves, test signal and series impedance, p. 9-12
		Added Product Documentation and Revision History, p. 14

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

MRF6S21100HR3 MRF6S21100HR5 MRF6S21100HSR5