

Block Diagram

The functional blocks of this device are shown below:

Pin Assignments

Figure 3: Optical Module Pinout (Top View) – AS7000-AA

Optical Module Pinout:

This drawing is not to scale

Figure 4: Pin Description

am

Absolute Maximum Ratings

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in [Electrical Characteristics](#page-5-0) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5: Absolute Maximum Ratings[\(1\)](#page-4-0)

am

Note(s):

1. All optical customer designs shall be reviewed by **ams** before production.

Electrical Characteristics

VDD=2.6 to 3.6V, typ. values are at T_{AMB} =25°C (unless otherwise specified).

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Figure 6: Operating Conditions

am

n

Note(s):

- 1. Deep sleep mode. Use **ams** SDK (software development kit) to enter deep sleep, wakeup with low on GPIO8 pin (if gpio8_wakeup_ en=1) or high on GPIO7 (if gpio7_wakeup_en=1) or 512Hz oscillator sleep_timer.
- 2. GPIO0-8 configured to draw minimum current (software dependent).
- 3. Power down mode. Entered by setting enter_powerdown=1; No oscillator running. Wakeup with low on GPIO8 pin (always) or high on GPIO7 (if gpio7_wakeup_en=1).
- 4. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V_{IHMIN} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 5. A fast-mode device can be used in a standard-mode system, but the requirement $t_{SU:DAT}$ = to 250ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_R max + t_{SU:DAT} = 1000 + 250 = 1250ns before the SCL line is released.

Figure 7: I²C Mode Timing Diagram

I²C Mode Timing Diagram: This figure shows the different timings required for I²C communication.

Note(s):

1. SCL / SDA Programmable to GPIO Pins – See 1^2C Mode.

Detailed Description

Optical Analog Front End

Figure 8:

Optical Analog Front End – AS7000-AA Configuration

Note(s):

1. Dual Green LED Configuration is shown.

The number of LEDs inside the module depends on the application – [Figure 8](#page-8-0) shows 2 LEDs. If a LED is not populated, the current sink is connected directly to the pin (VD3 and VD4 in above figure).

LEDs

AS7000-AA Dual Green LED Configuration

Two green LEDs are used (pins VD1/VD2). The other two current sinks are available on pins VD3 and VD4.

LED Characteristics

Figure 9: LED Characteristics at T_{AMB} = 25°C

Note(s):

1. The maximum allowed LED current (DC and peak) is specified for 25°C. Lower values apply for higher temperatures.

2. Add 280mV and use LED current range ≤100mA for designing the VD1/VD2 LED supply (DC-DC converter).

LED-Driver

The four LED-driver outputs can be controlled manually or by the built in sequencer. See [Optical Front End Operating Modes](#page-24-0)

Figure 10: LED Drivers

Note(s):

1. Dual Green LED Configuration.

Figure 11:

Operating Characteristics of Each LED Current Sink, VDD=3V, T_{AMB}=25°C (unless otherwise noted)

Note(s):

1. Not production tested. Only guaranteed by lab characterization.

LED Configuration Registers

For ledX_supply_low registers see register AFE_PD_CFG.

Figure 12: AFE_LED_CFG

The LED_CFG register is used to configure the operating mode of the LED outputs.

AFE_LED_CURR Register (Addr: 0x04) The AFE_LED_CURR defines the LED output current.

Figure 13: AFE_LED_CURR Register

Figure 14: AFE_MAN_SEQ_CFG

amin

amin

amill

Photodiode Selection

In order to have flexible arrangement of the use photodiodes, PD1-PD4 can be individually connected to the photodiode amplifier input. The optional offset current allows cancellation of constant light sources like sunlight. In case of an external photodiode or any other sensor with (low) current output, the pins GPIO6 and GPIO7 can be used as input.

Additionally the sequencer can control the diodes – see diode_ ctrl described in register AFE_MAN_SEQ_CFG.

AFE_PD_CFG Register (Addr: 0x08)

The AFE_PD_CFG register is used to configure the input to the photo amplifier.

Figure 16: AFE_PD_CFG Register

Note(s):

1. SC_WS: Self clear, write sets: These registers are reset by the hardware. Set to '1' before using them.

Photodiode Characteristics

Figure 17: Photodiode Arrangement

Note(s):

1. Orientation as in [Figure 115](#page-81-0) or [Figure 3.](#page-1-0)

Figure 18:

AS7000-AA Photodiode Sensitivity (Solid Black) and LED Emission Spectrum (Dotted Green) – Dual Green LED Configuration

Note(s):

1. Perpendicular light source.

2. LEDs and Filters are shown for Dual Green LED Configuration.

Figure 19:

Operating Characteristics of Each Photodiode, VDD=3V, T_{AMB}=25°C (unless otherwise noted)

Note(s):

1. For monochromatic light of 555nm, one lux corresponds to 0.146 μW/cm2. That is, one obtains 6.5 lux per μW/cm2

Photodiode Trans-Impedance Amplifier (TIA)

The photodiode amplifier can be configured in three different modes:

- **•** Photocurrent to frequency converter
- **•** Photocurrent to voltage converter
- **•** Photocurrent integrator

Figure 20: Trans-Impedance-Amplifier (TIA)

> The integration time t_{INT} is defined either by the sequencer (man_mode=0) of manually through the bit sw_itg if man_mode=1.

amin

Figure 21: Settings for the Programming of the TIA

Note(s):

1. pd1234 … number of active photodiodes (for example, pd1=1, pd2=0, pd3=1, pd4=0 -> pd1234=2)

AFE_PD_AMPCFG Register (Addr: 0x0c)

The AFE_PD_AMPCFG register is used to configure the operating mode of the photo-amplifier

Figure 22: AFE_PD_AMPCFG Register

Addr: 0x0c		AFE PD AMPCFG		
Bit	Bit Name	Default	Access	Description
31	pd_amp_en	Ω	R/W	0 Activates power down mode of photo-amplifier 1Enables photo-amplifier
13:10	pd_amp_vo	15	R/W	Opamp offset. Use ams device drivers - these automatically configure this register.
9:8	pd_{-} ampcomp	3	R/W	Opamp compensation. Use ams device drivers - these automatically configure this register.
7:5	pd_ampres	0x0	R/W	Feedback resistor 000No resistor in feedback of amplifier 0011MO $0102M\Omega$ $0113M\Omega$ $1005M\Omega$ $1017M\Omega$ $11010M\Omega$ $11115M\Omega$
4:0	pd_ampcap	0x0	R/W	Feedback capacitor - automatically set by ams device drivers for modes using pd_ampres not 000b. Capacitor = pd ampcap*0.1pF

For registers man_mode and man_sw_itg see [AFE_MAN_SEQ_](#page-13-0) [CFG](#page-13-0) .

Voltage Mode of the Photodiode Amplifier

The output voltage of the photodiode amplifier is depending on the feedback component:

(EQ1) Feedback resistor:
$$
U_{out} = I_{photo} \cdot R_{fb}
$$

feedback.

(EQ2) **Feedback capacitor:**
$$
U_{out} = I_{photo} \cdot \frac{t_{INT}}{C_{fb}}
$$

Note(s): The integration time t_{INT} is defined either by the sequencer (man_mode=0) of manually through the bit sw_itg if man_mode=1. For the synchronous demodulator only use the resistive

Figure 23: Difference Between Resistive and Capacitive Feedback

Optical Front End Operating Modes

Once the photodiode amplifier is configured the measurement can be done in two different ways. Either the LED-outputs, the photodiode amplifier and the ADC are controlled manually by means of register bits, or they are controlled by a built in sequencer.

Manual Operation of The Optical Frontend:

The optical front end can be manually controlled via the AFE_ MAN_SEQ_CFG register using man_mode=1.

Figure 24: Manual Operation of the Optical Frontend and LED

Note(s):

1. Applies only if man_mode=1.

For manual operation of the LEDs and its current sinks see [LED-Driver](#page-10-1).

Sequencer

In order to synchronize the LED-currents, the integration time and the ADC-sampling time, a built in sampling Sequencers can be used. The sequencer generates the 16 bit-timings based on a 1μs clock. The results of the analog to digital conversion are automatically stored in a pipeline buffer or in register adc_data.

The timings can be programmed with following registers (apply for man_mode=0):

Figure 25: Sequencer Control Registers Overview

Note(s):

1. The lowest data value of all registers except seq_count, seq_div, seq_adc_inc, seq_adc_inc_fract and seq_adc_fract is 1.

Figure 26: Block Diagram of Sequencer

Sequencer Registers

For registers man_mode, man_sw_sdmult, man_sw_sdpol, man_sw_itg, man_sw_led4, man_sw_led3, man_sw_led2, man_sw_led1, diode_ctrl, dma_disable, led4_mode, led3_ mode, led2_mode and led1_mode,seq_en see [AFE_MAN_SEQ_CFG](#page-13-0) .

For register sd_subs see [AFE_SC_CFG](#page-39-0) .

AFE_SEQ_DIV_CNT Register (Addr: 0x24)

The AFE_SEQ_DIV_CNT register sets the input divider for the main clock.

Figure 27: AFE_SEQ_DIV_CNT Register

AFE_SEQ_START Register (Addr: 0x28)

In AFE_SEQ_START register the configured sequencer can be started.

Figure 28: AFE_SEQ_START Register

AFE_SEQ_PER Register (Addr: 0x2C)

The AFE_SEQ_PER register sets one measurement cycle of the sequencer.

Figure 29: AFE_SEQ_PER Register

AFE_SEQ_LED Register (Addr: 0x30)

The AFE_SEQ_LED register sets the LED drive timing. Data is stored as 16-bit value

Figure 30: AFE_SEQ_LED Register

AFE_SEQ_ITG Register (Addr: 0x34)

The AFE_SEQ_ITG register sets the photoamplifier integration time if using capacitive feedback respectively removes the short of the resistive feedback. Data is stored as 16-bit value

Figure 31: AFE_SEQ_ITG Register

AFE_SEQ_SDP Register (Addr: 0x38)

The AFE_SEQ_SDP register sets the synchronous demodulator positive multiplication time. Data is stored as 16-bit value

Figure 32: AFE_SEQ_SDP Register

AFE_SEQ_SDM1 Register (Addr: 0x3C)

The AFE_SEQ_SDM1 register sets the synchronous demodulator negative multiplication time 1. Data is stored as 16-bit value

Figure 33: AFE_SEQ_SDM1 Register

AFE_SEQ_SDM2 Register (Addr: 0x40)

The AFE_SEQ_SDM2 register sets the synchronous demodulator negative multiplication time 2. Data is stored as 16-bit value

Figure 34: AFE_SEQ_SDM2 Register

AFE_SEQ_ADC Register (Addr: 0x44)

The AFE_SEQ_ADC register defines the time when the ADC starts sampling during each measurement cycle. The fraction setting permits a definition of the sampling point as a 1/16 fraction of a sequencer cycle. If seq_div=0 (1us sequencer clock), then one unit is equivalent to 62.5ns. If, e.g. seq_div=4 (5us) then the resolution of the fract register is 62.5ns*5=312.5ns

Figure 35: AFE_SEQ_ADC Register

AFE_SEQ_COUNTER Register (Addr: 0x80)

The AFE_SEQ_COUNTER register shows the counter value of the sequence counter and period counter

Figure 36: AFE_SEQ_COUNTER Register

AFE_ADC_COUNTER Register (Addr: 0x84)

The AFE_ADC_COUNTER register shows the current value of the ADC counter

Figure 37: AFE_ADC_COUNTER Register

Example Sequencer Configurations

Used adc_clock = 0 and adc_highres=0 for the examples to shorten the ADC settling time. As seq_div = 1 and seq_ period=40, one sequence is 80μs.

Example 1

Making 4 measurements with LED1 only.

Integration time is 20 cycles. LED is turned on 10 cycles before integration starts to avoid current bouncing errors.

Figure 38: Sequencer Example 1

Figure 39:

Sequencer Example 1 Waveform

Making 4 measurements with LED2 only.

Integration time is 20 cycles. LED is turned ON 10 cycles before integration starts to avoid current bouncing errors.

Figure 40: Sequencer Example 2

Figure 41: Sequencer Example 2 Waveform

Making 4 measurements, switching between LED1 and LED2.

Integration time is 20 cycles. LED is turned ON 10 cycles before integration starts to avoid current bouncing errors.

Figure 42: Sequencer Example 3

Figure 43: Sequencer Example 3 Waveform

Making 4 measurements, switching LED1 and LED2 simultaneously.

Integration time is 20 cycles. LED is turned ON 10 cycles before integration starts to avoid current bouncing errors.

Figure 44: Sequencer Example 4

Figure 45:

Sequencer Example 4 Waveform

Making 4 measurements with LED1 only and subsampling.

Integration time is 20 cycles. LED is turned ON 10 cycles before integration starts to avoid current bouncing errors. ADC sampling starts 5 cycles delayed every measurement.

Figure 46: Sequencer Example 5

Figure 47:

Sequencer Example 5 Waveform

Example 6

Making 4 measurements with LED1 only and subsampling.

Integration time is 20 cycles. LED is turned OFF 10 cycles before integration starts to measure fluorescent response of a sensor. ADC sampling starts 5 cycles delayed every measurement.

Figure 48: Sequencer Example 6

Figure 49:

Sequencer Example 6 Waveform

Example 7

Making 8 measurements with LED1 only. Reduced cycle time to 40μs.

Integration time is 5 cycles. LED is turned ON 5 cycles before integration starts to avoid current bouncing errors.

Figure 50: Sequencer Example 7

Figure 51:

Sequencer Example 7 Waveform

Optical Signal Conditioning

Synchronous Demodulator

An optional synchronous demodulator can be used to detect small optical signals in the presence of large unwanted noise (ambient light). Since the detector synchronizes to the LED frequency, the demodulator can only be used of the measurement sequencer is running.

It includes input filer (high pass at 200Hz, adjustable low pass) and an 2nd order adjustable output low pass. The demodulator itself multiplies the signal by +1 / 0 / -1 with a timing which is controlled by the sequencer.

Note(s): The optical signal conditioning stage need sigref_ en=1 for operation.

High Pass Filter

An optional high pass filter can be used to remove unwanted DC-components from the signal and allows further amplification. In order to guarantee fast settling times of the filter, four cutoff frequencies can be chosen.

Gain Stage

An optional gain stage can be used to amplify the signal after the DC-component has been removed.

Optical Signal Conditioning Registers

Register bit sigref_en see register [AFE_LED_CFG.](#page-11-0)

am

Sync Demodulator Example

LED1 and LED2 should be modulated with 2kHz

Demodulated signal should be sampled with 20Hz for 1 second.

Calculation of sequencer values:

- 1. Modulation Frequency = 2kHz. Period = 500us.
- 2. Set sequencer period to 250us. -> seq_div=0, seq_period=500
- 3. Operation of LEDs between 0us and 100us (depends on LED and Amp-settings) \rightarrow seq_led_start=1, seq_led_stop=100
- 4. Operation of photo-amplifier and synchronous demodulator multipl. by +1 between 50us and 100us \rightarrow seq_sdp_start=50, seq_sdp_stop=100
- 5. Operation of photo-amplifier and synchronous demodulator multipl. by -1 between 300us and 350us \rightarrow seq_sdm1_start=300, seq_sdm1_stop=350
- 6. Sampling position at 495us + settling \rightarrow seq_adc=490
- 7. ADC should only sample at 20Hz (50ms). This means sampling at every 50ms/500us = 100th sequencer run. sd_subs=100
- 8. ADC values should be stored for 1 second. This means 1s/50ms = 20 samples must be stored. ->seq_count=20

Figure 54:

Sync Demodulator Example Detail

Figure 55: Sync Demodulator Example

Electrical Analog Front End

The electrical analog front end consists of three identical signal paths with independent settings of bias condition, gain and offset.

Figure 56: Electrical Analog Front End Internal Circuit

Note(s):

1. Resistor / T-gates resistance values are given as indication – do not rely on absolute values

Input Pins

Five general purpose pins can be used either as configurable GPIO for the processor or as analog input pins for the electrical analog front end. The analog inputs can be configured to setup different amplifier topologies.

AFE Registers

Figure 57: AFE_LED_CFG

Figure 58: AFE_EAF

am

amill

The AFE_EAF register is used to configure the electrical frontend

Figure 59: AFE_EAF_DAC

The AFE_EAF_DAC register is used to configure the dac value

Possible Configurations of Every Amplifier Stage

Figure 60:

Non Inverting Amplifier With Offset and Input Voltage Divider (Temperature Sensor)

Figure 61:

Non Inverting Amplifier With Current Source and Offset (Temperature Sensor)

Figure 62:

Non Inverting Amplifier With Current Source and Reference Path (Temperature Sensor)

Figure 63: Non Inverting Amplifier High Impedance, GND Referenced

Figure 64: Non Inverting Amplifier With DC-Blocking, Referenced to V_ADCRef/2

Figure 65:

Non Inverting Amplifier With DC-Blocking and Fast Settling Time, Referenced to ADCRef /2

ADC

The ADC is a 14bit successive-approximation register (SAR) type. It supports 12 bit with very fast conversion time up to 1Msps and 14bit with moderate conversion time up to 250ksps.

The ADC is started by the sequencer and its timing or in manual mode (man_mode=1) by setting seq_start=1 (seq_start stays '1' as long as the conversion runs). The AS7000 can be configured to trigger an interrupt upon end of conversion.

Figure 66: ADC Internal Circuit and Multiplexer

For best accuracy the ADC needs to recalibrate itself – use **ams** SDK to initiate the calibration procedure.

Figure 67:

Operating Characteristics of the ADC, VDD=3V, T_{AMB}=25°C (unless otherwise noted)

Figure 68:

ADC Output Codes (12 Bit Resolution Setting Range)

ADC Output Codes:

For 14 bit resolution the output data range is 0 to 16383, one LSB represents Vref/16384.

ADC Registers

Figure 69: AFE_ADC_DATA

The ADC_DATA register shows the current raw output of the ADC.

Figure 70: AFE_ADC_CFG

amin

amin

am

am

Power Management and Operating Modes

After the supply (VDD) is asserted the AS7000 automatically starts up. It is up to the application software into which operating mode the AS7000 is changed (e.g. to power down mode).

The AS7000 can operate in following modes:

Figure 71: AS7000 Operating Modes

Note(s):

1. Wakeup by GPIO7=high if gpio7_wakeup_en=1; applies for power down and deep sleep mode.

2. Wakeup by GPIO8=low if gpio8_wakeup_en=1.

3. In power down mode the AS7000 will always wakeup if GPIO8=low independent of previous setting of gpio8_wakeup_en.

For operation of the sequencer the 16MHz oscillator is required, therefore the sequencer only operates in active or wait for interrupt mode.

Clock Control Unit (CCU) for Peripheral Blocks

All peripheral block have a reset bit and a clock enable bit. The purpose of these register bits is to disable clock to them when they are not used and therefore reduce power consumption.

Note(s): Access to the register is not possible if the clock to the peripheral is disabled or reset is asserted.

e.g. to access any register of AFE (like optical analog front end) set the register bits afe resetn=1 and afe enable=1.

Wake-Up From Power Down Mode

Figure 72: Wake-Up Logic From Power Down Mode

Power Management And Operating Modes Registers

In order to operate the different blocks inside the AS7000, the block has to be enabled (e.g. gpio_enable=1) and the reset de-asserted (e.g. gpio_resetn=1).

Figure 73: CCU_DEVICEID

Figure 74: CCU_GPIO

Figure 75: CCU_I2CM

Figure 76: CCU_I2CS

Figure 77: CCU_UART

Figure 78: CCU_TMR

Figure 79: CCU_AFE

amin

Figure 80: CCU_WD_CTRL

Figure 81: CCU_WD_STATUS

Figure 82: CCU_WD_VAL

Figure 83: CCU_WD_IRQVAL

Figure 84: CCU_LP_CFG

The CCU_LP registers controls the low power modes

Figure 85: CCU_LP_CTRL

Note(s):

1. Only use **ams** SDK to enter deep sleep mode, do not set bit directly.

MCU

The MCU is a 32-bit ARM Cortex-M0-based RISC processor with 32kB of EEPROM memory and 4kB of RAM data memory. Details of the core processor can be found under infocenter.arm.com.

The MCU offers the following features:

- **•** System:
	- ARM Cortex M0 processor with single cycle 32 bit multiplication instruction
	- System tick timer
	- Hardware protection to disable the read or read/write of the internal EEPROM and SRAM
	- Unique ID for every device delivered
- **•** Memory:
	- 32kByte EEPROM memory
	- 4kByte RAM
- **•** Peripherals:
	- 9 general-purpose (GPIO) pins with configurable output structure
	- UART
	- \cdot I²C Master
	- \cdot I²C Slave
	- 14 bit ADC
	- Watchdog timer
	- 2 general purpose 16 bit timer
- **•** Clock:
	- Internal 16MHz RC oscillator
	- Internal 512Hz watchdog oscillator and timer
- **•** Debug:
	- Serial wire Debug
- **•** Power control:
	- Reduced power modes Sleep, Stop
	- Power ON reset

Figure 86: CPU Internal Block Diagram

ams delivers a SDK (Software Development Kit) for easy access of the internal digital and analog blocks. The SDK includes detailed documentation of the hardware (like I²C, UART) and includes low level drivers.

For accessing of the peripheral registers, a base address needs to added. The base address depends on the block used (see also **ams** provided SDK – software development kit).

Debug – SWD

Note(s):

1. Press debug button on power-up (VDD ON).

During power up of the AS7000 the device checks if the pin SIGREF is shorted to GND (e.g. by a resistance of 10Ω) – see [Figure 87.](#page-67-0) If this condition is detected and the security bit is not set, a monitor mode is entered.

In this monitor mode the AS7000 waits 5s where a debugger can be connected. If the 10s expires without a debugger connected, the AS7000 continues startup.

If a debugger is connected, the debugger can control AS7000 as required.

Note(s): If the security bit is set inside the EEPROM the debugger is bypassed even if SIGREF is shorted to GND upon startup.

GPIO Pins and Output Switch Matrix

A flexible output switch matrix allows dynamic assignment of the internal digital blocks to the GPIO pins:

TEST

Figure 89: Selector Assignments

Each of the GPIO pins is capable of adding a pullup and/or pulldown:

OIMI

I²C Mode

The AS7000 includes an I²C master and slave (independent) hardware block. The pins name SDA and SCL in this section can be mapped during runtime to the GPIO pins according to [Figure 89.](#page-69-0) **ams** SDK operates the I²C slave on GPIO2 (=SDA) and GPIO3 (=SCL) and uses a default I²C address of 0x30 (7-bit format; R/W bit has to be added) respectively 60h (8-bit format for writing) and 61h (8-bit format for reading). It expects external pullup resistors.

I²C Serial Control Interface

I²C Feature List:

Fast mode (400kHz) and standard mode (100kHz) support

7+1-bit addressing mode

Write formats: Single-Byte-Write, Page-Write

Read formats: Current-Address-Read, Random-Read, Sequential-Read

SDA input delay and SCL spike filtering by integrated RC-components

I²C Protocol

Figure 91: I²C Symbol Definition

I²C Symbol Definition: Shows the symbols used in the following mode descriptions.

I²C Write Access

Byte Write and Page Write formats are used to write data to the slave.

I²C Byte Write: Shows the format of an I²C byte write access.

Figure 93: I²C Page Write

I²C Page Write: Shows the format of an I²C page write access.

The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be sent to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations.

For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register byte transmitted from the slave. In Read Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally.

I²C Read Access

Random, Sequential and Current Address Read are used to read data from the slave.

I²C Random Read: Shows the format of an I²C random read access.

Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master.

The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address.

In order to change the data direction a repeated START condition is issued on the 1st SCL pulse after the acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus.

Figure 95: I²C Sequential Read

I²C Sequential Read: Shows the format of an I²C sequential read access.

Sequential Read is the extended form of Random Read, as more than one register-data bytes are transferred subsequently. In difference to the Random Read, for a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a not-acknowledge following the last data byte and generate the STOP condition subsequently.

Figure 96: I²C Current Address Read

I²C Current Address Read: Shows the format of an I²C current address read access.

To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read address. Analogous to Random Read, a single byte transfer is terminated with a not-acknowledge after the 1st register byte. Analogous to Sequential Read an unlimited number of data bytes can be transferred, where the data bytes has to be responded with an acknowledge from the master. For termination of the transmission the master sends a not-acknowledge following the last data byte and a subsequent STOP condition.

GPIO, SWD and Security Registers

Figure 97: GPIO_DATA

Note(s):

1. The upper 4 bits are routed to the LED pins. This way the software can output data conveniently and quickly. The AFE module has to be turned ON and the LED have to be enabled for this to work.

Figure 98: GPIO_OE

Figure 99: GPIO_WMASK

am

Figure 100: GPIO_INTTYPE

Figure 101: GPIO_INTPOL

Figure 102: GPIO_STATUS

Figure 103: GPIO_INTMASK

Figure 104: GPIO_INTR

Figure 105: GPIO_D_SET

Figure 106: GPIO_OE_SET

Figure 107: GPIO_D_CLR

Figure 108: GPIO_OE_CLR

Figure 109: CCU_IOFUNC0

amin

amin

The CCU_IOFUNC0/1/2 gpioX_func register defines the multiplexing mode of each pin.

Figure 110: gpioX_func Codings (X=0…8)

The CCU_IOFUNC0/1/2 gpioX_pd fields define the pullup/pulldown configuration

Figure 111: gpioX_pd Codings (X=0…8)

amin

Figure 112: CCU_IOFUNC1

Figure 113: CCU_IOFUNC2

Figure 114: CCU_RETENTION

The CCU_RETENTION register is the only register that is not affected by powerdown, Only a power cycle will reset these bits.

Application Information

The AS7000 has a built-in I²C master and host device. Therefore it allows to connect an accelerometer used for motion artefact compensation in two ways:

- 1. Connected through the host and data provided by the host to the AS7000 via the AS7000 I²C slave
- 2. Connected directly to the AS7000 and the AS7000 I²C master retrieves the data from the accelerometer.

Following two figures show the different configurations.

Figure 115: Measurement System With Motion Artefact Compensation

Note(s):

1. Accelerometer data provided by host.

In above configuration the host needs to send the accelerometer data to the AS7000 via the I²C interface.

NITI

Figure 116:

Measurement System With Motion Artefact Compensation Using AS7000 Dedicated Accelerometer

Note(s):

1. Accelerometer connected directly

In above configuration, the AS7000 I²C master is used to poll the data from the accelerometer.

The AS7000 has internal protection diodes on all GPIO pins connected to VDD. If VDD is switched off, all GPIO pins are clamped to this VDD supply plus one diode voltage (typically 0.6V). Therefore connect the periphery supply of these pins (example: I²C pins from host in above example connected to GPIO2/3), which are connected to the AS7000 GPIO pins to the same VDD supply as the AS7000. If this is not possible, ensure that these pins are at logic 0 if the VDD supply of AS7000 is switched off.

Due to the integration of the optical diode / optical frontend / analog processing / ADC and microprocessor a heart-rate measurement application can be built with very small PCB area as shown in following figure:

Figure 117:

Typical Form Factor Including VDD LDO

External Components

Figure 118: External Components

Package Drawings & Markings

Figure 119: Package Drawings

Note(s):

1. **XXXXX** - Tracecode backside marking (upside down)

Ordering & Contact Information

Figure 120: Ordering Information

Note(s):

1. **XXXXX** - Tracecode backside marking

Buy our products or get free samples online at: <www.ams.com/ICdirect>

Technical Support is available at: <www.ams.com/Technical-Support>

Provide feedback about this document at: <www.ams.com/Document-Feedback>

For further information and requests, e-mail us at: ams_sales@ams.com

For sales offices, distributors and representatives, please visit: <www.ams.com/contact>

Headquarters

ams AG Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Document Status

Revision Information

Note(s):

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

2. Correction of typographical errors is not explicitly mentioned.

Content Guide

- **[1 General Description](#page--1-0)**
- [1 Key Benefits and Features](#page--1-1)
- [1 Applications](#page--1-2)
- [2 Block Diagram](#page-0-0)
- **[3 Pin Assignments](#page-1-0)**
- **[5 Absolute Maximum Ratings](#page-3-1)**
- **[7 Electrical Characteristics](#page-5-0)**

[10 Detailed Description](#page-8-0)

- [10 Optical Analog Front End](#page-8-1)
- [11 LEDs](#page-9-0)
- [12 LED-Driver](#page-10-0)
- [18 Photodiode Selection](#page-16-0)
- [20 Photodiode Characteristics](#page-18-0)
- [22 Photodiode Trans-Impedance Amplifier \(TIA\)](#page-20-0)
- [25 Voltage Mode of the Photodiode Amplifier](#page-23-0)

[26 Optical Front End Operating Modes](#page-24-0)

- [26 Manual Operation of The Optical Frontend:](#page-24-1)
- [27 Sequencer](#page-25-0)
- [29 Sequencer Registers](#page-27-0)
- [33 Example Sequencer Configurations](#page-31-0)

[40 Optical Signal Conditioning](#page-38-0)

- [40 Synchronous Demodulator](#page-38-1)
- [40 High Pass Filter](#page-38-2)
- [40 Gain Stage](#page-38-3)
- [41 Optical Signal Conditioning Registers](#page-39-0)
- [43 Sync Demodulator Example](#page-41-0)

[46 Electrical Analog Front End](#page-44-0)

- [46 Input Pins](#page-44-1)
- [47 AFE Registers](#page-45-0)
- [51 Possible Configurations of Every Amplifier Stage](#page-49-0)
- [54 ADC](#page-52-0)
- [56 ADC Registers](#page-54-0)

[61 Power Management and Operating Modes](#page-59-0)

- [62 Clock Control Unit \(CCU\) for Peripheral Blocks](#page-60-0)
- [62 Wake-Up From Power Down Mode](#page-60-1)
- [63 Power Management And Operating Modes Registers](#page-61-0)
- [67 MCU](#page-65-0)
- [69 Debug SWD](#page-67-0)
- [70 GPIO Pins and Output Switch Matrix](#page-68-0)
- [72 I²C Mode](#page-70-0)
- [76 GPIO, SWD and Security Registers](#page-74-1)

[83 Application Information](#page-81-0)

- [85 External Components](#page-83-0)
- **[86 Package Drawings & Markings](#page-84-0)**
- **[87 Ordering & Contact Information](#page-85-1)**
- **[88 RoHS Compliant & ams Green Statement](#page-86-0)**
- **[89 Copyrights & Disclaimer](#page-87-0)**
- **[90 Document Status](#page-88-0)**
- **[91 Revision Information](#page-89-0)**

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[ams OSRAM](https://www.mouser.com/ams): [AS7000-AA](https://www.mouser.com/access/?pn=AS7000-AA)