ABSOLUTE MAXIMUM RATINGS

V _{DD} to AGND V _{DD} to DGND	0.3V to +6V
AGND to DGND	
FBA, FBB to AGND	0.3V to (V _{DD} + 0.3V)
REF_, OUT_ to AGND	0.3V to (V _{DD} + 0.3V)
Digital Inputs (SCLK, DIN, CS, CL, PDL)	
to DGND	0.3V to +6V
Digital Outputs (DOUT, UPO) to DGND Maximum Current into Any Pin	

Continuous Power Dissipation ($T_A = +70^{\circ}C$)
Plastic DIP (derate 10.5mW/°C above +70°C)593mW
QSOP (derate 8.30mW/°C above +70°C)667mW
CERDIP (derate 10.00mW/°C above +70°C)800mW
Operating Temperature Ranges
MAX5152_C_E/MAX5153_C_E0°C to +70°C
MAX5152_E_E/MAX5153_E_E40°C to +85°C
MAX5152_MJE/MAX5153_MJE55°C to +125°C
Storage Temperature Range65°C to +160°C
Lead Temperature (soldering, 10sec)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX5156

 $(V_{DD} = +5V \pm 10\%, V_{REFA} = V_{REFB} = 2.5V, R_L = 10k\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$, output buffer connected in unity-gain configuration (Figure 9).)

ResolutionN12BitsIntegral NonlinearityINL(Note 1)MAX5156A $\pm 1/2$ LSBDifferential NonlinearityDNLGuaranteed monotonic ± 1 LSBOffset ErrorVosCode = 10 ± 1 LSBOffset TempcoTCVosNormalized to 2.5V3ppm/*CGain ErrorTCVosNormalized to 2.5V3ppm/*CGain ErrorNormalized to 2.5V3ppm/*CGain ErrorNormalized to 2.5V3ppm/*CReference Input RangeREF $4.5V \le V_{DD} \le 5.5V$ 20200NUTIPLYING-MODE PERFORMANCENermalized to 2.5V0 $V_{DD} - 1.4$ VReference Input RangeREFMinimum with code 1554 hex1420kΩMULTIPLYING-MODE PERFORMANCEInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5Vpc 600 kHzReference FeedthroughInput code = 0000 hex, VREF = 0.67Vp-p at 2.5Vpc $.85$ dB Signal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz 82 dB DIGITAL INPUTSInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz 82 dB DIGITAL INPUTSInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz 82 dB DIGITAL INPUTS $CI, PDL, CS, DIN, SCLK$ 3 VInput High VoltageVIL $CI, PDL, CS, DIN, SCLK$ 3 VInput Leakage CurrentIINVIN = 0V to Vpp 0.001 ± 1 <th>PARAMETER</th> <th>SYMBOL</th> <th>CO</th> <th>MIN</th> <th>TYP</th> <th>MAX</th> <th>UNITS</th>	PARAMETER	SYMBOL	CO	MIN	TYP	MAX	UNITS	
Integral NonlinearityINL(Note 1)MAX5156A $\pm 1/2$ LSBDifferential NonlinearityDNLGuaranteed monotonic ± 1 LSBOffset ErrorVosCode = 10 ± 1 LSBOffset TempcoTCVosNormalized to 2.5V3ppm/°CGain Error-0.5 ± 3 ppm/°CGain Error TempcoNormalized to 2.5V3ppm/°CGain-Error TempcoNormalized to 2.5V20200VpD Power-Supply Rejection RatioPSRR $4.5V \le V_{DD} \le 5.5V$ 20200VpD Power-Supply Rejection RatioPSRR $4.5V \le V_{DD} \le 5.5V$ 20200Reference Input RangeREFMinimum with code 1554 hex1420kQMULTIPLYING-MODE PERFORMACEInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5VpC600kHzReference FeedthroughInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5VpC $e82$ dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5VpC, f = 25kHz 82 dBDIGITAL INPUTSInput code = 1FFE hex, VREF = 1Vp-p at 2.5VpC, f = 25kHz 82 dBDIGITAL INPUTSInput code = 1FFE hex, VREF = 1Vp-p at 2.5VpC, f = 25kHz 82 dBDIGITAL INPUTSUILCT, PDL, CS, DIN, SCLK 3 VInput High VoltageVILCT, PDL, CS, DIN, SCLK 0.80 VInput Leakage CurrentIINVIN = 0V to VpD 0.001 ± 1 Input Leakage CurrentINV	STATIC PERFORMANCE				1			1
Integral NonlinearityINL(Note 1)MAX5156B ± 1 LSBDifferential NonlinearityDNLGuaranteed monotonic ± 1 LSBOffset ErrorVOSCode = 10 ± 6 mVOffset TempcoTCVoSNormalized to 2.5V3ppm/*CGain ErrorONormalized to 2.5V3ppm/*CGain Error TempcoNormalized to 2.5V3ppm/*CPop Power-Supply Rejection RatioPSR $4.5V \le V_{DD} \le 5.5V$ 20200 $\mu V/V$ REFERENCE INPUTREFMinimum with code 1554 hex1420kQMULTIPLYING-MODE PERFORMANCEInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5Vpc 600 kHzReference 3dB BandwidthInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5Vpc 600 kHzSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz 82 dB Diffat LINPUTSInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz 82 dB Distortion RatioVIH $\overline{CL, PDL, CS, DIN, SCLK}$ 3 VInput High VoltageVIH $\overline{CL, PDL, CS, DIN, SCLK}$ 3 VInput Leakage CurrentINVIN 0.001 ± 1 Input Leakage CurrentINVIN 0.001 ± 1 μ A	Resolution	N			12			Bits
Image of the second	Integral Nonlinearity	INI	(Note 1)				±1/2	LSB
Offset ErrorVOSCode = 10 ± 6 mVOffset TempcoTCVosNormalized to 2.5V3ppm/*CGain Error0 0.5 ± 3 LSBGain-Error TempcoNormalized to 2.5V3ppm/*CVpD Power-Supply Rejection RatioPSRR $4.5V \le V_{DD} \le 5.5V$ 20200 $\mu V/V$ REFERENCE INPUTReference Input RangeREFMinimum with code 1554 hex1420kQMULTIPLYING-MODE PERFORMANCEInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5Vpc 600 kHzReference SdB BandwidthInput code = 0000 hex, VREF = 0.67Vp-p at 2.5Vpc 600 kHzSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz 82 dBDIGITAL INPUTSInput Code = 1FFE, point Ratio $V_{REF} = 1Vp-p$ at 2.5Vpc, f = 25kHz 82 dBDigtortion RatioVIH $\overline{CL, PDL, CS, DIN, SCLK}$ 3 VInput Low VoltageVIL $\overline{CL, PDL, CS, DIN, SCLK}$ 0.8 VInput Leakage CurrentIINVIN = 0V to VDD 0.001 ± 1 μA			· · ·				±1	-
Offset TempcoTCVosNormalized to 2.5V3pm/*CGain ErrorTCVosNormalized to 2.5V3LSBGain-Error TempcoNormalized to 2.5V3ppm/*CVob Power-Supply Rejection RatioPSR $4.5V \le V_{DD} \le 5.5V$ 20200 μ/V REFERENCE INPUT0 $V_{DD} - 1.4$ VReference Input RangeREFMinimum with code 1554 hex1420kQMULTIPLYING-MODE PERFORMANCE120kQReference 3dB BandwidthInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5Vpc 600 kHzReference FeedthroughInput code = 0000 hex, VREF = (V_DD - 1.4Vp-p) at 1kHz -85 dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz 82 dBDistortion RatioVIH $\overline{CL, PDL, CS, DIN, SCLK}$ 3VInput Low VoltageVIL $\overline{CL, PDL, CS, DIN, SCLK}$ 0.0001 ±1 Input Leakage CurrentIINVIN = 0V to VDD 0.001 ±1	Differential Nonlinearity	DNL	Guaranteed mono	tonic			±1	LSB
Gain ErrorILSBGain Error0Normalized to 2.5V3 $ppm/^{PC}$ VDD Power-Supply Rejection RatioPSRR $4.5V \le V_{DD} \le 5.5V$ 20200 $\mu V/V$ REFERENCE INPUT Reference Input RangeREFMinimum with code 1554 hex1420kQMULTIPLYING-MODE PERFORMANCEInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5Vpc600kHzReference FeedthroughInput code = 0000 hex, VREF = 0.67Vp-p at 2.5Vpc-85dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc82dBDistortion RatioVIHCL, PDL, CS, DIN, SCLK3VInput High VoltageVIHCL, PDL, CS, DIN, SCLK0.8VInput Leakage CurrentInput Volto VpD0.001 ± 1 μA	Offset Error	Vos	Code = 10				±6	mV
Gain-Error TempcoNormalized to 2.5V3ppm/°CVDD Power-Supply Rejection RatioPSRR $4.5V \le V_{DD} \le 5.5V$ 20 200 μ V/V REFERENCE INPUT Reference Input RangeREF0 $V_{DD} - 1.4$ VReference Input ResistanceRREFMinimum with code 1554 hex1420k Ω MULTIPLYING-MODE PERFORMANCE Input code = 1FFE hex, VREF = 0.67Vp-p at 2.5Vpc 600 kHzReference SdB BandwidthInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5Vpc 600 kHzSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz 82 dB DIGITAL INPUTS Input code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz 3 VInput High VoltageVIH \overline{CL} , \overline{PDL} , \overline{CS} , DIN, SCLK 3 VInput Low VoltageVIL \overline{CL} , \overline{PDL} , \overline{CS} , DIN, SCLK 0.801 VInput Leakage CurrentIINVIN = 0V to VDD 0.001 ± 1	Offset Tempco	TCVos	Normalized to 2.5	/		3		ppm/°C
VDD Power-Supply Rejection RatioPSRR $4.5V \le VDD \le 5.5V$ 20200 $\mu V/V$ REFERENCE INPUTReference Input RangeREFMinimum with code 1554 hex0 $VDD - 1.4$ VReference Input ResistanceRREFMinimum with code 1554 hex1420k Ω MULTIPLYING-MODE PERFORMANCEInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5VDC 600 kHzReference SdB BandwidthInput code = 0000 hex, VREF = (VDD - 1.4Vp-p) at 1kHz -85 dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5VDC, f = 25kHz82dBDIGITAL INPUTSInput code = 1FFE hex, VREF = 1Vp-p at 2.5VDC, f = 25kHz3VVInput Low VoltageVIHCE, PDE, CS, DIN, SCLK3VInput Low VoltageVILCE, PDE, CS, DIN, SCLK0.8VInput Leakage CurrentINVIN = 0V to VDD0.001 ± 1 μ A	Gain Error					-0.5	±3	LSB
REFERENCE INPUTREFInimum with code 1554 hex0 $V_{DD} - 1.4$ VReference Input ResistanceRREFMinimum with code 1554 hex1420k Ω MULTIPLYING-MODE PERFORMANCEInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5VDc600kHzReference 3dB BandwidthInput code = 0000 hex, VREF = 0.67Vp-p at 2.5VDc600kHzReference FeedthroughInput code = 0000 hex, VREF = (VDD - 1.4Vp-p) at 1kHz-85dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5VDc, f = 25kHz82dBDIGITAL INPUTSInput Code = 1FFE hex, VREF = 1Vp-p at 2.5VDC, f = 25kHz3VVInput High VoltageVIH $\overline{CL, PDL, \overline{CS}, DIN, SCLK}$ 3VInput Low VoltageVIL $\overline{CL, PDL, \overline{CS}, DIN, SCLK}$ 0.8VInput HysteresisVHYS200mVInput Leakage CurrentIINVIN = 0V to VDD0.001 ± 1	Gain-Error Tempco		Normalized to 2.5	/		3		ppm/°C
Reference Input RangeREFMinimum with code 1554 hex0 $V_{DD} - 1.4$ VReference Input ResistanceRREFMinimum with code 1554 hex1420kQMULTIPLYING-MODE PERFORMANCEReference 3dB BandwidthInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5VDC600kHzReference FeedthroughInput code = 0000 hex, VREF = (VDD - 1.4Vp-p) at 1kHz-85dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5VDC, f = 25kHz82dBDigtTAL INPUTSInput code = 1FFE hex, VREF = 1Vp-p at 2.5VDC, f = 25kHz3VVInput High VoltageVIHCL, PDL, CS, DIN, SCLK3VInput Low VoltageVILCL, PDL, CS, DIN, SCLK0.8VInput HysteresisVHYS200mVInput Leakage CurrentIINVIN = 0V to VDD0.001 ± 1	V _{DD} Power-Supply Rejection Ratio	PSRR	$4.5 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$			20	200	μV/V
Reference Input ResistanceRREFMinimum with code 1554 hex1420kΩMULTIPLYING-MODE PERFORMANCEReference 3dB BandwidthInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5VpC600kHzReference FeedthroughInput code = 0000 hex, VREF = (VpD - 1.4Vp-p) at 1kHz-85dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5VpC, f = 25kHz82dBDistortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5VpC, f = 25kHz82dBDIGITAL INPUTSInput Low VoltageVIHCL, PDL, CS, DIN, SCLK3VInput High VoltageVILCL, PDL, CS, DIN, SCLK0.88VInput HysteresisVHYS200mVInput Leakage CurrentIINVIN = 0V to VDD0.001±1	REFERENCE INPUT							
MULTIPLYING-MODE PERFORMANCEReference 3dB BandwidthInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5Vpc600kHzReference FeedthroughInput code = 0000 hex, VREF = (Vpp - 1.4Vp-p) at 1kHz-85dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz82dBDistortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5Vpc, f = 25kHz82dBDigITAL INPUTSInput High VoltageVIHCL, PDL, CS, DIN, SCLK3VInput High VoltageVILCL, PDL, CS, DIN, SCLK0.8VInput HysteresisVHys200mVInput Leakage CurrentIINVIN = 0V to Vpp0.001±1	Reference Input Range	REF			0		V _{DD} - 1.4	V
Reference 3dB BandwidthInput code = 1FFE hex, VREF = 0.67Vp-p at 2.5VDC600kHzReference FeedthroughInput code = 0000 hex, VREF = (VDD - 1.4Vp-p) at 1kHz-85dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5VDC, f = 25kHz82dBDIGITAL INPUTSDIGITAL INPUTSVIHCL, PDL, CS, DIN, SCLK3VInput High VoltageVILCL, PDL, CS, DIN, SCLK0.8VInput HysteresisVHYS200mVInput Leakage CurrentIINVIN = 0V to VDD0.001±1	Reference Input Resistance	R _{REF}	Minimum with cod	e 1554 hex	14	20		kΩ
Reference 3dB BandwidthVREF = 0.67Vp-p at 2.5VDC600KHZReference FeedthroughInput code = 0000 hex, VREF = (VDD - 1.4Vp-p) at 1kHz-85dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5VDC, f = 25kHz82dBDIGITAL INPUTSInput High VoltageVIHCL, PDL, CS, DIN, SCLK3VInput Low VoltageVILCL, PDL, CS, DIN, SCLK0.8VInput HysteresisVHYS200mVInput Leakage CurrentIINVIN = 0V to VDD0.001±1	MULTIPLYING-MODE PERFORM	NCE						
Reference FeedinoughVREF = (VDD - 1.4Vp-p) at 1kHz85dBSignal-to-Noise plus Distortion RatioSINADInput code = 1FFE hex, VREF = 1Vp-p at 2.5VDc, f = 25kHz82dBDIGITAL INPUTSInput High VoltageVIHCL, PDL, CS, DIN, SCLK3VInput Low VoltageVILCL, PDL, CS, DIN, SCLK0.8VInput HysteresisVHYS200mVInput Leakage CurrentIINVIN = 0V to VDD0.001±1	Reference 3dB Bandwidth					600		kHz
Distortion RatioSINAD $V_{REF} = 1Vp-p \text{ at } 2.5Vpc, f = 25kHz$ 82dBDIGITAL INPUTSInput High VoltageVIH $\overline{CL}, \overline{PDL}, \overline{CS}, DIN, SCLK$ 3VInput Low VoltageVIL $\overline{CL}, \overline{PDL}, \overline{CS}, DIN, SCLK$ 0.8VInput HysteresisVHYS200mVInput Leakage CurrentIINVIN = 0V to Vpd0.001±1	Reference Feedthrough					-85		dB
Input High Voltage V_{IH} \overline{CL} , \overline{PDL} , \overline{CS} , DIN, SCLK3 V Input Low Voltage V_{IL} \overline{CL} , \overline{PDL} , \overline{CS} , DIN, SCLK0.8 V Input Hysteresis V_{HYS} 200mVInput Leakage CurrentIIN $V_{IN} = 0V$ to V_{DD} 0.001 ± 1 μ A	Signal-to-Noise plus Distortion Ratio	SINAD				82		dB
Input Low VoltageVILCL, PDL, CS, DIN, SCLK0.8VInput HysteresisVHYS200mVInput Leakage CurrentIINVIN = 0V to VDD0.001±1μA	DIGITAL INPUTS				1			1
Input Hysteresis V _{HYS} 200 mV Input Leakage Current I _{IN} V _{IN} = 0V to V _{DD} 0.001 ±1 μA	Input High Voltage	Vih	CL, PDL, CS, DIN,	SCLK	3			V
Input Leakage CurrentIN $V_{IN} = 0V$ to V_{DD} 0.001 ± 1 μA	Input Low Voltage	VIL	CL, PDL, CS, DIN,	SCLK			0.8	V
	Input Hysteresis	V _{HYS}				200		mV
Input Capacitance CIN 8 pF	Input Leakage Current	lin	$V_{IN} = 0V$ to V_{DD}			0.001	±1	μA
	Input Capacitance	CIN				8		рF

///XI//

ELECTRICAL CHARACTERISTICS—MAX5156 (continued)

 $(V_{DD} = +5V \pm 10\%, V_{REFA} = V_{REFB} = 2.5V, R_L = 10k\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$, output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL OUTPUTS (DOUT, UPC))	1	I			
Output High Voltage	Voh	ISOURCE = 2mA	V _{DD} - 0.	5		V
Output Low Voltage	Vol	I _{SINK} = 2mA		0.13	0.40	V
DYNAMIC PERFORMANCE						
Voltage Output Slew Rate	SR			0.75		V/µs
Output Settling Time		To $1/2LSB$ of full-scale, $V_{STEP} = 2.5V$		15		μs
Output Voltage Swing		Rail-to-rail (Note 2)		0 to V _{DD}		V
Current into FBA or FBB	I _{FB}			0	±0.1	μA
Time Required to Exit Shutdown				25		μs
Digital Feedthrough		$\overline{\text{CS}}$ = V _{DD} , f _{DIN} = 100kHz, V _{SCLK} = 5Vp-p		5		nV-s
Digital Crosstalk				5		nV-s
POWER SUPPLIES						
Positive Supply Voltage	Vdd		4.5		5.5	V
Power-Supply Current	IDD	(Note 3)		0.5	0.65	mA
Power-Supply Current in Shutdown	IDD(SHDN)	(Note 3)		2	10	μA
Reference Current in Shutdown				0	±1	μΑ
TIMING CHARACTERISTICS						
SCLK Clock Period	tCP	(Note 4)	100			ns
SCLK Pulse Width High	tсн		40			ns
SCLK Pulse Width Low	t _{CL}		40			ns
CS Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to CS Rise Hold Time	t _{CHS}		0			ns
DIN Setup Time	t _{DS}		40			ns
DIN Hold Time	tDH		0			ns
SCLK Rise to DOUT Valid Propagation Delay	t _{DO1}	C _{LOAD} = 200pF			80	ns
SCLK Fall to DOUT Valid Propagation Delay	t _{DO2}	C _{LOAD} = 200pF			80	ns
SCLK Rise to CS Fall Delay	tcs0		10			ns
CS Rise to SCLK Rise Hold	tcs1		40			ns
CS Pulse Width High	tcsw		100			ns

Note 1: Accuracy is specified from code 10 to code 4095.

Note 2: Accuracy is better than 1LSB for V_{OUT} greater than 6mV and less than V_{DD} - 50mV. Guaranteed by PSRR test at the end points.

Note 3: Digital inputs are set to either V_{DD} or DGND, code = 0000 hex, $R_L = \infty$.

Note 4: SCLK minimum clock period includes rise and fall times.

M/IXI/M

ELECTRICAL CHARACTERISTICS—MAX5157

 $(V_{DD} = +2.7V \text{ to } +3.6V, V_{REFA} = V_{REFB} = 1.25V, R_L = 10k\Omega, C_L = 100pF, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at T_A = +25°C, output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE	1	1	1			1
Resolution	N		12			Bits
Integral Nonlinearity	INL	(Note 5) MAX5157A			±1	LSB
Integral Nonlinearity	INL	(Note 5) MAX5157B			±2	
Differential Nonlinearity	DNL	Guaranteed monotonic			±1	LSB
Offset Error	Vos	Code = 20			±6	mV
Offset Tempco	TCVOS	Normalized to 1.25V		6		ppm/°C
Gain Error				-0.5	±4	LSB
Gain-Error Tempco		Normalized to 1.25V		6		ppm/°C
V _{DD} Power-Supply Rejection Ratio	PSRR	$2.7V \le V_{DD} \le 3.6V$		20	320	μV/V
REFERENCE INPUT (V _{REF})						
Reference Input Range	REF		0	١	V _{DD} - 1.4	V
Reference Input Resistance	Rref	Minimum with code 1554 hex	14	20		kΩ
MULTIPLYING-MODE PERFORM	ANCE					
Reference 3dB Bandwidth		Input code = 1FFE hex, V _{REF(AC)} = 0.67Vp-p at 1.25V _{DC}		600		kHz
Reference Feedthrough		Input code = 0000 hex, V _{REF} = (V _{DD} - 1.4V) at 1kHz		-92		dB
Signal-to-Noise plus Distortion Ratio	SINAD	Input code = 1FFE hex, V _{REF} = 1Vp-p at 1.25V _{DC} , f = 15kHz		73		dB
DIGITAL INPUTS	1	I	1			1
Input High Voltage	VIH	CL, PDL, CS, DIN, SCLK	2.2			V
Input Low Voltage	VIL	CL, PDL, CS, DIN, SCLK			0.8	V
Input Hysteresis	V _{HYS}			200		mV
Input Leakage Current	lin	$V_{IN} = OV to V_{DD}$		0	±0.1	μA
Input Capacitance	CIN			8		pF
DIGITAL OUTPUTS (DOUT, UPO)		I				
Output High Voltage	Voh	ISOURCE = 2mA	V _{DD} - 0.5	5		V
Output Low Voltage	Vol	ISINK = 2mA		0.13	0.4	V
DYNAMIC PERFORMANCE	I	I				1
Voltage Output Slew Rate	SR			0.75		V/µs
Output Settling Time		To 1/2LSB of full-scale, V _{STEP} = 1.25V		18		μs
Output Voltage Swing		Rail-to-rail (Note 6)		0 to V _{DD}		V
Current into FBA or FBB	I _{FB}			0	±0.1	μA
Time Required to Exit Shutdown				25		μs
Digital Feedthrough		CS = V _{DD} , f _{DIN} = 100kHz, V _{SCLK} = 3Vp-p		5		nV-s
Digital Crosstalk				5		nV-s

ELECTRICAL CHARACTERISTICS—MAX5157 (continued)

 $(V_{DD} = +2.7V \text{ to } +3.6V, V_{REFA} = V_{REFB} = 1.25V, R_L = 10k\Omega, C_L = 100pF, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$, output buffer connected in unity-gain configuration (Figure 9).)

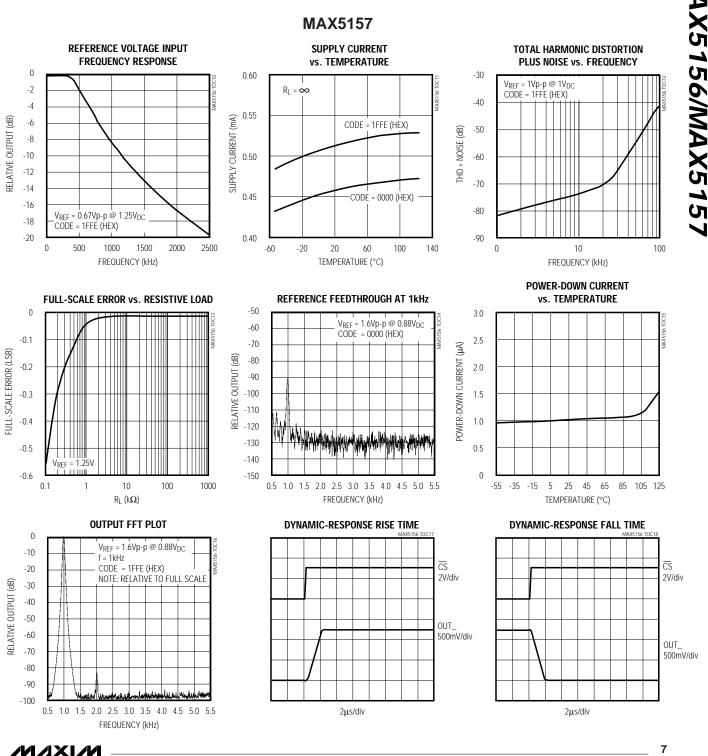
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES			I			
Positive Supply Voltage	V _{DD}		2.7		3.6	V
Power-Supply Current	IDD	(Note 7)		0.5	0.6	mA
Power-Supply Current in Shutdown	IDD(SHDN)	(Note 7)		1	8	μA
Reference Current in Shutdown					±1	μA
TIMING CHARACTERISTIC	S		1			
SCLK Clock Period	t _{CP}	(Note 4)	100			ns
SCLK Pulse Width High	tсн		40			ns
SCLK Pulse Width Low	tcl		40			ns
$\overline{\text{CS}}$ Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to $\overline{\text{CS}}$ Rise Hold Time	t _{CHS}		0			ns
DIN Setup Time	t _{DS}		50			ns
DIN Hold Time	tDH		0			ns
SCLK Rise to DOUT Valid Propagation Delay	t _{DO1}	C _{LOAD} = 200pF			120	ns
SCLK Fall to DOUT Valid Propagation Delay	t _{DO2}	C _{LOAD} = 200pF			120	ns
SCLK Rise to $\overline{\text{CS}}$ Fall Delay	tcs0		10			ns
$\overline{\text{CS}}$ Rise to SCLK Rise Hold	tcs1		40			ns
CS Pulse Width High	tcsw		100			ns

Note 5: Accuracy is specified from code 20 to code 4095.

Note 6: Accuracy is better than 1LSB for V_{OUT} greater than 6mV and less than V_{DD} - 100mV. Guaranteed by PSRR test at the end points.

Note 7: Digital inputs are set to either V_{DD} or DGND, code = 0000 hex, $R_L = \infty$.

 $(V_{DD} = +5V, R_L = 10k\Omega, C_L = 100pF, FB_ connected to OUT_, T_A = +25^{\circ}C, unless otherwise noted.)$

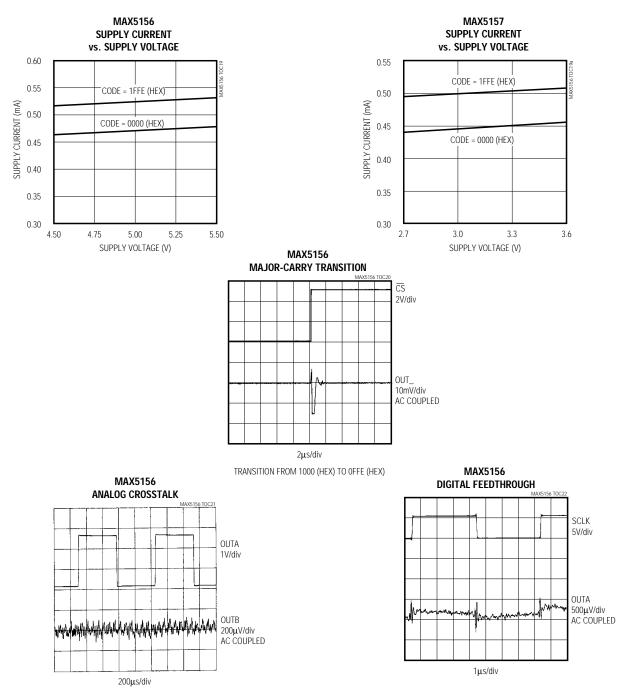

MAX5156

Typical Operating Characteristics

REFERENCE VOLTAGE INPUT SUPPLY CURRENT TOTAL HARMONIC DISTORTION FREQUENCY RESPONSE vs. TEMPERATURE PLUS NOISE vs. FREQUENCY 0 0.60 -30 V_{REF} = 1Vp-p @ 2.5V_{DC} $R_I = \infty$ -2 CODE = 1FFE (HEX) CODE = 1FFE (HEX) -40 -4 0.55 SUPPLY CURRENT (mA) RELATIVE OUTPUT (dB) -6 -50 (qB) -8 THD + NOISE -10 0.50 -60 -12 CODE = 0000 (HEX) -70 -14 0.45 -16 V_{REF} = 0.67Vp-p @ 2.5V_{DC} -80 -CODE = 1FFE (HEX) -18 -20 0.40 -90 0 600 1200 1800 2400 3000 -60 -20 20 60 100 140 0 10 100 TEMPERATURE (°C) FREQUENCY (kHz) FREQUENCY (kHz) **POWER-DOWN CURRENT** FULL-SCALE ERROR vs. RESISTIVE LOAD **REFERENCE FEEDTHROUGH AT 1kHz** vs. TEMPERATURE -50 0 3.0 V_{RFF} = 3.6Vp-p @ 1.88V_{DC} Vrff -60 CODE = 0000 (HEX)2.5 -70 POWER-DOWN CURRENT (µA) -0.1 FULL-SCALE ERROR (LSB) RELATIVE OUTPUT (dB) -80 2.0 -90 -0.2 -100 1.5 -0.3 -110 1.0 -120 -0.4 -130 0.5 -140 -0.5 -150 0 0.1 10 100 1000 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 -55 -35 -15 5 25 45 65 85 105 125 1 TEMPERATURE (°C) R_{I} (k Ω) FREQUENCY (kHz) **OUTPUT FFT PLOT** DYNAMIC-RESPONSE RISE TIME DYNAMIC-RESPONSE FALL TIME 0 CS cs V_{REF} = 3.6Vp-p @ 1.8V_{DC} -10 5V/div 5V/div f = 1kHz AC COUPLED AC COUPLED -20 CODE = 1FFE (HEX) NOTE: RELATIVE TO FULL SCALE RELATIVE OUTPUT (dB) -30 -40 OUT_ -50 500mV/div -60 OUT 500mV/div -70 -80 -90 NATIONAL AND A CARACTER AND A C -100 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 2µs/div 2µs/div FREQUENCY (kHz)

 $(V_{DD} = +3V, R_L = 10k\Omega, C_L = 100pF, FB_ connected to OUT_, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)


MAX5156/MAX5157

7

_Typical Operating Characteristics (continued)

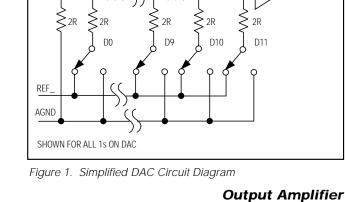
/N/IXI/N

 $(V_{DD} = +5V (MAX5156), V_{DD} = +3V (MAX5157), R_L = 10k\Omega, C_L = 100pF, FB_ connected to OUT_, T_A = T_{MIN}$ to T_{MAX}, unless otherwise noted.)

_Pin Description

PIN	NAME	FUNCTION
1	AGND	Analog Ground
2	OUTA	DAC A Output Voltage
3	FBA	DAC A Output Amplifier Feedback Input. Inverting input of the output amplifier.
4	REFA	Reference for DAC A
5	CL	Active-Low Clear Input. Resets all registers to zero. DAC outputs go to 0V.
6	CS	Chip-Select Input
7	DIN	Serial Data Input
8	SCLK	Serial Clock Input
9	DGND	Digital Ground
10	DOUT	Serial Data Output
11	UPO	User-Programmable Output
12	PDL	Power-Down Lockout. The device cannot be powered down when PDL is low.
13	REFB	Reference Input for DAC B
14	FBB	DAC B Output Amplifier Feedback Input. Inverting input of the output amplifier.
15	OUTB	DAC B Output Voltage
16	V _{DD}	Positive Power Supply

Detailed Description


The MAX5156/MAX5157 dual, 12-bit, voltage-output DACs are easily configured with a 3-wire serial interface. These devices include a 16-bit data-in/data-out shift register, and each DAC has a double-buffered input comprised of an input register and a DAC register (see *Functional Diagram*). Both DACs use an inverted R-2R ladder network that produces a weighted voltage proportional to the input voltage value. Each DAC has its own reference input to facilitate independent full-scale values. Figure 1 depicts a simplified circuit diagram of one of the two DACs.

Reference Inputs

The reference inputs accept both AC and DC values with a voltage range extending from 0V to (V_{DD} - 1.4V). Determine the output voltage using the following equation:

where NB is the numeric value of the DAC's binary input code (0 to 4095) and V_{REF} is the reference voltage.

The reference input impedance ranges from $14k\Omega$ (1554 hex) to several giga ohms (with an input code of 0000 hex). This reference input capacitance is code dependent and typically ranges from 15pF with an input code of all zeros to 50pF with a full-scale input code.

The output amplifier's inverting input is available to the user, allowing force and sense capability for remote sensing and specific gain configurations. The inverting input can be connected to the output to provide a unity-gain buffered output. The output amplifiers have a typical slew rate of 0.75V/µs and settle to 1/2LSB within 15µs, with a load of 10k Ω in parallel to 100pF. Loads less than 2k Ω degrade performance.

FB

OUT_

Table 1. Serial-Interface Programming Commands

		16-B	IT SERIAL WORD		
A0	C1	C0	D11D0 MSB LSB	S0	FUNCTION
0	0	1	12 bits of DAC data	0	Load input register A; DAC register is unchanged.
1	0	1	12 bits of DAC data	0	Load input register B; DAC register is unchanged.
0	1	0	12 bits of DAC data	0	Load input register A; all DAC registers are updated.
1	1	0	12 bits of DAC data	0	Load input register B; all DAC registers are updated.
0	1	1	12 bits of DAC data	0	Load all DAC registers from the shift register (start up both DACs with new data).
1	0	0	*****	0	Update both DAC registers from their respective input registers (start up both DACs with data previously stored in the input registers).
1	1	1	xxxxxxxxxxx	0	Shut down both DACs if $\overline{PDL} = 1$.
0	0	0	0 0 1 x xxxxxxx	0	Update DAC register A from input register A (start up DAC A with data previously stored in input register A).
0	0	0	1 0 1 x xxxxxxx	0	Update DAC register B from input register B (start up DAC B with data previously stored in input register B).
0	0	0	1 1 0 x xxxxxxxx	0	Shut down DAC A when $\overline{PDL} = 1$.
0	0	0	1 1 1 x xxxxxxxx	0	Shut down DAC B when $\overline{PDL} = 1$.
0	0	0	0 1 0 x xxxxxxxx	0	UPO goes low (default).
0	0	0	0 1 1 x xxxxxxxx	0	UPO goes high.
0	0	0	1 0 0 1 xxxxxxxx	0	Mode 1, DOUT clocked out on SCLK's rising edge.
0	0	0	1 0 0 0 xxxxxxxx	0	Mode 0, DOUT clocked out on SCLK's falling edge (default).
0	0	0	0 0 0 x xxxxxxxx	0	No operation (NOP).

"x" = don't care

Note: D11, D10, D9, and D8 become control bits when A0, C1, and C0 = 0. S0 is a sub bit, always zero.

Power-Down Mode

The MAX5156/MAX5157 feature a software-programmable shutdown mode that reduces the typical supply current to 2μ A. The two DACs can be shut down independently or simultaneously by using the appropriate programming word. For instance, enter shutdown mode (for both DACs) by writing an input control word of 111XXXXXXXXXXX (Table 1). In shutdown mode, the reference inputs and amplifier outputs become high impedance, and the serial interface remains active. Data in the input registers is saved, allowing the MAX5156/MAX5157 to recall the output state prior to entering shutdown when returning to normal mode. Exit shutdown by recalling the previous condition or by updating the DAC with new information. When returning to normal operation (exiting shutdown), wait 20µs for output stabilization.

Serial Interface

///XI//

The MAX5156/MAX5157 3-wire serial interface is compatible with both Microwire (Figure 2) and SPI/QSPI (Figure 3) serial-interface standards. The 16-bit serial input word consists of an address bit, two control bits, 12 bits of data (MSB to LSB), and one sub bit as shown in Figure 4. The address and control bits determine the response of the MAX5156/MAX5157, as outlined in Table 1.

MAX5156/MAX5157

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

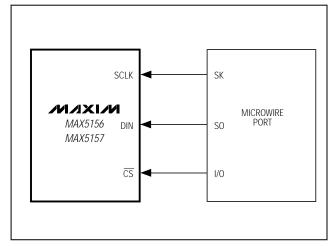


Figure 2. Connections for Microwire

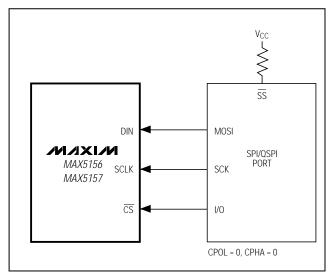
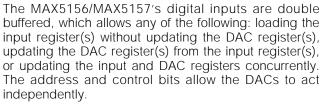



Figure 3. Connections for SPI/QSPI

MSBLSB						
◄ 16 Bits of Serial Data ►						
Address Bits	Control Bits	MSBDataBitsLSB	Sub Bit			
AO	C1, C0	D11D0	S0			
✓-1 Address/2 Control Bits →						

Figure 4. Serial-Data Format

Send the 16-bit data as one 16-bit word (QSPI) or two 8-bit packets (SPI, Microwire), with \overline{CS} low during this period. The address and control bits determine which register will be updated, and the state of the registers when exiting shutdown. The 3-bit address/control determines the following:

- registers to be updated
- clock edge on which data is clocked out via the serial data output (DOUT)
- state of the user-programmable logic output
- configuration of the device after shutdown

The general timing diagram in Figure 5 illustrates how data is acquired. Driving \overline{CS} low enables the device to receive data. Otherwise, the interface control circuitry is disabled. With \overline{CS} low, data at DIN is clocked into the register on the rising edge of SCLK. As CS goes high, data is latched into the input and/or DAC registers depending on the address and control bits. The maximum clock frequency guaranteed for proper operation is 10MHz. Figure 6 depicts a more detailed timing diagram of the serial interface.

Serial Data Output (DOUT)

DOUT is the internal shift register's output. It allows for daisy-chaining and data readback. The MAX5156/ MAX5157 can be programmed to shift data out of DOUT on SCLK's falling edge (Mode 0) or rising edge (Mode 1). Mode 0 provides a lag of 16 clock cycles, which maintains compatibility with SPI/QSPI and Microwire interfaces. In Mode 1, the output data lags 15.5 clock cycles. On power-up, the device defaults to Mode 0.

User-Programmable Logic Output (UPO)

UPO allows an external device to be controlled through the MAX5156/MAX5157 serial interface (Table 1), thereby reducing the number of microcontroller I/O pins required. On power-up, UPO is low.

Power-Down Lockout Input (PDL)

PDL disables software shutdown when low. When in shutdown, transitioning PDL from high to low wakes up the part with the output set to the state prior to shutdown. PDL can also be used to asynchronously wake up the device.

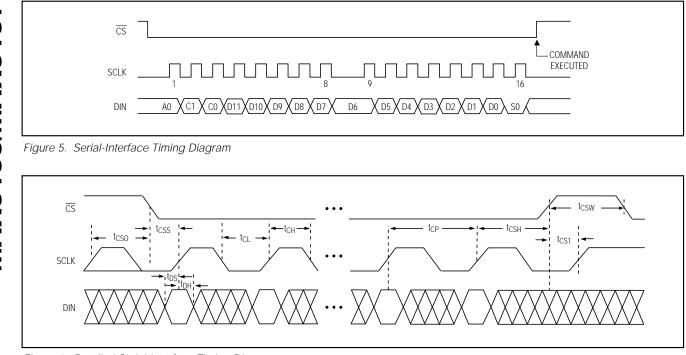


Figure 6. Detailed Serial-Interface Timing Diagram

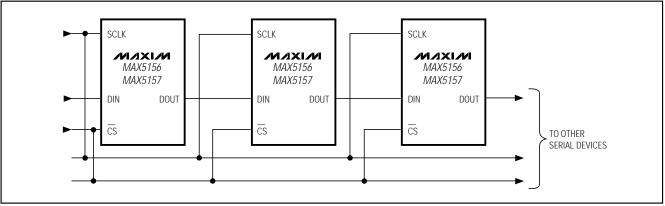


Figure 7. Daisy Chaining MAX5156/MAX5157s

Daisy Chaining Devices

Any number of MAX5156/MAX5157s can be daisy chained by connecting the DOUT pin of one device to the DIN pin of the following device in the chain (Figure 7).

Since the MAX5156/MAX5157's DOUT has an internal active pull-up, the DOUT sink/source capability determines the time required to discharge/charge a capaci-

tive load. Refer to the digital output V_{OH} and V_{OL} specifications in the *Electrical Characteristics*.

Figure 8 shows an alternative method of connecting several MAX5156/MAX5157s. In this configuration, the data bus is common to all devices; data is not shifted through a daisy-chain. More I/O lines are required in this configuration because a dedicated chip-select input (\overline{CS}) is required for each IC.

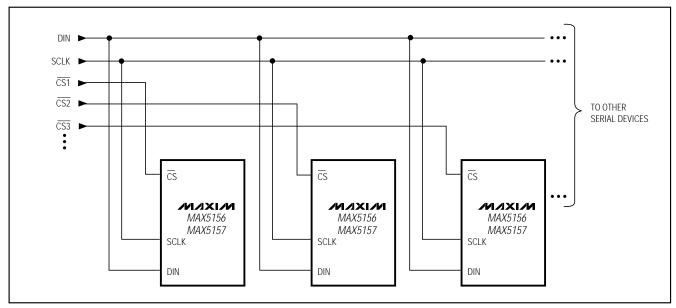


Figure 8. Multiple MAX5156/MAX5157s Sharing a Common DIN Line

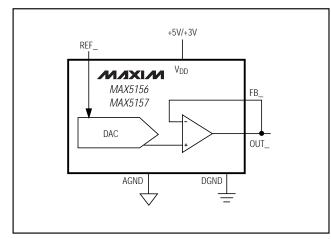


Figure 9. Unipolar Output Circuit

Applications Information

Unipolar Output

Figure 9 depicts the MAX5156/MAX5157 configured for unity-gain, unipolar operation. Table 2 lists the unipolar output codes. To increase dynamic range, specific gain configurations can be used as shown in Figure 10.

Table 2. Unipolar Code Table (Gain = +1)

D/ MSB	AC CONT	ENTS LSB	ANALOG OUTPUT
1111	1111	1111(0)	$+V_{\text{REF}}\left(\frac{4095}{4096}\right)$
1000	0000	0001(0)	$+V_{\text{REF}}\left(\frac{2049}{4096}\right)$
1000	0000	0000(0)	$+ V_{\text{REF}} \left(\frac{2048}{4096}\right) = \frac{V_{\text{REF}}}{2}$
0111	1111	1111(0)	$+V_{\text{REF}}\left(\frac{2047}{4096}\right)$
0000	0000	0001(0)	$+V_{\text{REF}}\left(\frac{1}{4096}\right)$
0000	0000	0000(0)	OV

Note: () are for the sub bit.

Bipolar Output

The MAX5156/MAX5157 can be configured for a bipolar output, as shown in Figure 11. The output voltage is given by the equation:

where NB represents the numeric value of the DAC's binary input code. Table 3 shows digital codes and the corresponding output voltage for Figure 11's circuit.

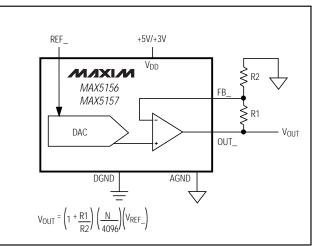


Figure 10. Configurable Output Gain

Table 3. Bipolar Code Table

DA MSB	AC CONT	ENTS LSB	ANALOG OUTPUT
1111	1111	1111(0)	$+V_{\text{REF}}\left(\frac{2047}{2048}\right)$
1000	0000	0001(0)	$+V_{REF}\left(\frac{1}{2048}\right)$
1000	0000	0000(0)	OV
0111	1111	1111(0)	$-V_{REF}\left(\frac{1}{2048}\right)$
0000	0000	0001(0)	$-V_{\text{REF}}\left(\frac{2047}{2048}\right)$
0000	0000	0000(0)	$-V_{\text{REF}}\left(\frac{2048}{2098}\right) = -V_{\text{REF}}$

Note: () are for the sub bit.

Using an AC Reference

In applications where the reference has an AC signal component, the MAX5156/MAX5157 have multiplying capabilities within the reference input voltage range specifications. Figure 12 shows a technique for applying a sinusoidal input REF_, where the AC signal is offset before being applied to the reference input.

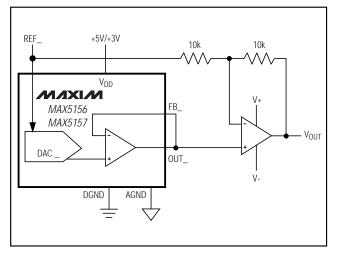


Figure 11. Bipolar Output Circuit

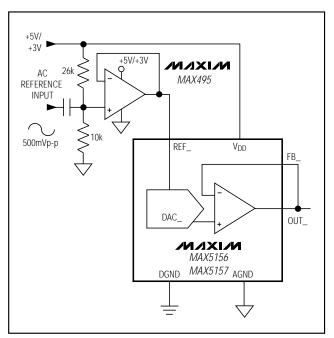


Figure 12. AC Reference Input Circuit

Harmonic Distortion and Noise

The total harmonic distortion plus noise (THD+N) is typically less than -80dB at full scale with a 1Vp-p input swing at 5kHz. The typical -3dB frequency is 600kHz for both devices, as shown in the *Typical Operating Characteristics*.

Digital Calibration and Threshold Selection

Figure 13 shows the MAX5156/MAX5157 in a digital calibration application. With a bright value applied to the photodiode (on), the DAC is digitally ramped up until it trips the comparator. The microprocessor stores this high calibration value. Repeat the process with a dim light (off) to obtain the dark current calibration. The microprocessor then programs the DAC to set an output voltage that is the midpoint of the two calibration values. Applications include tachometers, motion sensing, automatic readers, and liquid clarity analysis.

Digital Control of Gain and Offset

The two DACs can be used to control the offset and gain for curve-fitting nonlinear functions, such as transducer linearization or analog compression/expansion applications. The input signal is used as the reference for the gain-adjust DAC, whose output is summed with the output from the offset-adjust DAC. The relative weight of each DAC output is adjusted by R1, R2, R3, and R4 (Figure 14).

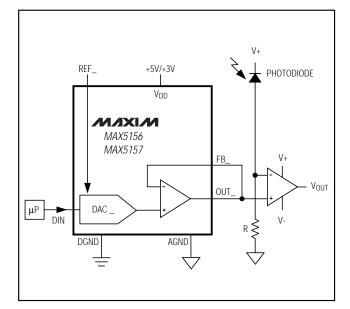


Figure 13. Digital Calibration

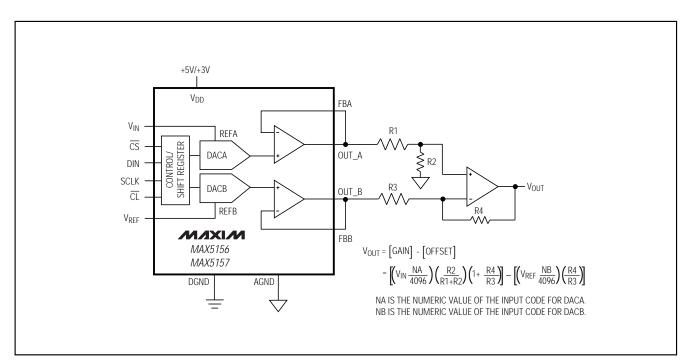


Figure 14. Digital Control of Gain and Offset

Digitally Programmable Current Source

Figure 15 depicts a digitally programmable, unidirectional current source that can be used in industrial control applications. The output current is:

 $I_{OUT} = (V_{REF} / R) (NB / 4096)$

where NB is the DAC code and R is the sense resistor.

Power-Supply Considerations

On power-up, the input and DAC registers clear (resets to zero code). For rated performance, V_{REF} should be at least 1.4V below V_{DD} . Bypass the power supply with a 4.7µF capacitor in parallel with a 0.1µF capacitor to GND. Minimize lead lengths to reduce lead inductance.

Grounding and Layout Considerations

Digital and AC transient signals on AGND can create noise at the output. Connect AGND to the highest quality ground available. Use proper grounding techniques, such as a multilayer board with a low-inductance ground plane. Carefully lay out the traces between channels to reduce AC cross-coupling and crosstalk. Wire-wrapped boards and sockets are not recommended. If noise becomes an issue, shielding may be required.

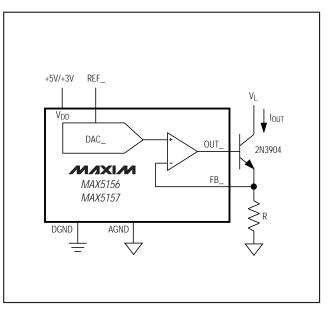
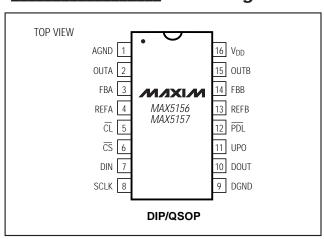



Figure 15. Digitally Programmable Current Source

Pin Configuration

Chip Information

Printed USA

PART	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX5156AEPE	-40°C to +85°C	16 Plastic DIP	±1/2
MAX5156BEPE	-40°C to +85°C	16 Plastic DIP	±1
MAX5156AEEE	-40°C to +85°C	16 QSOP	±1/2
MAX5156BEEE	-40°C to +85°C	16 QSOP	±1
MAX5156BMJE	-55°C to +125°C	16 CERDIP*	±1
MAX5157ACPE	0°C to +70°C	16 Plastic DIP	±1
MAX5157BCPE	0°C to +70°C	16 Plastic DIP	±2
MAX5157ACEE	0°C to +70°C	16 QSOP	±1
MAX5157BCEE	0°C to +70°C	16 QSOP	±2
MAX5157AEPE	-40°C to +85°C	16 Plastic DIP	±1
MAX5157BEPE	-40°C to +85°C	16 Plastic DIP	±2
MAX5157AEEE	-40°C to +85°C	16 QSOP	±1
MAX5157BEEE	-40°C to +85°C	16 QSOP	±2
MAX5157BMJE	-55°C to +125°C	16 CERDIP*	±2

_Ordering Information (continued)

*Contact factory for availability.

TRANSISTOR COUNT: 3053

SUBSTRATE CONNECTED TO AGND

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16

MAX5156/MAX515

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1997 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX5156BCEE-	+ MAX5156ACEE+	MAX5156ACEE+	MAX5156ACPE	+ MAX5156AEEE+	MAX5156AEEE+T
MAX5156AEPE+	MAX5156BCEE+T	MAX5156BCPE+	MAX5156BEEE+	MAX5156BEEE+T	MAX5156BEPE+
MAX5157ACEE+	MAX5157ACEE+T	MAX5157ACPE+	MAX5157AEEE+	MAX5157AEEE+T	MAX5157AEPE+
MAX5157BCEE+	MAX5157BCEE+T	MAX5157BCPE+	MAX5157BEEE+	MAX5157BEEE+T	MAX5157BEPE+