Contents L9935

Contents

1	Bloc	Block diagram 6					
2	Pin c	lescription					
3	Elec	trical specifications 8					
	3.1	Absolute maximum ratings					
	3.2	Thermal data 8					
	3.3	Electrical characteristics					
4	Appl	ication hints					
5	Fund	ctional description12					
	5.1	Basic structure					
	5.2	Full bridge function					
		5.2.1 No current					
		5.2.2 Turning on					
		5.2.3 Chopping					
		5.2.4 Reversing phase14					
		5.2.5 Chopper control by oscillator					
	5.3	Protection and diagnosis functions					
	5.4	Short from an output to the supply voltage V _S ₁₅					
	5.5	Diagnosis of a short to V _S					
	5.6	Short from an output to ground					
	5.7	Diagnosis of a short to ground					
	5.8	Shorted load					
	5.9	Diagnosis of a shorted load					
	5.10	Open load					
		5.10.1 Over temperature pre alarm18					
	5.11	Application hints using a high resistive stepper motor 18					
		5.11.1 Startup behavior					
	5.12	Limitation of the diagnosis					
	5.13	Serial data interface (SPI)					
		5.13.1 Startup of the serial data interface					

L9935	Contents
L9935	Content

7	Revis	sion history	28
6	Pack	age information	27
	5.17	Electromagnetic emission classification (EME)	25
	5.16	Application information	23
	5.15	Cascading several devices	22
	5.14	Test condition for all propagation times	21

List of tables L9935

List of tables

Table 1.	Device summary	1
Table 2.	Pin function	7
Table 3.	Absolute maximum ratings	8
Table 4.	Thermal data	8
Table 5.	Electrical characteristics	9
Table 6.	Current setting	. 12
Table 7.	High and low resistive motor (error bits)	. 18
Table 8.	Diagnosis description - bit7 and bit6	. 19
Table 9.	Test condition for all propagation times	. 21
Table 10.	Full step mode control sequences and diagnosis response	. 23
Table 11.	Half step mode control sequences and diagnosis response	. 24
Table 12.	Electromagnetic emission	. 25
Table 13.	Document revision history	. 28

L9935 List of figures

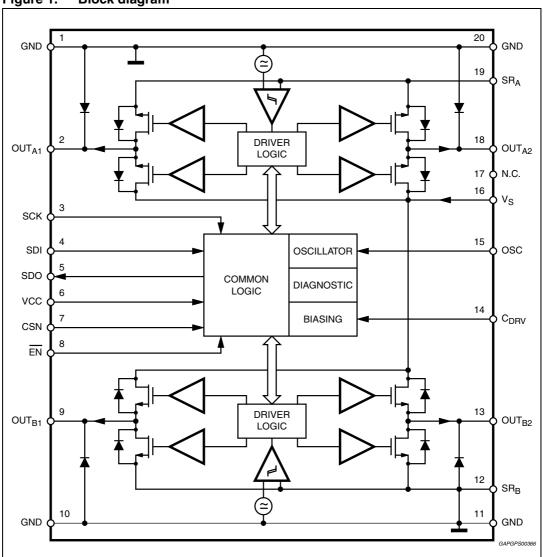

List of figures

Figure 1.	Block diagram	6
Figure 2.	Pin connection (top view)	7
Figure 3.	General application circuit proposal	11
Figure 4.	Typical average load current dependence on R _{Sense}	12
Figure 5.	Displays a full bridge including the current sense circuit	
Figure 6.	Principal chopper control circuit	14
Figure 7.	Pulse diagram to explain offset chopping	15
Figure 8.	Normal PWM current versus short circuit current and detection of short to V _S	16
Figure 9.	SPI data/clock timing	20
Figure 10.	Cascading several stepper motor drivers	22
Figure 11.	Control sequence for 3 Stepper motor drivers	22
Figure 12.	Paralleling several devices	
Figure 13.	State diagram	
Figure 14.	EMC compatibility for L9935	
Figure 15.	PowerSO20 mechanical data and package dimensions	27

Block diagram L9935

1 Block diagram

Figure 1. Block diagram

L9935 Pin description

2 Pin description

Figure 2. Pin connection (top view)

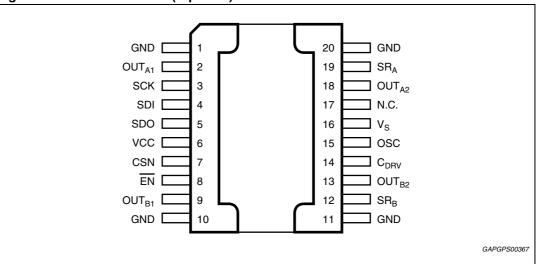


Table 2. Pin function

Pin No	Name	Description
1,10,11,20	GND	Ground. (All ground pins are internally connected to the frame of the device).
2	OUT _{A1}	Output1 of full bridge 1
3	SCK	Clock for serial interface (SPI)
4	SDI	Serial data input
5	SDO	Serial data output
6	VCC	5V logic supply voltage
7	CSN	Chip select (Low active)
8	EN	Enable (Low active)
9	OUT _{B1}	Output1of full bridge 2
12	SR _B	Current sense resistor of the chopper regulator for OUTB
13	OUT _{B2}	Output 2 of full bridge 2
14	C _{DRV}	Charge pump buffer capacitor
15	OSC	Oscillator capacitor or external clock
16	V _S	Supply voltage
17	NC	Not connected
18	OUT _{A2}	Output of full bridge 1
19	SR _A	Current sense resistor of the chopper regulator for OUT _A

3 Electrical specifications

3.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _S	DC supply voltage	-0.3 to 35	V
V _{SPulsed}	Pulsed supply voltage T < 400 ms	-0.3 to 40	V
V _{OUT (Ai/Bi)}	Output voltages	internally clamped to V _S or GND depending on the current direction	
	DC output currents	±1.2	Α
I _{OUT} (Ai/Bi)	Peak output currents (T/tp ≥10)	±2.5	Α
V _{SRA/SRB}	Sense resistor voltages	-0.3 to 6.2	V
V _{CC}	Logic supply voltages	-0.3 to 6.2	V
V _{CDRV}	Charge pump buffer voltage versus V _S	-0.3 to 10	V
$V_{SCK}, V_{SDI}, V_{CSN}, V_{EN}$	Logic input voltages	-2 to 8	V
V _{OSC} , V _{SDO}	Oscillator voltage range, logic output	-0.3 to V _{CC} +0.3	V

Note:

Note: ESD for all pins, except pins SDO, SRA and SRB, are according to MIL883C, tested at 2kV, corresponding to a maximum energy dissipation of 0.2mJ. SDO, SRA and SRB pins are tested with 800V.

3.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Typical thermal resistance junction-to-case	5	°C/W
R _{thj-amb}	Typical thermal resistance junction-to-ambient (6 cm ² ground plane 35 µm thickness)	35	°C/W
R _{thj-amb, FR4}	Typical thermal resistance junction to ambient (soldered on a FR 4 board with through holes for heat transfer and external heat sink applied)	8	°C/W
T _S	Storage temperature	-40 to 150	°C
T _{SD}	Typical thermal shut-down temperature	180	°C

3.3 Electrical characteristics

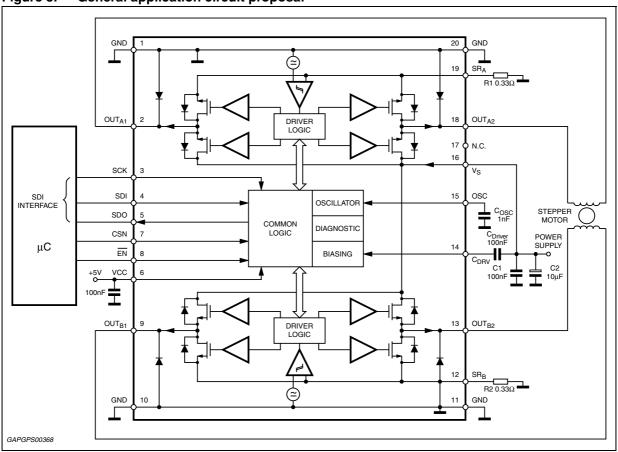
8 V \leq V $_{S}$ \leq 24 V; -40 °C \leq T $_{j}$ \leq 150 °C; 4.5 V \leq V $_{CC}$ \leq 5.5 V, unless otherwise specified.

Parameters are tested at 125 $^{\circ}\text{C}.$ Values at 140 $^{\circ}\text{C}$ are guaranteed by design and correlation.

Table 5. Electrical characteristics

Parameter	Test condition	Min.	Тур.	Max.	Unit	
Supply						
Total supply current I _S + I _{VCC} (both bridges Off)	$V_S = 14 \text{ V}; \overline{\text{EN}} = \text{HIGH};$ $T_J \le 85 ^{\circ}\text{C}$	-	40	100	μА	
Operating supply current	$I_{OUT \text{ Ai/Bi}} = 0$; $f_{OSC} = 30 \text{ kHz}$ $V_S = 14 \text{ V}$	-	4.5	-	mA	
5 V supply current	EN = LOW	-	1.4	10	mA	
R _{DSON} of sink transistors	Current bit	-	0.4	0.7	Ω	
R _{DSON} of source transistors	combinations LL, LH, V _S ≥12 V	-	0.4	0.7	Ω	
R _{DSON} of sink transistors + R _{DSON} of source transistors	Current bit combinations LL, LH, V _S = 8V	-	1.6	3	Ω	
Forward voltage of the DMOS body diodes	$\overline{\text{EN}}$ = HIGH; I _{FWD} = 1 A; V _S \geq 12 V	-	1	1.4	V	
Reverse DMOS voltage	EN = LOW I _{REV} = 1 A	-	0.5	0.9	V	
Rise and fall time of outputs OUT _{Ai/Bi}	0.10.9 V _{OUT} V _S = 14 V Chopping 550 mA	0.3	0.6	1.5	μS	
hreshold of the chopper (R ₁ · R	$_{2}$ = 0.33 Ω)					
Voltage drops across R R. (1)	Bit 5, 2 = H; Bit 4, 1 = L	12	20	35	mV	
(Voltage at Pin SR _A or SR _B vs.	Bit 5, 2 = L; Bit 4, 1 = H	160	180	210	mV	
(GND)	Bit 5, 4, 2, 1 = L	270	300	340	mV	
t EN						
High input voltage	-	V _{CC} - 1.2V	-	-	V	
Low input voltage	-	-	-	1.2	V	
Enable hysteresis	-	0.1	1	-	V	
High input current	$V_{High} = V_{CC}$	-10	0	10	μΑ	
Low input current	$V_{LOW} = 0V$	-3	-10	-30	μΑ	
S SDI. SCK, CSN						
High input voltage		2.6		8	V	
Low input voltage	EN = LOW	-0.3		1	V	
Hysteresis		0.8	1.2	1.6	V	
	Total supply current I _S + I _{VCC} (both bridges Off) Operating supply current 5 V supply current R _{DSON} of sink transistors R _{DSON} of source transistors R _{DSON} of source transistors Forward voltage of the DMOS body diodes Reverse DMOS voltage Rise and fall time of outputs OUT _{Ai/Bi} Inreshold of the chopper (R ₁ · R Voltage drops across R ₁ · R ₂ (1) (Voltage at Pin SR _A or SR _B vs. GND) t EN High input voltage Enable hysteresis High input current Low input current S SDI. SCK, CSN High input voltage Low input voltage Low input voltage	Total supply current $I_{S^+}I_{VCC}$ (both bridges Off) Operating supply current $I_{OUT\ Ai/Bi} = 0$; $f_{OSC} = 30\ kHz$ $V_S = 14\ V$; $\overline{EN} = HIGH$; $T_J \le 85\ ^{\circ}C$ Operating supply current $I_{OUT\ Ai/Bi} = 0$; $f_{OSC} = 30\ kHz$ $V_S = 14\ V$ $I_{OUT\ Ai/Bi} = 0$; $I_{OSC} = 30\ kHz$ $I_{OUT\ Ai/Bi} = 0$; $I_{OSC} = 30\ kHz$ $I_{OUT\ Ai/Bi} = 0$; $I_{OSC} = 30\ kHz$ $I_{OUT\ Ai/Bi} = 0$; $I_{OSC} = 30\ kHz$	Total supply current $I_{S^+}I_{VCC}$ (both bridges Off) $I_{J} \le 85 ^{\circ}C$ Operating supply current $I_{OUT Ai/Bi} = 0; f_{OSC} = 30 \text{kHz}$ $V_S = 14 \text{V}$ $I_{S} = 12 \text{V}$ $I_{S} = 14 \text{V}$ $I_{S} = 12 \text{V}$ $I_{S} = 14 \text{V}$ $I_{S} = 12 \text{V}$ $I_{S} = 14 \text{V}$ $I_{S} = 12 \text{V}$ $I_{S} = 14 \text{V}$ $I_{S} = 14 \text{V}$ $I_{S} = 14 \text{V}$ $I_{S} = 14 \text{V}$ $I_{$	Total supply current $I_S + I_{VCC}$ (both bridges Off) $I_S = 14 \ V; EN = HIGH;$ $I_S = 85 \ C$ 4.5 Operating supply current $I_S + I_{VCC}$ $I_S = 14 \ V; EN = HIGH;$ $I_S = 85 \ C$ 4.5 $I_S = 14 \ V$ 4.1 $I_S = 14 \ V$	Total supply current I _S + I _{VCC} (both bridges Off) $V_S = 14 \ V$; $\overline{EN} = HIGH$; $T_J \le 85 \ ^{\circ}C$ $V_S = 14 \ V$; $\overline{EN} = HIGH$; $T_J \le 85 \ ^{\circ}C$ $V_S = 14 \ V$ $V_S = 12 \ V$ $V_S = 14 \ V$ $V_S = 12 \ V_S = 12 \ V$ $V_S = 12 \ V_S = 14 \ V_S = 12 \ V_S = 12 \ V_S = 12 \ V_S = 14 \ V_S = 12 \ V_S = 14 \ V_S = 12 \ V_S $	

Table 5. Electrical characteristics (continued)


Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{HIGH}	High input current	$V_{High} = V_{CC}$	-10	0	10	μΑ
I _{Low}	Low input current	V _{Low} = 0 V	-3	-10	-30	μΑ
Logic outpu	its (SDO)					
V _{SDO,High}	High output voltage	I _{SDO} = -1 mA	V _{CC} -1	V _{CC} - 0.17	V _{CC}	V
V _{SDO,Low}	Low output voltage	I _{SDO} = 1 mA	-	0.17	1	V
Oscillator						
V _{OSC, H}	High peak voltage	EN = LOW	2.2	2.46	2.6	V
V _{OSC, L}	Low peak voltage	EN = LOW	1	1.23	1.4	V
I _{osc}	Charging/discharging current	-	45	62	80	μΑ
f _{OSC}	Oscillator frequency	C _{OSC} = 1 nF	20	25	31	kHz
t _{Start}	Oscillator startup time	EN = High →Low	2/f _{osc}	5/f _{osc}	8/f _{osc}	
Thermal pro	otection					
т	Thermal shut-down	-	160	180	200	°C
T _{J-OFF}	Temperature	-	-	-	-	
T _{J-ALM}	Thermal pre alarm	-	130	160	-	°C
ΔT_{MGN}	Margin pre alarm/shut-down	-	10	20	30	K

^{1.} Currents of combinations LH and LL are sensed at the external resistors. The Current of bit combination HL is sensed internally and cannot be adjusted by changing the sense resistors.

L9935 Application hints

4 Application hints

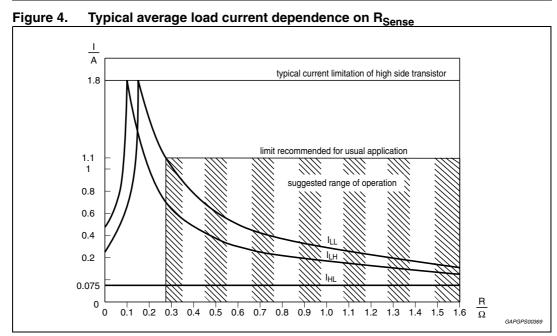
Figure 3. General application circuit proposal

C1 and C2 should be placed as close to the device as possible. Low ESR of C2 is advantageous. Peak currents through C1 and C2 may reach 2 A. Care should be taken that the resonance of C1, C2 together with supply wire inductances is not the chopping frequency or a multiple of it.

5 Functional description

5.1 Basic structure

The L9935 is a dual full bridge driver for inductive loads with a chopper current regulation.


Outputs A1 and A2 belong to full bridge A Outputs B1 and B2 belong to full bridge B.

The polarity of the bridges can be controlled by bit0 and bit3 (for full bridge A, bit3, for full bridge B, bit0). Bit5, bit4 (for full bridge A) and bit2, bit1 (for full bridge B) control the currents. Bit3 high leads to output A1 high. Bit0 high leads to output B1 high.

Current setting *Table 6* using a 0.33 Ω sense resistor.

Table 6. Current setting

bit5, bit2	bit4, bit1	I _{QX} (Typ.)	I _{RX/max}	Remark
Н	Н	0	0 %	-
Н	L	60 mA	-	internally sensed
L	Н	550 mA	61 %	-
L	L	900 mA	100 %	-

5.2 Full bridge function

Figure 5. Displays a full bridge including the current sense circuit.

5.2.1 No current

Bit 5, bit 4 (corresponding bit 2 and bit1 for bridge B) both are HIGH, the current logic will inhibit all drivers D_{11} , D_{12} , D_{21} , D_{22} turning off M_{11} , M_{12} , M_{21} , M_{22} independently from the signal of the current sense comparator comp 1.

5.2.2 Turning on

Changing bit 5 or bit 4 or both to LOW will turn on either M_{11} and M_{22} or M_{21} and M_{12} (depending on the phase signal bit 3). Current will start to flow through the load. The current will be sensed by the drop across R_1 .

The threshold of the comparator comp 1 depends on the current settings of bit 5 and bit 4. The current will rise until it exceeds the turn off threshold of comp 1.

5.2.3 Chopping

Exceeding the threshold of comp 1 the drive logic will turn off the sink transistor (M_{12} or M_{22}). The sink transistor periodically is turned on again by the oscillator. Immediately after turning on M_{12} or M_{22} the comparator comp 1 will be inhibited for a certain time to blank switch over spikes caused by capacitive load components up to 5 nF.

Turning off for example M_{12} will yield a flyback current through D_{11} . (So now the free wheeling current flows through M_{21} , the load and D_{11}).

This leads to a slow current decay during flyback. Maximum duty cycles of more than 85% (at $f_{OSC} = 25$ kHz) are possible. In this case current flows of both bridges will overlap (not shown in *Figure* 7).

5.2.4 Reversing phase

Suppose the current flowed via M_{21} , the load and M_{12} before reversing phase. Reversing phase M_{21} and M_{12} will be turned off. So now the current will flow through D_{22} , the load and D_{11} . This leads to a fast current decay.

5.2.5 Chopper control by oscillator

Both chopping circuits work with offset phase. One chopper will switch on the bridge at the maximum voltage of the oscillator while the other chopper will switch on the bridge at minimum voltage of the oscillator.

MS1 and MS2 blank switching spikes that could lead to errors of the current control circuit.

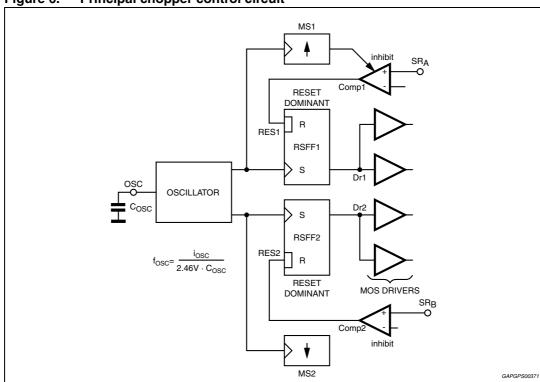


Figure 6. Principal chopper control circuit

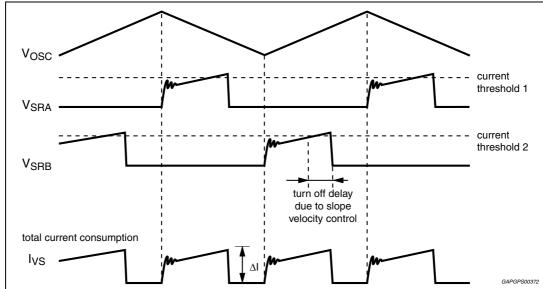


Figure 7. Pulse diagram to explain offset chopping

Using offset chopping the changes of the supply current remain half as large as using non offset chopping.

Turning off the oscillator for example by shorting pin OSC to ground will hinder turning on of the bridges anymore after the comparators have generated a turn off signal.

External clocking is possible overdrives the charge and discharge currents of the oscillator for example with a push pull logic gate. So several devices can be synchronized.

5.3 Protection and diagnosis functions

The L9935 provides several protection functions and error detection functions. Current limitation usually is customer defined by the external current sense resistors. The current sensed there is used to regulate the current through the stepper motor windings by pulse width modulation. This PWM regulation protects the sink transistors. The source transistors are protected by an internal overcurrent shut down turning off the source transistors in case of overload.

Overload detection of the source transistor will turn off the bridge and set the corresponding error flag.

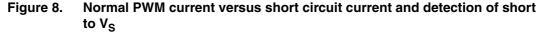
To turn on the bridge again a new byte must be written into the interface. (Rising slope of CSN resets the overload error flag).

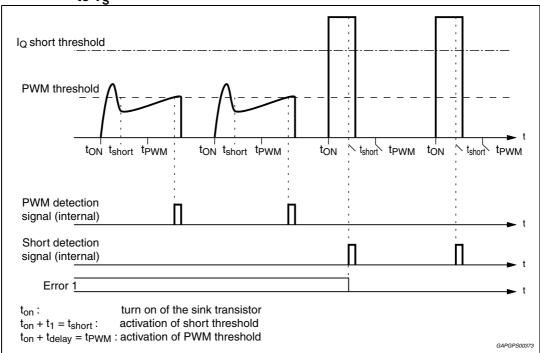
Both bridges use the same flags. To locate which bridge is affected by an error the bridges can be tested individually (One bridge just is turned off to check for the error in the other bridge).

5.4 Short from an output to the supply voltage V_S

The current will be limited by the pulse width modulator. The sink transistor will turn off again after some microseconds. The transistor will periodically be turned on again by the oscillator 8 times. After having detected short 8 times the low side transistor will remain off until the

next data transfer took place. After detection of a short to V_S we suggest to turn off the corresponding bridge to reduce power dissipation for at least 1ms.


5.5 Diagnosis of a short to V_S


During the short current through the sink transistor will rise more rapidly than under normal load conditions. Reaching a peak current of 1.5 times the maximum PWM current between typically $2 \mu s$ and $5 \mu s$

after turn on will be detected as a short to V_S.

Detecting a short the low side transistor will try to turn on again the next 7 trigger pulse of the oscillator.

Simultaneously the error flag will updated on each pulse.

Between ton and tshort the over current detection is totally blanked.

Between t_{short} and t_{PWM} the current threshold is set to 1.5 times the maximum PWM current (1.5 times the current of current setting LL).

Overcurrent now will set the error flag.

After t_{PWM} the current threshold is the nominal PWM current set by the external resistor. Exceeding this current will just turn off the sink transistor. This is considered as normal operation. The error flag is detached from the comparator after t_{PWM} so no error flag is set during normal pulse width modulation.

5.6 Short from an output to ground

The current through the short will be detected by the protection of the source transistor. The source transistor will turn off exceeding a current of typically 1.8 A. Minimum overload detection current is 1.2 A. To obtain proper current regulation (by the sink transistors and not by source transistor shut down) the maximum current of the PWM regulator should be set to a maximum value of 1.1 A.

5.7 Diagnosis of a short to ground

Detecting an overload will set an overcurrent error (Error2 = LOW) (bit6). To reset the error flag a new byte must be written into the interface. (Reset of the error flag takes place at the rising slope of CSN).

5.8 Shorted load

With a shorted load both, the sink- and the source protection or the PWM alone will respond. In either case there will be no flyback pulse.

5.9 Diagnosis of a shorted load

Shorting the load two events may take place:

 overload (of the high side transistor) while low side transistor overcurrent is detected will set the following combinations:

bit6 = LOW bit7 = HIGH

 overload is marginal. So the low side driver may turn off before overload is detected. This leads to the combination bit6 = HIGH and bit7 = LOW.

5.10 Open load

An open load will not lead to any flyback pulses. Error detection will take advantage of the flyback pulse. Missing the flyback pulse after reversing the polarity of a motor winding bit7 will become LOW.

Open load will not be tested in the low current mode (current bits HL) to avoid the risk of instable diagnosis at low flyback currents. Open load immediately after reset or power down may on random be detected in the low current mode too. This diagnosis however will not persist longer than 8 changes of polarity.

We strongly suggest to test open load at a high current mode (combination LL).

While circuit clock speed passes the stepper motor resonant points during acceleration/deceleration phase, it can happen that flyback energy is temporarily insufficient for a proper open load detection. Under specific circumstances, pending on motor and load characteristics, this could lead to sporadic faulty open load error messages despite proper system operation. The recommended solution is an appropriate software filter approach.

A detailed description is available in the application note AN2378 on www.st.com.

5.10.1 Over temperature pre alarm

Typically 20K before thermal shut down takes place an over temperature pre alarm (bit7 and bit6 low) takes place. Typically over temperature pre alarm temperature is between 150 °C and 160 °C.

5.11 Application hints using a high resistive stepper motor

The L9935 was originally targeted on stepper chopping stepper motor application with typical resistances of 8..12 Ω . Using motors with higher resistance will work too but diagnosis behavior will slightly change. This paragraph shows the details that should be taken in account using diagnosis for high resistive motors.

5.11.1 Startup behavior

The device has simple digital filter to avoid triggering diagnosis at a single event that could be random noise. This digital filter needs 4 chopping pulses to settle. Using a high resistive motor this chopping does not take place. Instead the digital filter samples each time a polarity change takes place. So the first three response telegrams after reset may show an 'open load' error.

Table 7. High and low resistive motor (error bits)

_	,	
Input data	High resistive motor (error bits)	Low resistive motor (error bits)
Standby	-	-
1 st telegram (550 mA or 900 mA)	НН	НН
Reverse phase (550 mA or 900 mA)	XH	НН
Reverse phase (550 mA or 900 mA)	XH	НН
Any data	XH	НН
Any data	НН	НН

H means check for HIGH at the error bits.

X means don't care because filter is not yet settled.

Using 75 mA chopping immediately after stand by:

The high resistive motor can be forced to chopping operation in the low current range. This leads to the same behavior as using a low resistive motor.

Short to V_S detection using high resistive motors:

The short to V_S flag is overwritten each time the chopper comparator responds. Having detected a short this flag only can be reset by reaching chopping operation or resetting the circuit (ENN=1). For a high resistive motor this leads to the following consequence: Once a short to VS is detected the error flag will persist even if the short is removed again until either a reset (ENN=1) or chopping (for example in 75mA mode) has taken place. We suggest to return to operation once a short to VS was detected by using the low current mode to reset the flag.

5.12 Limitation of the diagnosis

The diagnosis depends on either detecting an overcurrent of more than typically 1.8 A through the source transistor or on not detecting a flyback pulse, or on detecting severe overcurrents of the sink transistor immediately after turn on.

- Small currents bypassing the load will not be detected.
- In the low current range (hold current) the flyback pulse (especially commutating against the supply voltage after changing phase) may (depending on the inductivity of the stepper motor windings) be too short to be detected correctly. For this reason diagnosis using the flyback pulse is blanked at phase reversal at hold current.
- In the low current range (hold current) the current capability of the bridge is reduced on purpose. Short to V_S may not be detected. In stead the bridge may just chop like normal operation.
- Flyback pulse detection is not blanked during PWM regulation at hold current (here commutation voltage is less than 1V thus providing a longer pulse duration.) This however should be taken in account using stepper motors with low inductivity (less than 0.5mH). Using motors with such a low inductivity the flyback voltage in hold mode may decay too fast.
- Motors with extremely low ohmic resistance tend to pump up the current because current decay during flyback approaches zero while at bridge turn on the current will increase. This may lead to overcurrent detection. We suggest to use stepper motors with an ohmic resistance of approximately 3 Ω or more.

Partial shorts of windings or shorts of stepper motors with coils in series may still yield a flyback pulses that are accepted by the diagnosis as a proper signal.

		•	
Error 1 bit7	Error 2 bit6	Description	
Н	Н	Normal operation	

Table 8. Diagnosis description - bit7 and bit6

Error 1 bit7	Error 2 bit6	Description						
Н	Н	Normal operation						
L	Н	Short to VS (sink overload immediately after turn on) shorted load (no flyback) open load (no flyback)						
Н	L	short to gnd (source overload, missing flyback is masked)						
L	L	over temperature pre alarm						

At stepping rates faster than 1ms/data transfer error flags indicating a short should be used to initiate a pause of at least 1ms to allow the power bridges to cool down again.

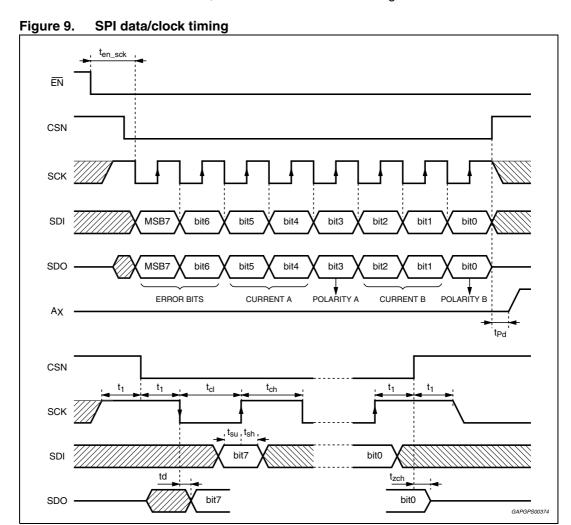
5.13 Serial data interface (SPI)

The serial data interface itself consists of the pins SCL (serial clock), SDI (serial data input) and SDO (serial data output).

To especially support bus controlled applications the additional signals $\overline{\rm EN}$ (chip enable not) and CSN (chip select not) are available.

5.13.1 Startup of the serial data interface

Falling slope of $\overline{\mathsf{EN}}$ activates the device. After ten.sck the device is ready to work.


Falling slope of CSN indicates start of frame. Data transfer (reading SDI into the register) takes place at the rising slopes of SCK.

Data transfer of the register to SDO takes place at the falling slope of SCK.

Rising slope of CSN indicates end of frame. At the end of frame data will only be accepted if modulo 8 bit (modulo 8 falling slopes to SCK) have been transferred. If this is not the case the input will be ignored and the bridges will maintain the same status as before.

SDO is a tristate output.

SDO is active while CSN = LOW, while CSN = HIGH SDO is high resistive.

5.14 Test condition for all propagation times

Unless otherwise specified) HIGH \geq 3 V; LOW \leq 0.8 V; $t_r,\ t_f$ = 10 ns; Enable: ENN Low < 0.8 V, ENN High > V_{CC} -0.8 V

Table 9. Test condition for all propagation times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
f _{SCLK}	SCK-Frequency	-	DC	-	2MHz	-
t ₁	SCK stable before and after CSN = 0	-	100	-	-	ns
t _{ch}	Width of SCK high pulse	-	200	-	-	ns
t _{cl}	Width of SCK low pulse	-	200	-	-	ns
t _{su}	SDI setup time	-	80	-	-	ns
t _{sh}	SDI hold time	-	80	-	-	ns
t _d	SDO delay time (C _L = 50pF)	-	-	100	-	ns
t _{zc}	SDO high Z CSN high	-	-	100	-	ns
t _{en_sck}	Setup time ENABLE to SCK	HIGH > V _{CC} -1.2 V	30	-	-	μS
t _{pd}	Propagation delay SPI to output QXX	-	-	2 ⁽¹⁾	-	μS

Measured at a transition from High impedance (Bridge off) to bridge on. (Reversing polarity takes about 1ms longer because the bridge first turns off before turning on in reverse direction).

Table of bits

bit5,bit4: current range of bridge A (Outputs A1 and A2)

bit3: polarity of bridge A

bit2,bit1: current range of bridge B (Outputs B1 and B2)

bit0: polarity of bridge B bit7,bit6: Error1 and Error 2

5.15 Cascading several devices

Cascading several devices can be done using the SDO output to pass data to the next device. The whole frame now consists of n byte. n is the number of devices used.

Figure 10. Cascading several stepper motor drivers

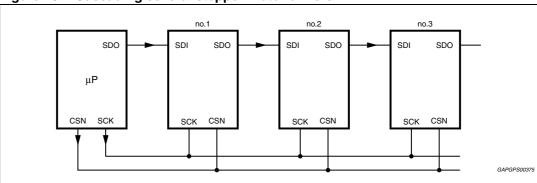


Figure 11. Control sequence for 3 Stepper motor drivers

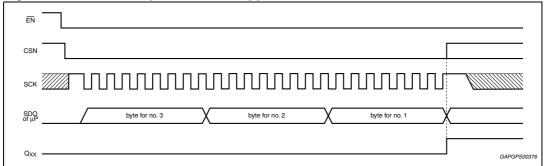


Figure 12. Paralleling several devices

Here usually only one stepper motor driver is selected at a time while all others are deselected.

5.16 Application information

For driving a stepper motor we suggest to use the following codes. The columned 'SDO correct' shows the data returned at SDO in correct function. The columns presented under 'Error cases' display the diagnosis bits if errors are detected.

Examples of control sequences.

Table 10. Full step mode control sequences and diagnosis response

	SDI	SDO correct	Error cases and SDObit7, bit6											
			Α	В	A1	A2	B1	B2	A1 (1)	A2 (1)	B1 (1)	B2 (1)	therm.	therm.
			0	0	S	S	S	S	S	S	S	S		
<u> </u>			Р	Р	Н	Н	Н	Н	Н	Н	Н	Н		shut down
Fault	-	-	Е	Е	0	0	0	0	0	0	0	0	alarm	(reset
			N	N	R	R	R	R	R	R	R	R	aiaiiii	operating
					Т	Т	Т	Т	Т	Т	Т	Т		codes)
					VS	VS	vs	vs	GND	GND	GND	GND		
bit	76543210	76543210	76	76	76	76	76	76	76	76	76	76	76	76543210
	XX111111	SDO present last data or 11111111 in case prev. state was standby												
Se	XX011011	11111111	11	11	11	11	11	11	11	11	11	11	00	00111111
Command/response	XX010011	11011011	11	11	11	01	11	01	10	11	10	11	00	00111111
res	XX010010	11010011	01	11	01	01	11	01	01	10	10	11	00	00111111
/pu	XX011010	11010010	11	01	01	11	01	01	11	10	01	10	00	00111111
ma	XX011011	11011010	01	11	01	01	01	11	10	01	11	10	00	00111111
l oʻ	XX010011	11011011	11	01	11	01	01	01	10	11	10	01	00	00111111
0	XX010010	11010011	01	11	01	01	11	01	01	10	10	11	00	00111111
	XX011010	11010010	11	01	01	11	01	01	11	10	01	10	00	00111111

Motor resistance approximately 10Ω and V_S = 12V. So a short to ground only is detected on one branch of the bridge.
 Lower resistivity of the motor may lead to detection of short to ground on both branches of the bridge leading to code 10 on all steps.

These sequences are intended to give the user a good starting point for his software development. Besides these two there are further possibilities how to implement control sequences for this device (other currents, quarters step etc.).

Double errors: Double errors will create composite codes by an AND operation between columns of the same dominance. Open and short to VS are the least dominant error codes. (first 6 error code columns). Short to ground is the second dominant error code. detection of short to gnd will overwrite error codes of the least dominant kind (open, short to VS). Temperature pre alarm and thermal shut down are the most dominant error codes. Thermal pre alarm returns error code 00 but the device still is working and returns the appropriate operation code (bits 0..5).

Thermal shut down returns error code 00 and turns off the device. The opcode returned corresponds the action eventually performed (bit 0..5 become 1).

For example open bridge A and simultaneously open bridge B will lead to error code 01 by performing an AND operation between the two corresponding columns.

Table 11. Half step mode control sequences and diagnosis response

	SDI	SDO	Error cases and SDObit7, bit6											
			Α	В	A1	A2	B1	B2	A1 (1)	A2 (1)	B1 (1)	B2 (1)	therm.	therm.
Fault	-	-	O P E Z	O P E Z	S H O R T VS	S H O R T VS	S H O R T S	S H O R T VS	S H O R T	S H O R T	S H O R T GND	S H O R T GND	alarm	shut down (reset operating codes)
bit	76543210	76543210	76	76	76	76	76	76	76	76	76	76	76	76543210
Command/response	XX111111 XX011111 XX011111 XX011011 XX011011 XX010011 XX010010 XX110010 XX011110 XX011011 XX010111 XX010011 XX010111 XX010010 XX110010 XX110010	previous code 11111111 11011111 11011111 11011111 110110	11 11 11 11 11 01 11 11 01 11 11 11 11	11 11 11 11 11 11 01 11 11 11 01 11	11 11 11 11 11 01 01 01 01 11 11 01 01 0	11 01 01 01 01 01 11 11 01 01 01 01 11 1	11 11 11 11 11 11 01 01 01 01 11 11 11 01	11 11 11 01 01 01 01 11 11 01 01 01 01	11 10 10 10 01 11 11 11 10 01 10 11 11	11 11 11 11 11 10 10 10 01 11 11 11 11 1	11 11 11 10 10 10 01 11 11 10 10 01 11	11 11 11 11 11 11 11 10 10 01 11 11 11 1	00 00 00 00 00 00 00 00 00 00 00	00111111 00111111 00111111 00111111 00111111

Motor resistance approximately 10Ω and V_S = 12V. So a short to ground only is detected on one branch of the bridge. Lower resistivity of the motor may lead to detection of short to ground on both branches of the bridge leading to code 10 on all steps.

5.17 Electromagnetic emission classification (EME)

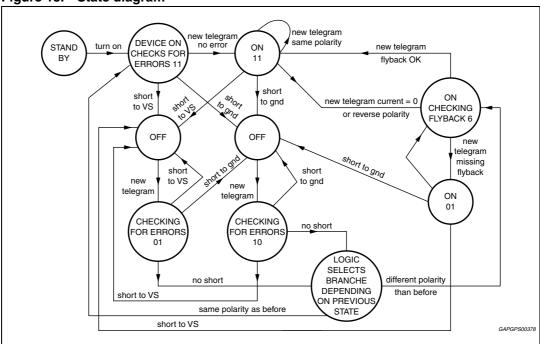

Electromagnetic emission classes presented below are typical data found on bench test. For detailed test description please refer to 'Electromagnetic Emission (EME) Measurement of Integrated Circuits, DC to 1GHz' of VDE/ZVEI work group 767.13 and VDE/ZVEI work group 767.14 or IEC project number 47A 1967Ed. This data is targeted to board designers to allow an estimation of emission filtering effort required in application.

Table 12. Electromagnetic emission

Pin	E	ME clas	s	Remark		
GND	Е	10	0	1Ω test		
V _{CC}	Е	-	е	Blocked with 100nF close in to the device		
EN. SDI, CSN, CSK, SDO in tristate	К	-	h	-		
SDO	G	-	f	SDO in low-Z state, no data transfer		
Power output A ₁ , A ₂ , B ₁ , B ₂	Е	5	f	Sourcing output		
Power output A ₁ , A ₂ , B ₁ , B ₂	-	6	f	Sinking output in chopping mode $f_{osc} = 20 \text{ kHz}$		

Electromagnetic emission is not tested in production.

Figure 13. State diagram

Remark: Return to standby is possible from every state

Note: Reversing polarity in low current mode no flyback check will be performed.

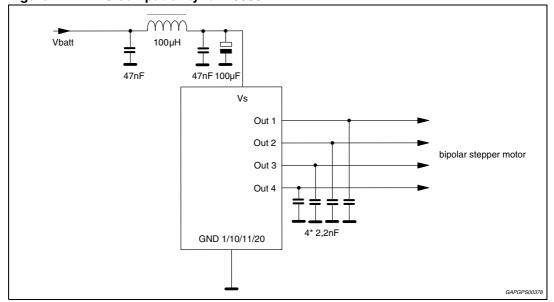
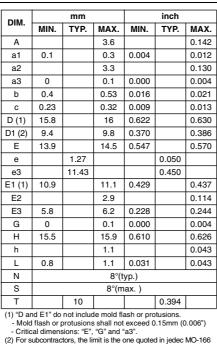
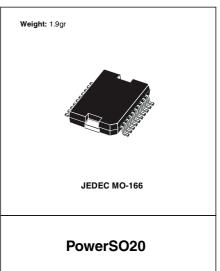


Figure 14. EMC compatibility for L9935


L9935 **Package information**

Package information 6


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

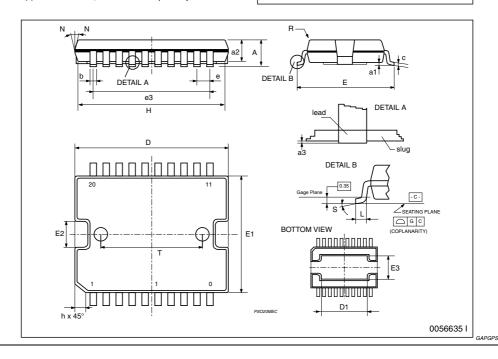

 $\mathsf{ECOPACK}^{(\! R \!)}$ is an ST trademark.

Figure 15. PowerSO20 mechanical data and package dimensions

OUTLINE AND MECHANICAL DATA

Revision history L9935

7 Revision history

Table 13. Document revision history

Date	Revision	Changes
13-Apr-2003	6	Initial release.
02-Aug-2006	7	Updated at the new corporate template. Corrected the <i>Figure 14</i> .
11-Dec-2008	8	Updated Figure 2: Pin connection (top view) on page 7. Updated Section 6: Package information on page 27.
04-Apr-2011	9	Updated Section 5.10: Open load on page 17.
18-sEP-2013	10	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

E-L9935 E-L9935013TR