Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

ABSOLUTE MAXIMUM RATINGS

V _{CC} 1, V _{CC} 2, RSTIN, MR, WDI to GND	
RST, WDO to GND (open drain)	0.3V to +6V
RST, WDO to GND (push-pull)0.3V to	$V_{CC1} + 0.3V$
Input Current/Output Current (all pins)	20mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	

6-Pin SOT23-6 (derate 4.3mW/°C above +70°C)347.8mW 8-Pin SOT23-8 (derate 5.6mW/°C above +70°C)444.4mW

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	
Lead (Pb)-free packages	+260°C
Package containing lead (Pb)	+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

~	~ ~ -	
6	SO	123

 8 SOT23

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

ELECTRICAL CHARACTERISTICS

 $(V_{CC}1 = V_{CC}2 = +0.8V \text{ to } +5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage	V _{CC} 1, V _{CC} 2		0.8		5.5	V
	loci	V _{CC} 1 < +5.5V, all I/O connections open, outputs not asserted		15	39	
Supply Current	ICC1	V _{CC} 1 < +3.6V, all I/O connections open, outputs not asserted		10	28	
Supply Current	I _{CC} 2	V _{CC} 2 < +3.6V, all I/O connections open, outputs not asserted		4	11	μA
	1002	V _{CC} 2 < +2.75V, all I/O connections open, outputs not asserted		3	9	
		L (falling)	4.500	4.625	4.750	
		M (falling)	4.250	4.375	4.500	
		T (falling)	3.000	3.075	3.150	
		S (falling)	2.850	2.925	3.000	
V _{CC} 1 Reset Threshold	V _{TH} 1	R (falling)	2.550	2.625	2.700	V
		Z (falling)	2.250	2.313	2.375	
		Y (falling)	2.125	2.188	2.250	
		W (falling)	1.620	1.665	1.710	
		V (falling)	1.530	1.575	1.620	

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}1 = V_{CC}2 = +0.8V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at T_A = +25^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		T (falling)	3.000	3.075	3.150	
		S (falling)	2.850	2.925	3.000	
		R (falling)	2.550	2.625	2.700	
		Z (falling)	2.250	2.313	2.375	
		Y (falling)	2.125	2.188	2.250	
		W (falling)	1.620	1.665	1.710	
V _{CC} 2 Reset Threshold	V _{TH} 2	V (falling)	1.530	1.575	1.620	V
		I (falling)	1.350	1.388	1.425	
		H (falling)	1.275	1.313	1.350	
		G (falling)	1.080	1.110	1.140	
		F (falling)	1.020	1.050	1.080	
		E (falling)	0.810	0.833	0.855	
		D (falling)	0.765	0.788	0.810	
Reset Threshold Tempco				20		ppm/°C
Reset Threshold Hysteresis	VHYST	Referenced to V _{TH} typical		0.5		%
$V_{CC_{-}}$ to \overline{RST} Output Delay	t _{RD}	$V_{CC}1 = (V_{TH}1 + 100mV) \text{ to} (V_{TH}1 - 100mV) \text{ or} V_{CC}2 = (V_{TH}2 + 75mV) \text{ to} (V_{TH}2 - 75mV)$		45		μs
		D1	1.1	1.65	2.2	ms
		D2	8.8	13.2	17.6	
Reset Timeout Period	+==	D3	140	210	280	
Reset Timeout Penou	trp	D5	280	420	560	
		D6	560	840	1120	
		D4	1120	1680	2240	
ADJUSTABLE RESET COMPAR	RATOR INPUT (MAX6734/MAX6735)				
RSTIN Input Threshold	VRSTIN		611	626.5	642	mV
RSTIN Input Current	IRSTIN		-25		+25	nA
RSTIN Hysteresis				3		mV
RSTIN to Reset Output Delay	t RSTIND	V _{RSTIN} to (V _{RSTIN} - 30mV)		22		μs
MANUAL RESET INPUT (MAX6	730/MAX6731/	MAX6734/MAX6735)				
MR Input Threshold	VIL				$0.3 \times V_{CC}1$	V
	VIH		0.7 × V _{CC}	1		•
MR Minimum Pulse Width			1			μs
MR Glitch Rejection				100		ns
MR to Reset Output Delay	tMR			200		ns
MR Pullup Resistance			25	50	80	kΩ

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}1 = V_{CC}2 = +0.8V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
WATCHDOG INPUT	- 1		_1		I	
Watchdog Timeout Period	twD-L	First watchdog period after reset timeout period	35	54	72	S
	twD-S	Normal mode	1.12	1.68	2.24	
WDI Pulse Width	twdi	(Note 3)	50			ns
WDI Input Voltage	VIL				$0.3 \times V_{CC}1$	V
WDI Input Voltage	VIH		0.7 × V _{CC} 1			v
WDI Input Current	IWDI	$WDI = 0 \text{ or } V_{CC}1$	-1		+1	μΑ
RESET/WATCHDOG OUTPUT						
RST /WDO Output Low Voltage (Push-Pull or Open Drain)		V_{CC} 1 or V_{CC} 2 +0.8V, I _{SINK} = 1µA, output asserted			0.3	
	Vol	V_{CC} 1 or V_{CC} 2 +1.0V, I _{SINK} = 50µA, output asserted			0.3	
		V_{CC} 1 or V_{CC} 2 +1.2V, I_{SINK} = 100 μ A, output asserted			0.3	V
		V_{CC} 1 or V_{CC} 2 +2.7V, I _{SINK} = 1.2mA, output asserted			0.3	
		V_{CC} 1 or V_{CC} 2 +4.5V, I _{SINK} = 3.2mA, output asserted			0.4	
		V _{CC} 1 +1.8V, I _{SOURCE} = 200µA, output not asserted	0.8 × V _{CC} 1			
RST/WDO Output High Voltage (Push-Pull Only)	V _{OH}	V _{CC} 1 +2.7V, I _{SOURCE} = 500µA, output not asserted	0.8 × V _{CC} 1			V
		V _{CC} 1 +4.5V, I _{SOURCE} = 800µA, output not asserted	0.8 × V _{CC} 1			
RST/WDO Output Open-Drain Leakage Current		Output not asserted			0.5	μA

Note 2: Devices tested at $T_A = +25^{\circ}C$. Overtemperature limits are guaranteed by design and not production tested.

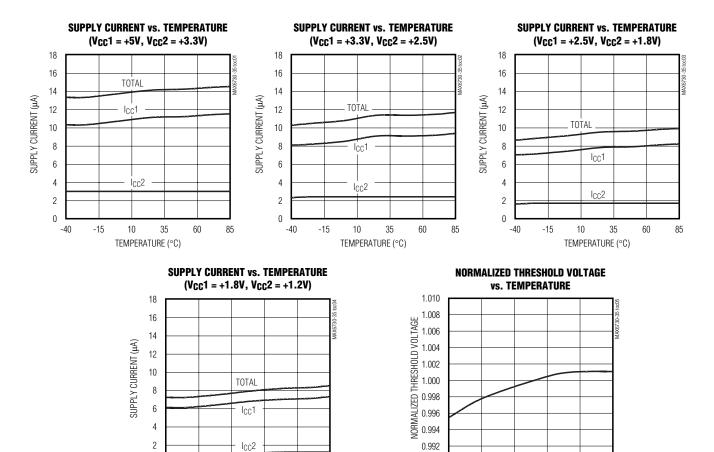
Note 3: Parameter guaranteed by design.

Typical Operating Characteristics

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

 $(V_{CC}1 = +5V, V_{CC}2 = +3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

0


-40

-15

35

10 TEMPERATURE (°C) 60

85

0.990

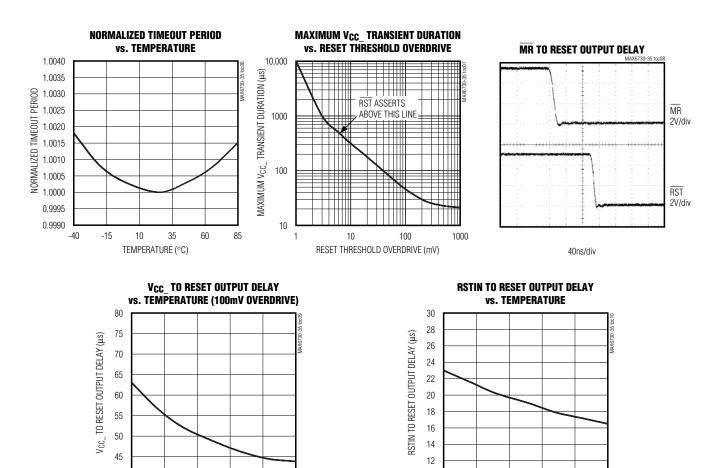
-40

-15

10

35

TEMPERATURE (°C)


85

60

MAX6730–MAX6735 Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

Typical Operating Characteristics (continued)

 $(V_{CC}1 = +5V, V_{CC}2 = +3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

10

-45

-15

10

TEMPERATURE (°C)

35

60

85

40

-45

-15

10

TEMPERATURE (°C)

35

60

85

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

Pin Description

	PIN				
MAX6730 MAX6731	MAX6732 MAX6733	MAX6734 MAX6735	NAME	FUNCTION	
1	1	1	RST	Active-Low Reset Output. The MAX6730/MAX6732/MAX6734 provide an open-dra output. The MAX6731/MAX6733/MAX6735 provide a push-pull output. $\overline{\text{RST}}$ asserts low when any of the following conditions occur: V _{CC} 1 or V _{CC} 2 drops below its preset threshold, RSTIN drops below its reset threshold, or $\overline{\text{MR}}$ is driven low. Open drain versions require an external pullup resistor.	
2	2	2	GND	Ground	
3	3	4	WDO	Active-Low Watchdog Output. The MAX6730/MAX6732/MAX6734 provide an open- drain \overline{WDO} output. The MAX6731/MAX6733/MAX6735 provide a push-pull \overline{WDO} output. \overline{WDO} asserts low when no low-to-high or high-to-low transition occurs on WDI within the watchdog timeout period (t _{WD}) or if an undervoltage lockout condition exists for V _{CC1} , V _{CC2} , or RSTIN. \overline{WDO} deasserts without a timeout period when V _{CC1} , V _{CC2} , and RSTIN exceed their reset thresholds, or when the manual reset input is asserted. Open-drain versions require an external pullup resistor.	
4	_	5	MR	Active-Low Manual Reset Input. Drive $\overline{\text{MR}}$ low to force a reset. $\overline{\text{RST}}$ remains asserted as long as $\overline{\text{MR}}$ is low and for the reset timeout period after $\overline{\text{MR}}$ releases high. $\overline{\text{MR}}$ has a 50k Ω pullup resistor to V _{CC} 1; leave $\overline{\text{MR}}$ open or connect to V _{CC} 1 if unused.	
5	5	3	WDI	Watchdog Input. If WDI remains high or low for longer than the watchdog timeout period, the internal watchdog timer expires and the watchdog output asserts low. The internal watchdog timer clears whenever RST asserts or a rising or falling edge on WDI is detected. The watchdog has an initial watchdog timeout period (35s min) after each reset event and a short timeout period (1.12s min) after the first valid WDI transition. Leaving WDI unconnected does not disable the watchdog timer function.	
6	6	8	V _{CC} 1	Primary Supply-Voltage Input. V_{CC} 1 provides power to the device when it is greater than V_{CC} 2. V_{CC} 1 is the input to the primary reset threshold monitor.	
—	4	6	V _{CC} 2	Secondary Supply-Voltage Input. $V_{CC}2$ provides power to the device when it is greater than $V_{CC}1$. $V_{CC}2$ is the input to the secondary reset threshold monitor.	
_		7	RSTIN	Undervoltage Reset Comparator Input. RSTIN provides a high-impedance comparator input for the adjustable reset monitor. $\overrightarrow{\text{RST}}$ asserts low if the voltage at RSTIN drops below the 626mV internal reference voltage. Connect a resistive voltage-divider to RSTIN to monitor voltages higher than 626mV. Connect RSTIN to V _{CC} 1 or V _{CC} 2 if unused.	

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

PART NO. SUFFIX	V _{CC} 1 NOMINAL VOLTAGE THRESHOLD(V)	V _{CC} 2 NOMINAL VOLTAGE THRESHOLD (V)
LT	4.625	3.075
MS	4.375	2.925
MR	4.375	2.625
TZ	3.075	2.313
SY	2.925	2.188
RY	2.625	2.188
TW	3.075	1.665
SV	2.925	1.575
RV	2.625	1.575
TI	3.075	1.388
SH	2.925	1.313
RH	2.625	1.313
TG	3.075	1.110
SF	2.925	1.050
RF	2.625	1.050
TE	3.075	0.833
SD	2.925	0.788
RD	2.625	0.788
ZW	2.313	1.665
YV	2.188	1.575
ZI	2.313	1.388
YH	2.188	1.313
ZG	2.313	1.110
YF	2.188	1.050
ZE	2.313	0.833
YD	2.188	0.788
WI	1.665	1.388
VH	1.575	1.313
WG	1.665	1.110
VF	1.575	1.050
WE	1.665	0.833
VD	1.575	0.788

Table 1. Reset Voltage Threshold Suffix Guide**

**Standard versions are shown in bold and are available in a D3 timeout option only. Standard versions require 2500-piece order increments and are typically held in sample stock. There is a 10,000-piece order increment on nonstandard versions. Other threshold voltages may be available; contact factory for availability.

Table 2. Reset Timeout Period Suffix Guide

TIMEOUT	ACTIVE TIME	OUT PERIOD
PERIOD SUFFIX	MIN (ms)	MAX (ms)
D1	1.1	2.2
D2	8.8	17.6
D3	140	280
D5	280	560
D6	560	1120
D4	1120	2240

Detailed Description

Supply Voltages

The MAX6730–MAX6735 microprocessor (μ P) supervisors maintain system integrity by alerting the μ P to fault conditions. The MAX6730–MAX6735 monitor one to three supply voltages in μ P-based systems and assert an active-low reset output when any monitored supply voltage drops below its preset threshold. The output state remains valid for V_{CC}1 or V_{CC}2 greater than +0.8V.

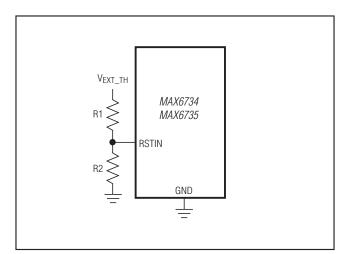
Threshold Levels

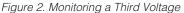
The two-letter code in the Reset Voltage Threshold Suffix Guide (Table 1) indicates the threshold level combinations for V_{CC} 1 and V_{CC} 2.

Reset Output

The MAX6730–MAX6735 feature an active-low reset output (RST). RST asserts when the voltage at either V_{CC}1 or V_{CC}2 falls below the voltage threshold level, V_{RSTIN} drops below its threshold, or MR is driven low (Figure 1). RST remains low for the reset timeout period (Table 2) after V_{CC}1, V_{CC}2, and RSTIN increase above their respective thresholds and after MR releases high. Whenever V_{CC}1, V_{CC}2, or RSTIN go below the reset threshold before the end of the reset timeout period, the internal timer restarts. The MAX6730/MAX6732/ MAX6734 provide an open-drain RST output, and the MAX6731/ MAX6733/MAX6735 provide a push-pull RST output.

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output


Manual Reset Input


Many μ P-based products require manual reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts the reset output, clears the watchdog timer, and deasserts the watchdog output. Reset remains asserted while MR is low and for the reset timeout period (tRP) after MR returns high. An internal 50k Ω pullup resistor allows MR to be left open if unused. Drive MR with TTL or CMOS-logic levels or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual reset function; external debounce circuitry is not required. Connect a 0.1 μ F capacitor from MR to GND to provide additional noise immunity when driving MR over long cables or if the device is used in a noisy environment.

Adjustable Input Voltage (RSTIN)

The MAX6734/MAX6735 provide an additional highimpedance comparator input with a 626mV threshold to monitor a third supply voltage. To monitor a voltage higher than 626mV, connect a resistive-divider to the circuit as shown in Figure 2 to establish an externally controlled threshold voltage, V_{EXT_TH}.

$$VEXT_TH = 626mV \times \frac{(R1 + R2)}{R2}$$

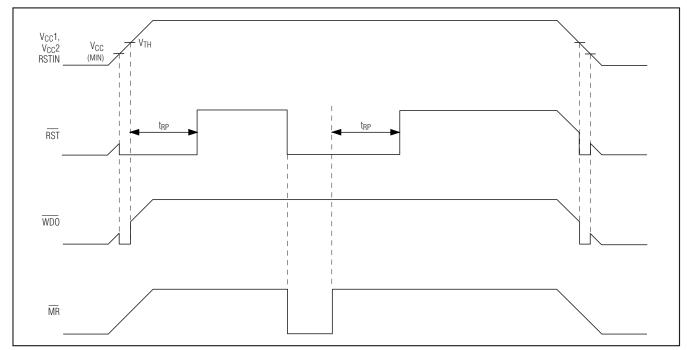


Figure 1. RST, WDO, and MR Timing Diagram

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

The RSTIN comparator derives power from V_{CC1}, and the input voltage must remain less than or equal to V_{CC1}. Low leakage current at RSTIN allows the use of large-valued resistors, resulting in reduced power consumption of the system.

Watchdog

The watchdog feature monitors μ P activity through the watchdog input (WDI). A rising or falling edge on WDI within the watchdog timeout period (twD) indicates normal μ P operation. WDO asserts low if WDI remains high or low for longer than the watchdog timeout period. Leaving WDI unconnected does not disable the watchdog timer.

The MAX6730–MAX6735 include a dual-mode watchdog timer to monitor μ P activity. The flexible timeout architecture provides a long-period initial watchdog mode, allowing complicated systems to complete lengthy boots, and a short-period normal watchdog mode, allowing the supervisor to provide quick alerts when processor activity fails. After each reset event (V_{CC} power-up, brownout, or manual reset), there is a long initial watchdog period of 35s (min). The long watchdog period mode provides an extended time for the system to power up and fully initialize all μ P and system components before assuming responsibility for routine watchdog updates. The usual watchdog timeout period (1.12s min) begins after the initial watchdog timeout period (t_{WD-L}) expires or after the first transition on WDI (Figure 3). During normal operating mode, the supervisor asserts the WDO output if the μ P does not update the WDI with a valid transition (high to low or low to high) within the standard timeout period (t_{WD-S}) (1.12s min).

Connect $\overline{\text{MR}}$ to $\overline{\text{WDO}}$ to force a system reset in the event that no rising or falling edge is detected at WDI within the watchdog timeout period. $\overline{\text{WDO}}$ asserts low when no edge is detected by WDI, the $\overline{\text{RST}}$ output asserts low, the watchdog counter immediately clears, and $\overline{\text{WDO}}$ returns high. The watchdog counter restarts, using the long watchdog period, when the reset timeout period ends (Figure 4).

Ensuring a Valid RESET Output Down to Vcc = 0V

The MAX6730–MAX6735 guarantee proper operation down to V_{CC} = +0.8V. In applications that require valid reset levels down to V_{CC} = 0V, use a 100k Ω pulldown resistor from RST to GND. The resistor value used is not critical, but it must be large enough not to load the reset output when V_{CC} is above the reset threshold. For most applications, 100k Ω is adequate. Note that this configuration does not work for the open-drain outputs of MAX6730/MAX6732/MAX6734.

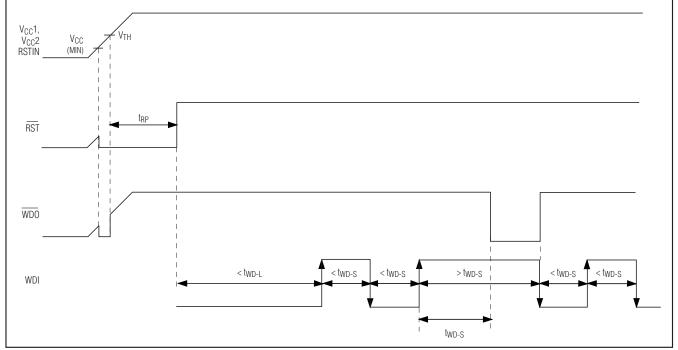


Figure 3. Watchdog Input/Output Timing Diagram (MR and WDO Not Connected)

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

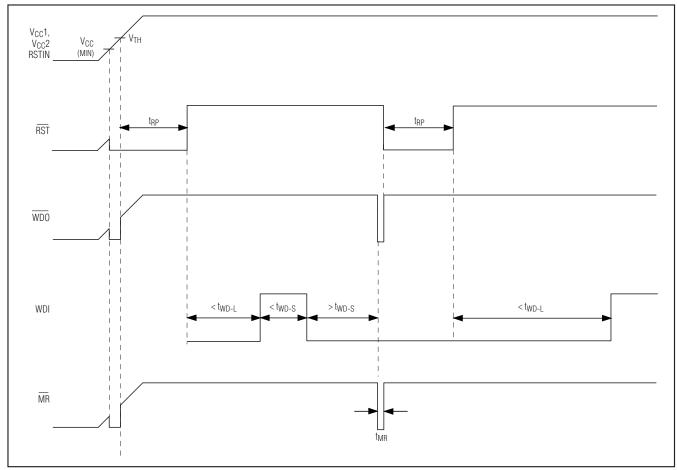


Figure 4. Watchdog Input/Output Timing Diagram (MR and WDO Connected)

Applications Information

Interfacing to µPs with Bidirectional Reset Pins

Microprocessors with bidirectional reset pins can interface directly with the open-drain RST output options. However, conditions might occur in which the push-pull output versions experience logic contention with the bidirectional reset pin of the μ P. Connect a 10k Ω resistor between RST and the μ P's reset I/O port to prevent logic contention (Figure 5).

Falling Vcc Transients

The MAX6730–MAX6735 μ P supervisors are relatively immune to short-duration falling V_{CC}_ transients (glitches). Small glitches on V_{CC}_ are ignored by the MAX6730–MAX6735, preventing undesirable reset pulses to the μ P. The *Typical Operating Characteristics* show Maximum Transient Duration vs. Reset Threshold

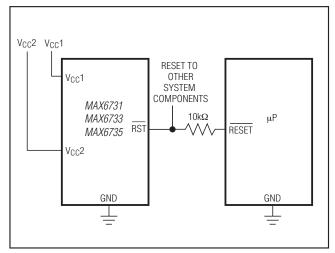


Figure 5. Interfacing to µPs with Bidirectional Reset I/O

MAX6730–MAX6735 Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

Overdrive, for which reset pulses are not generated. The graph was produced using falling V_{CC} pulses, starting above V_{TH} and ending below the reset threshold by the magnitude indicated (reset threshold overdrive). The graph shows the maximum pulse width that a falling V_{CC} transient typically might have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes further below the reset threshold), the maximum allowable pulse width decreases. A 0.1µF bypass capacitor mounted close to V_{CC} provides additional transient immunity.

Watchdog Software Considerations

Setting and resetting the watchdog input at different points in the program rather than "pulsing" the watchdog input high-low-high or low-high-low helps the watchdog timer closely monitor software execution. This technique avoids a "stuck" loop, in which the watchdog timer continues to be reset within the loop, preventing the watchdog from timing out. Figure 6 shows an example flow diagram in which the I/O driving the watchdog input is set high at the beginning of the program, set low at the beginning of every subroutine or loop, and then set high again when the program returns to the beginning. If the program "hangs" in any subroutine, the I/O continually asserts low (or high), and the watchdog timer expires, issuing a reset or interrupt.

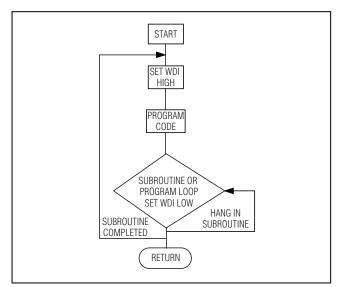
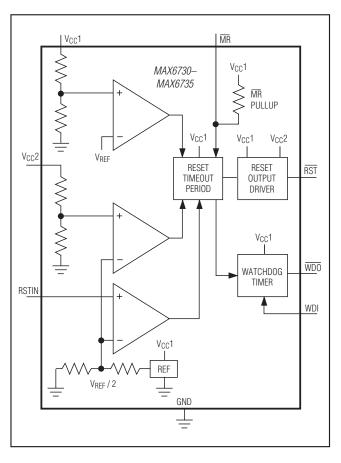
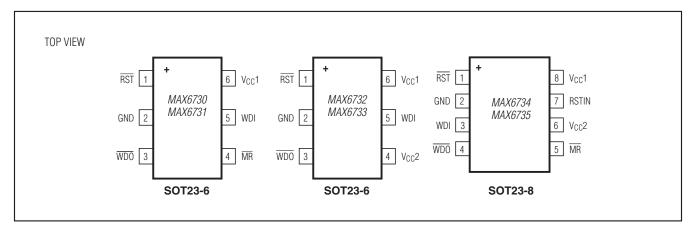



Figure 6. Watchdog Flow Diagram

_Functional Diagram

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output


_Standard Versions

PART	TOP MARK	PART	TOP MARK
MAX6730UTLD3-T	ABCC	MAX6733UTZGD3-T	ABQI
MAX6730UTSD3-T	ABPB	MAX6733UTYDD3-T	ABQG
MAX6730UTRD3-T	ABPA	MAX6733UTVHD3-T	ABQE
MAX6730UTZD3-T	ABPD	MAX6733UTWGD3-T	ABQF
MAX6730UTVD3-T	ABPC	MAX6733UTVDD3-T	ABQD
MAX6731UTLD3-T	ABPE	MAX6734KALTD3-T	AEHN
MAX6731UTTD3-T	ABCD	MAX6734KASYD3-T	AEHS
MAX6731UTSD3-T	ABPG	MAX6734KASVD3-T	AEHR
MAX6731UTRD3-T	ABPF	MAX6734KARVD3-T	AEHO
MAX6731UTZD3-T	ABPI	MAX6734KASHD3-T	AEHQ
MAX6731UTVD3-T	ABPH	MAX6734KATGD3-T	AEHT
MAX6732UTLTD3-T	ABCE	MAX6734KASDD3-T	AEHP
MAX6732UTSYD3-T	ABPN	MAX6734KAZWD3-T	AEIA
MAX6732UTSVD3-T	ABPM	MAX6734KAYHD3-T	AEHY
MAX6732UTRVD3-T	ABPJ	MAX6734KAZGD3-T	AEHZ
MAX6732UTSHD3-T	ABPL	MAX6734KAYDD3-T	AEHX
MAX6732UTTGD3-T	ABPO	MAX6734KAVHD3-T	AEHV
MAX6732UTSDD3-T	ABPK	MAX6734KAWGD3-T	AEHW
MAX6732UTZWD3-T	ABPV	MAX6734KAVDD3-T	AEHU
MAX6732UTYHD3-T	ABPT	MAX6735KALTD3-T	AEIB
MAX6732UTZGD3-T	ABPU	MAX6735KASYD3-T	AEIG
MAX6732UTYDD3-T	ABPS	MAX6735KASVD3-T	AEIF
MAX6732UTVHD3-T	ABPQ	MAX6735KARVD3-T	AEIC
MAX6732UTWGD3-T	ABPR	MAX6735KASHD3-T	AEIE
MAX6732UTVDD3-T	ABPP	MAX6735KATGD3-T	AEIH
MAX6733UTLTD3-T	ABPW	MAX6735KASDD3-T	AEID
MAX6733UTSYD3-T	ABQB	MAX6735KAZWD3-T	AEIO
MAX6733UTSVD3-T	ABQA	MAX6735KAZID3-T	AAJZ
MAX6733UTRVD3-T	ABPX	MAX6735KAYHD3-T	AEIM
MAX6733UTSHD3-T	ABPZ	MAX6735KAZGD3-T	AEIN
MAX6733UTTGD3-T	ABQC	MAX6735KAYDD3-T	AEIL
MAX6733UTSDD3-T	ABPY	MAX6735KAVHD3-T	AEIJ
MAX6733UTZWD3-T	ABQJ	MAX6735KAWGD3-T	AEIK
MAX6733UTYHD3-T	ABQH	MAX6735KAVDD3-T	AEII


Note: Sample stock is generally held on standard versions only. Standard versions have an order increment requirement of 2500 pieces. Nonstandard versions have an order increment requirement of 10,000 pieces. Contact factory for availability of nonstandard versions.

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

Pin Configurations

Typical Operating Circuit

PROCESS: BICMOS

_Chip Information

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SOT23	U6-1	<u>21-0058</u>	<u>90-0175</u>
8 SOT23	K8SN-1	<u>21-0078</u>	<u>90-0176</u>

Selector Guide

PART NUMBER	VOLTAGE MONITORS	RST OUTPUT	MANUAL RESET	WATCHDOG INPUT	WATCHDOG OUTPUT
MAX6730	1	Open Drain	\checkmark	\checkmark	Open Drain
MAX6731	1	Push-Pull	\checkmark	\checkmark	Push-Pull
MAX6732	2	Open Drain	—	\checkmark	Open Drain
MAX6733	2	Push-Pull	—		Push-Pull
MAX6734	3	Open Drain			Open Drain
MAX6735	3	Push-Pull	\checkmark	\checkmark	Push-Pull

Single-/Dual-/Triple-Voltage µP Supervisory Circuits with Independent Watchdog Output

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/02	Initial release.	—
1	12/02	Released MAX6730/MAX6731.	1
2	1/03	Released MAX6733.	1
3	3/04	Updated Typical Operating Circuit.	14
4	12/05	Added lead-free notation to Ordering Information.	1
5	3/09	Updated Pin Description and added Package Table.	7, 14
6	11/11	Added automotive-qualified part information	1
7	4/13	Added <i>Package Thermal Characteristics</i> and corrected power dissipation errors and package code for 8 SOT23	2–4, 14

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX3261CCJ MAX3741HETE#TG16 MAX3261CCJ-T MAX3741HETE#G16