ABSOLUTE MAXIMUM RATINGS

VCC to GND -0.3V to +4.0V IN+, IN- to GND -0.3V to +4.0V OUT+, OUT- to GND -0.3V to +4.0V Short-Circuit Duration (OUT+, OUT-) Continuous	Operating Temperature Range40°C to +85°C Storage Temperature Range65°C to +150°C Junction Temperature+150°C ESD Protection
Continuous Power Dissipation (T _A = +70°C)	Human Body Model, IN+, IN-, OUT+, OUT±8kV
6-Pin SC70 (derate 3.1mW/°C above +70°C)245mW	Lead Temperature (soldering, 10s)+300°C

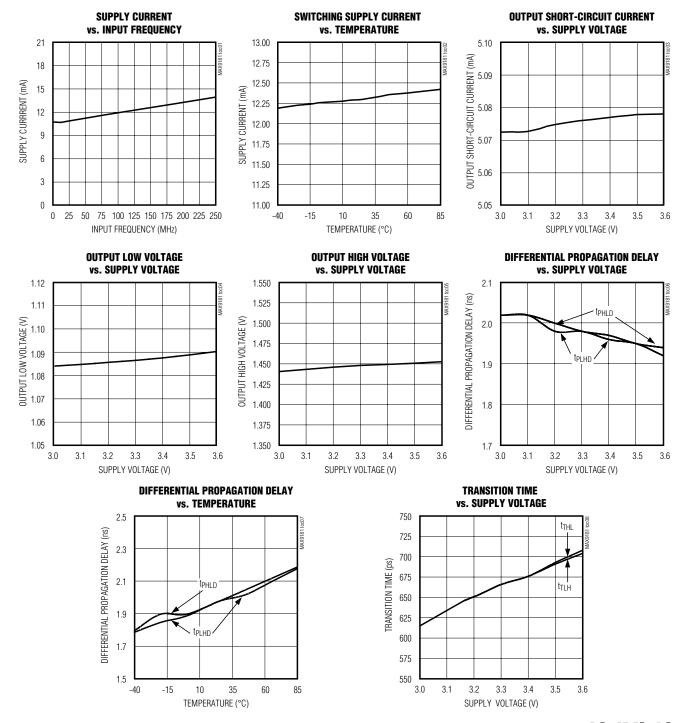
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 3.0V \text{ to } 3.6V, R_L = 100\Omega \pm 1\%, |V_{ID}| = 0.05V \text{ to } V_{CC}, V_{CM} = |V_{ID}|/2| \text{ to } V_{CC} - |V_{ID}|/2|, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = 3.3V, T_A = +25^{\circ}C.$) (Notes 1, 2)

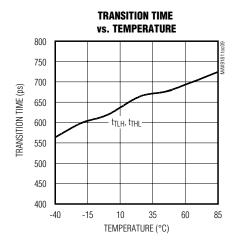
PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
LVPECL INPUT							
Differential Input High Threshold	V _{TH}				7	50	mV
Differential Input Low Threshold	V _{TL}			-50	-7		mV
Input Resistor	RIN	Figure 1		360	1328		kΩ
Input Current	I _{IN+} , I _{IN-}	IN+ = 3.6V, IN- = 0V		-10	+2.7	+10	μA
		IN+ = 0V, IN- = 3.6V		-10	+2.7	+10	
Power-Off Input Current	I _{IN+} , I _{IN-}	$V_{CC} = 0V$,	IN+ = 3.6V, IN- = 0V	-10	+2.7	+10	μΑ
rower-On Input Current	1 N+, 1 N-	Figure 1	IN+ = 0V, IN- = 3.6V	-10	+2.7	+10	
LVDS OUTPUT							
Differential Output Voltage	V _{OD}	Figure 2		250	360	450	mV
Differential Output Voltage	ΔV_{OD}	Figure 2			0.008	25	mV
Offset (Common-Mode) Voltage	Vos	Figure 2		1.125	1.25	1.375	V
Change in VOS for Complementary Output States	ΔVOS	Figure 2			0.005	25	mV
Output High Voltage	Voh				1.44	1.6	V
Output Low Voltage	V _{OL}			0.9	1.08		V
Differential Output Voltage	V _{OD+}	IN+, IN- open		+250	+360	+450	mV
Power-Off Output Leakage Current	IO _{OFF}	V _C C = 0V	OUT+ = 3.6V, other output open	-10	+0.02	+10	μА
			OUT- = 3.6V, other output open	-10	+0.02	+10	
Differential Output Resistance	RODIFF	V _{CC} = 3.6V or 0V		100	260	400	Ω
Output Short Current	I _{SC}	$V_{ID} = 50$ mV, OUT+ = GND			-5	-15	mA
		V _{ID} = -50mV, OUT- = GND			-5	-15	
POWER SUPPLY							
Supply Current	Icc				10	15	mA

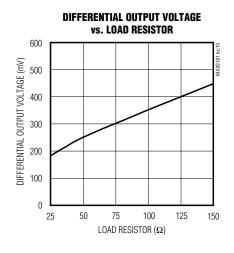
AC ELECTRICAL CHARACTERISTICS


 $(V_{CC} = 3.0 \text{V to } 3.6 \text{V}, R_L = 100 \Omega \pm 1\%, C_L = 10 \text{pF}, |V_{ID}| = 0.15 \text{V to } V_{CC}, V_{CM} = |V_{ID}| / 2| \text{ to } V_{CC} - |V_{ID}| / 2|, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = 3.3 \text{V}, T_A = +25 ^{\circ}\text{C}.)$ (Notes 3, 4, 5) (Figures 3, 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Propagation Delay High to Low	^t PHLD		1.3	2.0	2.8	ns
Differential Propagation Delay Low to High	tPLHD		1.3	2.0	2.8	ns
Added Deterministic Jitter	t _D J	400Mbps 2 ²³ - 1 PRBS data pattern (Notes 6, 11)		23	100	psp-p
Added Random Jitter	t _{RJ}	f _{IN} = 200MHz (Notes 7, 11)		0.6	2.9	ps _{RMS}
Differential Part-to-Part Skew	tskpp1	(Note 8)		0.16	0.6	ns
Differential Part-to-Part Skew	tskpp2	(Note 9)			1.5	ns
Switching Supply Current	Iccsw			12.2	18	mA
Rise Time	tTLH		0.5	0.67	1.0	ns
Fall Time	tTHL		0.5	0.66	1.0	ns
Input Frequency	fMAX	(Note 10)	200			MHz

- Note 1: All devices are 100% tested at T_A = +25°C. Limits over temperature are guaranteed by design and characterization.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except V_{TH}, V_{TL}, V_{OD}, and ΔV_{OD}.
- Note 3: Guaranteed by design and characterization.
- **Note 4:** Signal generator output (unless otherwise noted): frequency = 200MHz, 50% duty cycle, $R_O = 50\Omega$, $t_R = 1.5$ ns, and $t_F = 1.5$ ns (0% to 100%).
- Note 5: CL includes scope probe and test jig capacitance.
- Note 6: Signal generator output for t_{DJ}: V_{OD} = 150mV, V_{OS} = 1.2V, t_{DJ} includes pulse (duty cycle) skew.
- **Note 7:** Signal generator output for t_{RJ} : $V_{OD} = 150 \text{mV}$, $V_{OS} = 1.2 \text{V}$.
- **Note 8:** t_{SKPP1} is the magnitude difference of any differential propagation delays between devices operating over rated conditions at the same supply voltage, input common-mode voltage, and ambient temperature.
- Note 9: t_{SKPP2} is the magnitude difference of any differential propagation delays between devices operating over rated conditions.
- Note 10: Device meets Von DC specifications and AC specifications while operating at f_{MAX}.
- Note 11: Jitter added to the input signal.


Typical Operating Characteristics


 $(V_{CC} = 3.3V, R_L = 100\Omega \pm 1\%, C_L = 10pF, |V_{ID}| = 0.2V, V_{CM} = 1.2V, T_A = +25^{\circ}C$, unless otherwise noted. Signal generator output: frequency = 200MHz, 50% duty cycle, $R_O = 50\Omega$, $t_R = 1.5$ ns, and $t_F = 1.5$ ns (0% to 100%), unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = 3.3V, R_L = 100\Omega \pm 1\%, C_L = 10pF, |V_{ID}| = 0.2V, V_{CM} = 1.2V, T_A = +25^{\circ}C$, unless otherwise noted. Signal generator output: frequency = 200MHz, 50% duty cycle, $R_O = 50\Omega$, $t_R = 1.5$ ns, and $t_F = 1.5$ ns (0% to 100%), unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION		
1	OUT-	Inverting LVDS Output		
2	GND	Ground		
3	IN-	Inverting LVPECL-Compatible Input		
4	IN+	Noninverting LVPECL-Compatible Input		
5	Vcc	Power Supply. Bypass V _{CC} to GND with a 0.01µF ceramic capacitor.		
6	OUT+	Noninverting LVDS Output		

Table 1. Function Table (Figure 2)

INPUT, V _{ID}	OUTPUT, V _{OD}
≥50mV	High
<u>≤</u> -50mV	Low
$50 \text{mV} > \text{V}_{\text{ID}} > -50 \text{mV}$	Indeterminate
Open	High

Note: $V_{ID} = (IN + - IN -), V_{OD} = (OUT + - OUT -)$ $High = 450mV \ge V_{OD} \ge 250mV$ $Low = -250mV \ge V_{OD} \ge -450mV$

Detailed Description

The LVDS interface standard is a signaling method intended for point-to-point communication over a controlled-impedance medium, as defined by the ANSI/TIA/EIA-644 and IEEE 1596.3 standards. The LVDS standard uses a lower voltage swing than other common communication standards, achieving higher data rates with reduced power consumption while reducing EMI emissions and system susceptibility to noise.

The MAX9181 is a 400Mbps LVDS translator intended for high-speed, point-to-point, low-power applications. The MAX9181 accepts differential LVPECL inputs and produces an LVDS output. The input voltage range includes signals from GND up to $V_{\rm CC}$, allowing interoperation with 3.3V LVPECL devices.

The MAX9181 provides a high output when the inputs are open. See Table 1.

_Applications Information

Supply Bypassing

Bypass VCC with a high-frequency surface-mount ceramic $0.01\mu F$ capacitor as close to the device as possible.

Differential Traces

Input and output trace characteristics affect the performance of the MAX9181. Use controlled-impedance differential traces. Ensure that noise couples as common mode by running the traces within a differential pair close together.

Maintain the distance within a differential pair to avoid discontinuities in differential impedance. Avoid 90° turns and minimize the number of vias to further prevent impedance discontinuities.

Cables and Connectors

The LVDS standards define signal levels for interconnect with a differential characteristic impedance and termination of 100Ω . Interconnects with a characteristic impedance and termination of 90Ω to 132Ω impedance are allowed, but produce different signal levels (see *Termination*).

LVPECL signals are typically specified for 50Ω single-ended characteristic impedance interconnect terminated through 50Ω to V_{CC} - 2V.

Use cables and connectors that have matched differential impedance to minimize impedance discontinuities.

Termination

For point-to-point LVDS links, the termination resistor should be located at the LVDS receiver input and

match the differential characteristic impedance of the transmission line.

Each line of a differential LVPECL link should be terminated through 50Ω to V_{CC} - 2V or be replaced by the Thevinin equivalent.

The LVDS output voltage level depends upon the differential characteristic impedance of the interconnect and the value of the termination resistance. The MAX9181 is guaranteed to produce LVDS output levels into 100Ω . With the typical 3.6mA output current, the MAX9181 produces an output voltage of 360mV when driving a 100Ω transmission line terminated with a 100Ω termination resistor (3.6mA \times 100Ω = 360mV). For typical output levels with different loads, see the Differential Output Voltage vs. Load Resistor curve in the Typical Operating Characterics.

Chip Information

TRANSISTOR COUNT: 401

PROCESS: CMOS

Test Circuits and Timing Diagrams

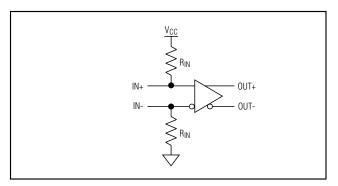


Figure 1. LVPECL Input Bias

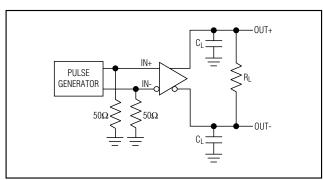


Figure 3. Transition Time and Propagation Delay Test Circuit

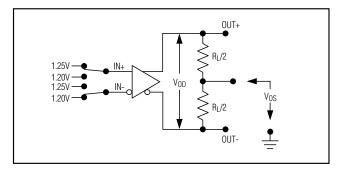


Figure 2. DC Load Test Circuit

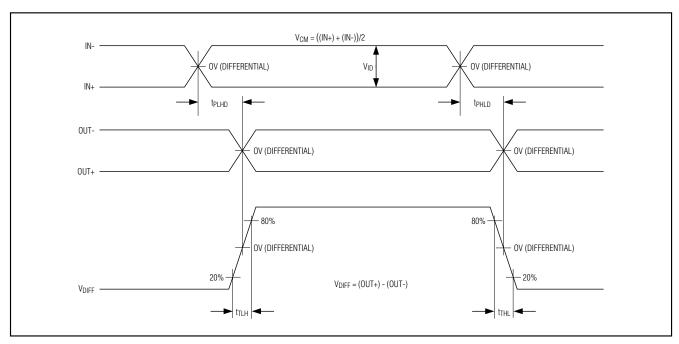
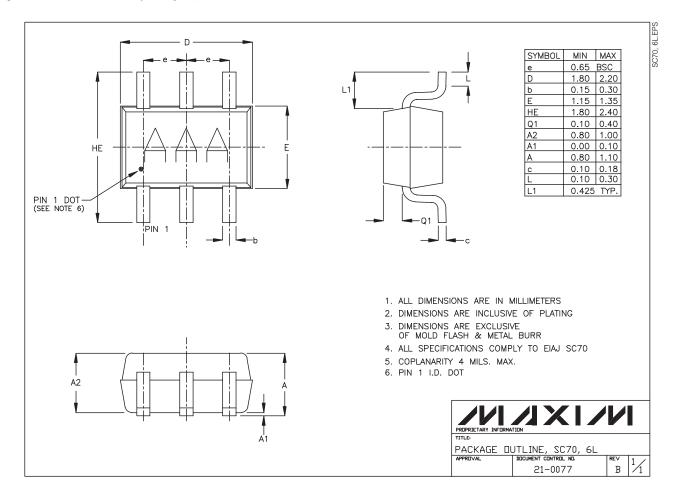



Figure 4. Transition Time and Propagation Delay Timing Diagram

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX9181EXT-T