2 Features and benefits

- Sophisticated SpeakerBoost and Protection algorithm that maximizes speaker performance while protecting the speaker:
 - Fully embedded software, no additional license fee, or porting required
 - Fully integrated solution, including DSP, amplifier, DC-to-DC, thermal sensing
- Adaptive excursion control guarantees that the speaker membrane excursion never exceeds its rated limit
- Real-time temperature protection direct measurement ensures that voice coil temperature never exceeds its rated limit
- Environmentally aware automatically adapts speaker parameters to acoustic and thermal changes including compensation for speaker-box leakage
- Clip avoidance DSP algorithm prevents clipping even with sagging supply voltage
- Automatic bandwidth extension to increase low-frequency response
- TFA9894 high output power: 5.6 W (AVG) into 8 Ω at 4.0 V supply voltage (THD = 1 %, VBST = 10 V), 6.2 W (AVG) into 4 Ω at 4.0 V supply voltage (THD = 1 %, VBST = 9 V)
- Supports handset and hands-free (4 Ω to 32 Ω) speaker configurations
- High efficiency, low power dissipation, and low noise speaker driver (Dynamic Range > 110 dB).
- Adaptive DC-to-DC converter increases the supply voltage smoothly when switching between fixed boost and adaptive boost mode, preventing large battery supply spikes and limiting quiescent power consumption.
- Wide supply voltage range (fully operational from 2.7 V to 5.5 V)
- Very low noise output (typical 14 μ V with null DATA input at Fs = 48 kHz)
- I²C-bus control interface (400 kHz)
- Speaker current and voltage monitoring (via the TDM-bus), as well as DSP data output (with and without pilot tone) for Acoustic Echo Cancellation (AEC) at the Host.
- · Various sample frequencies supported:
 - TFA9894/N1: 44.1 kHz. 48 kHz. and 96 kHz
 - TFA9894/N2: 16 kHz, 32 kHz, 44.1 kHz, 48 kHz, and 96 kHz
- Configurable full duplex 4-wires TDM input interface.
- Programmable interrupt control via a dedicated interrupt pin
- Thermal foldback and over temperature protection
- 15 kV system-level ESD protection without external components on amplifier output

3 Applications

- Mobile phones & Tablets
- · Portable Gaming Devices
- Portable Navigation Devices (PND)

4 Quick reference data

Table 1. Quick reference data

All parameters are guaranteed for V_{BAT} = 4.0 V; V_{DDD} = V_{DDE} = 1.8 V; V_{DDP} = V_{BST} = 10 V, adaptive boost mode; L_{BST} = 1 $\mu H^{[1]}$; R_L = 8 $\Omega^{[1]}$; L_L = 44 $\mu H^{[1]}$; f_i = 1 kHz; f_s = 48 kHz; T_{amb} = 25 °C; default settings, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{BAT}	battery supply voltage	on pin V_{BAT} ; in application, V_{BAT} must not be lower than V_{DDD} levels.	2.7	-	5.5	V
V_{DDE}	digital supply voltage	on pin VDDE	1.65	1.8	1.95	V
V_{DDD}	digital supply voltage	on pin V _{DDD}	1.65	1.8	1.95	V
V_{DDP}	power supply voltage	on pin V _{DDP}	2.7	-	10.2	V
R_L	Speaker Impedance		3.2	-	38.4	Ω
I _{BAT}	battery supply current	active state; on pin VBAT; operating mode with load R_L = 8 Ω ; DC-to-DC in adaptive boost mode; V_{BAT} = 4.0 V; V_{DDP} = 10 V; -40 dBFs pink noise input signal	-	5.7	-	mA
		idle state; on pin VBAT; operating mode with load R_L = 8 Ω and no output signal; no output capacitance; DC-to-DC converter in adaptive boost mode; V_{BAT} = 4.0 V; low power mode enabled	-	2.7	-	mA
		power-down state; on pin VBAT; DC-to-DC in power-down mode; T _j = 25 °C; no clock.	-	1	-	μΑ
I _{DDD}	digital supply current	active state (DSP running); on pin VDDD; operating mode with load $R_L = 8 \ \Omega$; DC-to-DC in adaptive boost mode; $V_{BAT} = 4.0 \ V$; $V_{DDP} = 10 \ V$; $-40 \ dBFs$ pink noise input signal	-	15.5	-	mA
		Idle state (DSP disabled); on pin VDDD; operating mode with load R_L = 8 Ω ; no output signal; no output capacitance; DC-to-DC converter in adaptive boost mode; V_{BAT} = 4.0 V; low power mode enabled	-	3.9	-	mA
		power-down state; on pin VDDD; DC-to-DC in power-down mode; T _j = 25 °C; no clock.	-	10	-	μΑ
P _{o(AVG)}	Average output power	THD+N = 1 %; (R_L = 8 Ω ; L_L = 44 μ H); V_{BST} = 10 V; V_{BAT} = 4.0 V; V_{DDD} = 1.8 V	5.3	5.6	-	W
		THD+N = 1 %; (R_L = 6 Ω ; L_L = 30 μ H); V_{BST} = 10 V; V_{BAT} = 4.0 V; V_{DDD} = 1.8 V	5.8	6.1	-	W
		THD+N = 1 %; (R_L = 4 Ω ; L_L = 22 μ H); V_{BST} = 10 V; V_{BAT} = 4.0 V; V_{DDD} = 1.8 V	6.0	6.2	-	W
THD+N	total harmonic distortion-plus-noise	P_0 = 2.0 W; R_L = 4 Ω or 8 Ω	-	0.015	0.09	%

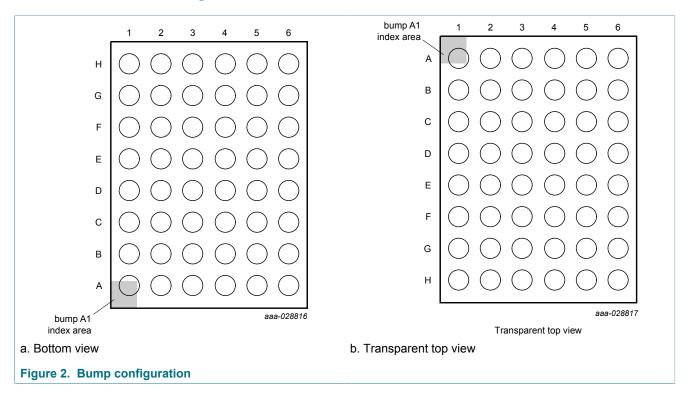
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
ΔG	Gain variation over freq.	BW = 20 Hz to 15 kHz; V _{BAT} = 3.4 V to 5 V		-0.1	-	0.7	dB
V_{POP}	Pop noise	at mode transition and gain change; with $C_L < 200 \ pF^{[2]}$		-	-	2	mV
V _{n(o)}	output noise voltage	a-weighted; no input signal; low noise mode; f _s = 48 kHz	[3] [4]	-	14	18	μV
		a-weighted; no input signal; low noise mode; $f_s = 44.1 \text{ kHz}$	[3] [4]	-	15	18	μV
		a-weighted; no input signal; low noise mode; f_s = 16 kHz, high performance or 32 kHz, high performance	[3] [4]	_	15	18	μV
DR	dynamic range	a-weighted; V_{BAT} = 3.4 V to 5 V; S/N = maximum signal (at THD = 1 %) – $V_{n(o)}$; no signal applied		110	114	-	dB
S/N	signal-to-noise ratio	a-weighted; V_{BAT} = 3.4 V to 5 V; S/N = maximum signal (at THD = 1 %) – $V_{n(o)}$; with signal applied		100	-	-	dB
η _{ρο}	output power efficiency	on pin V_{BAT} ; Input: 100 Hz sinewave; R_L = 8 Ω ; DC-to-DC in adaptive boost mode; V_{BAT} = 4.0 V; V_{DDP} = 10 V; P_0 = 4 W		-	82	-	%

^[2] [3] [4]

 L_{BST} = boost converter inductance; R_L = load resistance; L_L = load inductance (speaker). When C_L is above 200 pF, Low Power Mode must be disabled. This parameter is not tested during production; the value is guaranteed by design and checked during product validation. TFA9894/N1 supports 44.1 kHz, 48 kHz, and 96 kHz. TFA9894/N2 supports 16 kHz, 32 kHz, 44.1 kHz, 48 kHz, and 96 kHz.

5 Ordering information

Table 2. Ordering information


Type number	Package		
	Name	Description	Version
TFA9894UK/N1	WLCSP48	wafer-level chip-scale package; 48 bumps; 0.4 mm pitch; 2.51 mm x 3.55 mm x 0.50 mm body; no backside coating	SOT1887-2
TFA9894BUK/N1	WLCSP48	wafer-level chip-scale package; 48 bumps; 0.4 mm pitch; 2.51 mm x 3.55 mm x 0.525 mm body; backside coating	SOT1887-3
TFA9894AUK/N1	WLCSP48	wafer-level chip-scale package; 48 bumps; 0.4 mm pitch; 2.51 mm x 3.55 mm x 0.50 mm body; RDL; no backside coating	SOT1887-4
TFA9894CUK/N1	WLCSP48	wafer-level chip-scale package; 48 bumps; 0.4 mm pitch; 2.51 mm x 3.55 mm x 0.525 mm body; RDL; backside coating	SOT1887-5
TFA9894UK/N2	WLCSP48	wafer-level chip-scale package; 48 bumps; 0.4 mm pitch; 2.51 mm x 3.55 mm x 0.50 mm body; no backside coating	SOT1887-2
TFA9894BUK/N2	WLCSP48	wafer-level chip-scale package; 48 bumps; 0.4 mm pitch; 2.51 mm x 3.55 mm x 0.525 mm body; backside coating	SOT1887-3
TFA9894AUK/N2	WLCSP48	wafer-level chip-scale package; 48 bumps; 0.4 mm pitch; 2.51 mm x 3.55 mm x 0.50 mm body; RDL; no backside coating	SOT1887-4
TFA9894CUK/N2	WLCSP48	wafer-level chip-scale package; 48 bumps; 0.4 mm pitch; 2.51 mm x 3.55 mm x 0.525 mm body; RDL; backside coating	SOT1887-5

6 Block diagram

7 Pinning information

7.1 Pinning

	1	2	3	4	5	6
А	MCLK	VDDE	VDDD	GNDD	GNDD	GNDD
В	GNDD	FS	VDDD	SCL	GNDD	GNDD
С	ВСК	FS	VDDD	SCL	SDA	TRSTN
D	DATAO	DATAI	ADS2	ADS1	INT	VBAT
E	RST	GNDD	VSN	TEST2	TEST1	VSP
F	GNDB	GNDB	GNDB	GNDD	GNDP	GNDD
G	INB	INB	INB	OUTP	GNDP	OUTN
Н	VBST	VBST	VBST	VDDP	VDDP	VDDP

aaa-028818

Transparent top view

Figure 3. Bump mapping

Table 3. Pinning

Symbol Pin Type Description MCLK A1 I master clock input VDDE A2 P pad digital supply voltage (to be connected to VDDD) VDDD A3 P digital supply voltage GNDD A4 P digital ground GNDD A6 P digital ground GNDD B1 P digital ground GNDD B1 P digital audio frame sync for TDM interface VDDD B3 P digital supply voltage SCL B4 I digital ground GNDD B5 P digital ground GNDD B6 P digital ground BCK C1 I digital ground BCK C1 I digital ground BCK C1 I digital audio bit clock input for TDM interface FS C2 I digital audio bit clock input for TDM interface FS C2 I digital supply voltage<	Table 3. Pinning			
VDDE A2 P pad digital supply voltage (to be connected to VDDD) VDDD A3 P digital supply voltage GNDD A4 P digital ground GNDD A5 P digital ground GNDD A6 P digital ground GNDD B1 P digital ground GNDD B1 P digital ground GNDD B3 P digital supply voltage VDDD B3 P digital supply voltage SCL B4 I digital supply voltage SCL B4 I digital audio frame sync for TDM interface WDDD B5 P digital ground GNDD B6 P digital ground GNDD B6 P digital ground GNDD B6 P digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital supply voltage SCL C4 I digital "C-bus clock input SDA C5 I/O digital "C-bus clock input TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 2 ADS1 D4 I digital address select input 3 FST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground SNDB F1 P booster ground GNDB F2 P digital ground GNDB F3 P booster ground GNDB F4 P digital ground	Symbol	Pin	Туре	Description
VDDD A3 P digital supply voltage GNDD A4 P digital ground GNDD A5 P digital ground GNDD A6 P digital ground GNDD B1 P digital ground GNDD B1 P digital ground GNDD B1 P digital audio frame sync for TDM interface VDDD B3 P digital supply voltage SCL B4 I digital supply voltage SCL B4 I digital ground GNDD B6 P digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital audio frame sync for TDM interface VDDD C3 P digital supply voltage SCL C4 I digital ¹² C-bus clock input SDA C5 I/O digital ¹² C-bus data input/output TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground SNDB F1 P booster ground GNDB F2 P digital ground	MCLK	A1	I	master clock input
GNDD A4 P digital ground GNDD A5 P digital ground GNDD A6 P digital ground GNDD B1 P digital ground GNDD B1 P digital ground FS B2 I digital audio frame sync for TDM interface VDDD B3 P digital supply voltage SCL B4 I digital 1°C-bus clock input GNDD B5 P digital ground GNDD B6 P digital ground GNDD B6 P digital audio bit clock input for TDM interface FS C2 I digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital supply voltage SCL C4 I digital supply voltage SCL C5 I/O digital °C-bus clock input SDA C5 I/O digital °C-bus clock input TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P digital ground GNDB F3 P booster ground GNDB F3 P digital ground	VDDE	A2	Р	pad digital supply voltage (to be connected to VDDD)
GNDD A5 P digital ground GNDD A6 P digital ground GNDD B1 P digital ground FS B2 I digital audio frame sync for TDM interface VDDD B3 P digital supply voltage SCL B4 I digital ri C-bus clock input GNDD B5 P digital ground GNDD B6 P digital ground GNDD B6 P digital ground GNDD B6 P digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital audio frame sync for TDM interface VDDD C3 P digital supply voltage SCL C4 I digital ir C-bus clock input SDA C5 I/O digital ri C-bus clock input TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data input/or TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital audio data input for TDM interface ADS1 D4 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P bioster ground GNDB F3 P booster ground GNDD F4 P digital ground	VDDD	A3	Р	digital supply voltage
GNDD A6 P digital ground GNDD B1 P digital ground FS B2 I digital audio frame sync for TDM interface VDDD B3 P digital supply voltage SCL B4 I digital i²C-bus clock input GNDD B5 P digital ground GNDD B6 P digital ground GNDD B6 P digital ground BCK C1 I digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital supply voltage SCL C4 I digital i²C-bus clock input SDA C5 I/O digital i²C-bus clock input TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface DATAI D2 I digital audio data input for TDM interface DATAI D4 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	GNDD	A4	Р	digital ground
GNDD B1 P digital ground FS B2 I digital audio frame sync for TDM interface VDDD B3 P digital supply voltage SCL B4 I digital 1°C-bus clock input GNDD B5 P digital ground GNDD B6 P digital ground GNDD B6 P digital ground GNDD B6 P digital ground GNDD B7 digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital supply voltage SCL C4 I digital °C-bus clock input SDA C5 I/O digital °C-bus clock input TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDB F4 P digital ground	GNDD	A5	Р	digital ground
FS B2 I digital audio frame sync for TDM interface VDDD B3 P digital supply voltage SCL B4 I digital 1 ² C-bus clock input GNDD B5 P digital ground GNDD B6 P digital ground BCK C1 I digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital supply voltage SCL C4 I digital 1 ² C-bus clock input SDA C5 I/O digital 1 ² C-bus clock input TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data output for TDM interface DATAI D2 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDB F4 P digital ground	GNDD	A6	Р	digital ground
VDDD B3 P digital supply voltage SCL B4 I digital 1²C-bus clock input GNDD B5 P digital ground GNDD B6 P digital ground BCK C1 I digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital supply voltage SCL C4 I digital ²C-bus clock input SDA C5 I/O digital ¹²C-bus clock input TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing inverting / test signal IO 4 TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDB F4 P digital ground	GNDD	B1	Р	digital ground
SCL B4 I digital I²C-bus clock input GNDD B5 P digital ground GNDD B6 P digital ground BCK C1 I digital audio bit clock input for TDM interface FS C2 I digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface VDDD C3 P digital supply voltage SCL C4 I digital I²C-bus clock input SDA C5 I/O digital I²C-bus data input/output TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	FS	B2	I	digital audio frame sync for TDM interface
GNDD B5 P digital ground GNDD B6 P digital ground BCK C1 I digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface FS C2 I digital audio frame sync for TDM interface VDDD C3 P digital supply voltage SCL C4 I digital 1 ² C-bus clock input SDA C5 I/O digital 1 ² C-bus data input/output TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	VDDD	В3	Р	digital supply voltage
GNDD B6 P digital ground BCK C1 I digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface VDDD C3 P digital supply voltage SCL C4 I digital 1²C-bus clock input SDA C5 I/O digital 1²C-bus data input/output TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface DATAI D2 I digital audioses select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	SCL	B4	I	digital I ² C-bus clock input
BCK C1 I digital audio bit clock input for TDM interface FS C2 I digital audio frame sync for TDM interface VDDD C3 P digital supply voltage SCL C4 I digital 1²C-bus clock input SDA C5 I/O digital 1²C-bus data input/output TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface DATAI D2 I digital audio seet input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F3 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	GNDD	B5	Р	digital ground
FS C2 I digital audio frame sync for TDM interface VDDD C3 P digital supply voltage SCL C4 I digital 1 ² C-bus clock input SDA C5 I/O digital 1 ² C-bus data input/output TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface DATAI D2 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	GNDD	B6	Р	digital ground
VDDD C3 P digital supply voltage SCL C4 I digital 1 ² C-bus clock input SDA C5 I/O digital 1 ² C-bus data input/output TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	BCK	C1	I	digital audio bit clock input for TDM interface
SCL C4 I digital I ² C-bus clock input SDA C5 I/O digital I ² C-bus data input/output TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	FS	C2	I	digital audio frame sync for TDM interface
SDA C5 I/O digital I²C-bus data input/output TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDD F4 P digital ground	VDDD	СЗ	Р	digital supply voltage
TRSTN C6 I test signal input TRSTN, connect to PCB ground DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	SCL	C4	I	digital I ² C-bus clock input
DATAO D1 O digital audio data output for TDM interface DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	SDA	C5	I/O	digital I ² C-bus data input/output
DATAI D2 I digital audio data input for TDM interface ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	TRSTN	C6	I	test signal input TRSTN, connect to PCB ground
ADS2 D3 I digital address select input 2 ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	DATAO	D1	0	digital audio data output for TDM interface
ADS1 D4 I digital address select input 1 INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	DATAI	D2	I	digital audio data input for TDM interface
INT D5 O digital interrupt output VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	ADS2	D3	I	digital address select input 2
VBAT D6 P battery supply voltage RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	ADS1	D4	I	digital address select input 1
RST E1 I digital reset input GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	INT	D5	0	digital interrupt output
GNDD E2 P digital ground VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	VBAT	D6	Р	battery supply voltage
VSN E3 I/O voltage sensing inverting / test signal IO 4 TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	RST	E1	I	digital reset input
TEST2 E4 I/O test signal IO 2; for test purposes only, connect to PCB ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P digital ground	GNDD	E2	Р	digital ground
ground TEST1 E5 I/O test signal IO 1; for test purposes only, connect to PCB ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	VSN	E3	I/O	voltage sensing inverting / test signal IO 4
ground VSP E6 I/O voltage sensing non-inverting GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	TEST2	E4	I/O	
GNDB F1 P booster ground GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	TEST1	E5	I/O	
GNDB F2 P booster ground GNDB F3 P booster ground GNDD F4 P digital ground	VSP	E6	I/O	voltage sensing non-inverting
GNDB F3 P booster ground GNDD F4 P digital ground	GNDB	F1	Р	booster ground
GNDD F4 P digital ground	GNDB	F2	Р	booster ground
	GNDB	F3	Р	booster ground
GNDP F5 P power ground	GNDD	F4	Р	digital ground
	GNDP	F5	Р	power ground

Symbol	Pin	Туре	Description
GNDD	F6	Р	digital ground
INB	G1	Р	DC-to-DC boost converter input
INB	G2	Р	DC-to-DC boost converter input
INB	G3	Р	DC-to-DC boost converter input
OUTP	G4	Р	non-inverting output
GNDP	G5	Р	power ground
OUTN	G6	Р	inverting output
VBST	H1	0	boosted supply voltage output
VBST	H2	0	boosted supply voltage output
VBST	НЗ	0	boosted supply voltage output
VDDP	H4	Р	power supply voltage
VDDP	H5	Р	power supply voltage
VDDP	H6	Р	power supply voltage

8 Functional description

The TFA9894 is a highly efficient Bridge Tied Load (BTL) class-D audio amplifier with a sophisticated SpeakerBoost and Protection algorithm, depicted in block diagram of Figure 1.

TFA9894 contains a TDM input/output interface for communicating with the audio host. The interface is compliant with standard TDM interfaces and supports a wide range of TDM configurations. It can also be configured to output current sense and voltage sense information. The audio host can use this information.

The SpeakerBoost and Protection algorithm, running on a CoolFlux Digital Signal Processor (DSP) core, maximizes the acoustical output of the speaker while limiting membrane excursion and voice coil temperature to safe levels. The mechanical protection implemented guarantees that speaker membrane excursion never exceeds its rated limit, to an accuracy of 10 %. Thermal protection guarantees that the voice coil temperature never exceeds its rated limit, to an accuracy of approximately ±10 °C during music playback. Furthermore, advanced signal processing ensures that the audio quality always remains acceptable.

The protection algorithm implements an adaptive speaker model that is used to predict the extent of membrane excursion. The model is continuously updated to ensure that the protection scheme remains effective even when speaker parameter values change or the acoustic enclosure is modified.

The SpeakerBoost and Protection algorithm boosts the output sound pressure level within given mechanical, thermal, and quality limits. An optional Bandwidth extension mode extends the low frequency response up to a predefined limit before maximizing the output level. This mode is suitable for listening to high quality in quiet environments.

The frequency response of the TFA9894 can be modified via ten fully programmable cascaded second-order biquad filters. The first two biquads are processed with 48-bit double precision; biquads 3 to 10 are processed with 24-bit single precision.

At low battery voltage levels, the gain (from TDM interface to speaker output) is automatically reduced to limit battery current (when battery safeguard is enabled).

The SpeakerBoost and Protection algorithm or the host application (external) can control the output volume. In the latter case, the boost features of the SpeakerBoost and Protection algorithm must be disabled to avoid neutralizing external volume control.

The digital audio stream is converted into two pulse width modulated (PWM) signals which are then injected into the class-D audio amplifier. The 3-level PWM scheme supports filterless speaker drive.

When the audio stream crosses a programmable voltage threshold, an adaptive DC-to-DC converter boosts the battery supply voltage. When boosting, the DC-to-DC provides a boosted supply in line with the audio signal. In this mode, two configurations are available (two-levels mode or tracking mode (default)).

9 I²C-bus interface and register settings

The TFA9894 supports the 400 kHz I^2 C-bus microcontroller interface mode standard. The I^2 C-bus is used to control the TFA9894 and to transmit and receive data. The TFA9894 can only operate in I^2 C slave mode, as a slave receiver or as a slave transmitter.

9.1 TFA9894 addressing

The TFA9894 is accessed via an 8-bit code. Bits 1 to 7 contain the device address. Bit 0 (R/W) indicates whether a read (1) or a write (0) operation has been requested. Four separate addresses are supported for stereo applications. Address selection is via pins ADS1 and ADS2. The levels on pins ADS1 and ADS2 determine the values of bits 1 and 2, respectively, of the device address. The generic address is independent of pins ADS1 and ADS2.

Table 4. Address selection via pins ADS1 and ADS2

ADS2 pin voltage (V)	ADS1 pin voltage (V)	Address	Function		
0	0	01101000	for write mode		
		01101001	for read mode		
0	V_{DDD}	01101010	for write mode		
		01101011	for read mode		
V_{DDD}	0	01101100	for write mode		
		01101101	for read mode		
V_{DDD}	V_{DDD}	01101110	for write mode		
		01101111	for read mode		
don't care	don't care	00011100 (generic address)	for write mode		
		00011101 (generic address)	for read mode		

9.2 I²C-bus write cycle

The sequence of events that must be followed when writing data to the I2C-bus registers of the TFA9894 is detailed in <u>Table 5</u>. One byte is transmitted at a time. Each register stores two bytes of data. Data is always written in byte pairs. Data transfer is always MSB first.

The write cycle sequence using SDA is as follows:

- 1. The microcontroller asserts a start condition (S).
- 2. The microcontroller transmits the 7-bit device address of the TFA9894, followed by the R/W bit set to 0.
- 3. The TFA9894 asserts an acknowledge (A).
- 4. The microcontroller transmits the 8-bit TFA9894 register address to which the first data byte is written.
- 5. The TFA9894 asserts an acknowledge.
- 6. The microcontroller transmits the first byte (the most significant byte).
- 7. The TFA9894 asserts an acknowledge.

TFA9894_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2019. All rights reserved.

- 8. The microcontroller transmits the second byte (the least significant byte).
- 9. The TFA9894 asserts an acknowledge.
- 10. The microcontroller can either assert the stop condition (P) or continue transmitting data by sending another pair of data bytes, repeating the sequence from step 6. In the latter case, the targeted register address has been auto-incremented by the TFA9894.

Table 5. I²C bus write cycle

Start	TFA9894 address	R/W		TFA9894 first register address		MSB		LSB		More data	Stop
S	01101A ₂ A ₁	0	Α	ADDR	Α	MS1	Α	LS1	Α	<>	Р

9.3 I²C-bus read cycle

The sequence of events that must be followed when reading data from the I²C-bus registers of the TFA9894 detailed in <u>Table 6</u>. One byte is transmitted at a time. Each of the registers stores two bytes of data. Data is always written in byte pairs. Data transfer is always MSB first.

The read cycle sequence using SDA is as follows:

- 1. The microcontroller asserts a start condition (S).
- 2. The microcontroller transmits the 7-bit device address of the TFA9894, followed by the R/W bit set to 0.
- 3. The TFA9894 asserts an acknowledge (A).
- 4. The microcontroller transmits the 8-bit TFA9894 register address from which the first data byte is read.
- 5. The TFA9894 asserts an acknowledge.
- 6. The microcontroller asserts a repeated start (Sr).
- 7. The microcontroller retransmits the device address followed by the R/W bit set to 1.
- 8. The TFA9894 asserts an acknowledge.
- 9. The TFA9894 transmits the first byte (the MSB).
- 10. The microcontroller asserts an acknowledge.
- 11. The TFA9894 transmits the second byte (the LSB).
- 12. The microcontroller asserts either an acknowledge or a negative acknowledge (NA).
 - If the microcontroller asserts an acknowledge, the target register address is autoincreased by the TFA9894 and steps 9 to 12 are repeated.
 - If the microcontroller asserts a negative acknowledge, the TFA9894 frees the I²C-bus and the microcontroller generates a stop condition (P).

Table 6. I²C-bus read cycle

Start	TFA9894 address	R/W		First register address			TFA9894 address	R/W		MSB		LSB		More data		Stop
S	01101A ₂ A ₁	0	Α	ADDR	Α	Sr	01101A ₂ A ₁	1	Α	MS1	Α	LS1	Α	<>	NA	Р

10 Limiting values

Table 7. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BAT}	battery supply voltage	on pin VBAT	-0.3	-	+6	V
V _{BST}	booster output voltage	on pin VBST	-0.3	-	+12	V
V _{INB}	booster input voltage	on pin INB	-0.3	-	+12 ^[1]	V
V_{DDP}	power supply voltage	on pin VDDP	-0.3	-	+12	V
V _{OUTx}	voltage on speaker connections	on pin OUTN, OUTP	-0.3	-	+12 ^[1]	V
V_{DDD}	digital supply voltage	on pin VDDD	-0.3	-	+2.5	V
V_{DDE}	digital supply voltage	on pin VDDE	-0.3	-	+2.5	V
V_{LTESTx}	low-voltage test pins	on pin TEST1/TEST2	-0.3	-	+6	V
V _{HVSx}	high-voltage pins	on pin VSP, VSN	-0.3	-	+12 ^[1]	V
Tj	junction temperature		-	-	+125	°C
T _{stg}	storage temperature		-55	-	+150	°C
T _{amb}	ambient temperature		-40	-	+85	°C
V _{ESD}	electrostatic discharge voltage	according to Human Body Model (HBM)	-2	-	+2	kV
		according to Charge Device Model (CDM)	-500	-	+500	V

^[1] Using NXP demo board, with a 1 mm wire/PCB track lengths, AC pulse from -6 V to +15 V can be observed on INB, OUTP, OUTN, VSP, VSN without damaging the device as these spikes do not end up inside the actual device.

11 Thermal characteristics

Table 8. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
() /	thermal resistance from junction to ambient	4-layer application board	37	K/W

12 Characteristics

12.1 DC characteristics

Table 9. DC characteristics

All parameters are guaranteed for V_{BAT} = 4.0 V; V_{DDD} = V_{DDE} = 1.8 V; V_{DDP} = V_{BST} = 10 V, adaptive boost mode; L_{BST} = 1 $\mu H^{[1]}$; R_L = 8 $\Omega^{[1]}$; L_L = 44 $\mu H^{[1]}$; f_i = 1 kHz; f_s = 48 kHz; T_{amb} = 25 °C; default settings, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{BAT}	battery supply voltage	on pin VBAT; V _{BAT} must not be lower than V _{DDD}	2.7	-	5.5	V
Іват	battery supply current	active state; on pin VBAT; operating mode with load $R_L = 8~\Omega$; DC-to-DC in adaptive boost mode; $V_{BAT} = 4.0~V$; $V_{DDP} = 10~V$; $-40~dBFs$ pink noise input signal	-	5.7	-	mA
		idle state; on pin VBAT; operating mode with load R_L = 8 Ω ; no output signal; no output capacitance; DC-to-DC converter in adaptive boost mode; V_{BAT} = 4.0 V; low power mode enabled	-	2.7	-	mA
		idle state; on pin VBAT; operating mode with load R_L = 8 Ω ; no output signal; no output capacitance; DC-to-DC converter in adaptive boost mode; V_{BAT} = 4.0 V; low power mode disabled	-	5.7	-	mA
		power-down state; on pin VBAT; DC-to-DC in power-down mode; $T_j = 25$ °C; no clock.	-	1	-	μА
V_{DDP}	power supply voltage	on pin VDDP	2.7	-	10.2	V
V_{DDE}	digital supply voltage	on pin VDDE	1.65	1.8	1.95	V
V_{DDD}	digital supply voltage	on pin VDDD	1.65	1.8	1.95	V

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{DDD}	digital supply current	active state (DSP running); on pin VDDD; operating mode with load $R_L = 8~\Omega$; DC-to-DC in daptive boost mode; $V_{BAT} = 4.0~V$; $V_{DDP} = 10~V$; $-40~dBFS$ pink noise input signal		-	15.5	-	mA
		idle state (DSP disabled); on pin VDDD; operating mode with load R_L = 8 Ω ; no output signal; no output capacitance; DC-to-DC converter in adaptive boost mode; V_{BAT} = 4.0 V; low power mode enabled		-	3.9	-	mA
		idle state (DSP disabled); on pin VDDD; operating mode with load R_L = 8 Ω ; no output signal; no output capacitance; DC-to-DC converter in adaptive boost mode; V_{BAT} = 4.0 V; low power mode disabled		-	5.2	-	mA
		power-down state; on pin VDDD; DC-to-DC in power-down mode; $T_j = 25 ^{\circ}\text{C}$; no clock		-	10	-	μΑ
Pins FS, B	CK, DATAI, ADS1, ADS2, SCL, SE	OA, RST, TRST, MCLK (input)					
V _{IH}	HIGH-level input voltage			0.7V _{DDD}	-	V_{DDD}	V
V _{IL}	LOW-level input voltage			-	-	0.3V _{DDD}	V
C _{in}	input capacitance		[2]	-	-	3	pF
I _{LI}	input leakage current	1.8 V on input pin		-	-	0.1	μA
		1.8 V on input pin RST		-	90	120	μA
		1.8 V on input pin TRST		-	20	30	μA
Pins DATA	O, INT push-pull output stages (output)					
V _{OH}	HIGH-level output voltage	I _{OH} = 4 mA		V _{DDD} - 0.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA		-	-	400	mV
Pins SDA,	open-drain outputs, external 10 k	Ω resistor to V _{DDD}					
V _{OH}	HIGH-level output voltage	I _{OH} = 4 mA		V _{DDD} - 0.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA		-	-	400	mV
Pins OUTP	, OUTN		-			•	,
R _{DSon}	total drain-source on-state resistance	(PMOS + NMOS transistors)		-	430	520	mΩ
Protection							
T _{act(th_prot)}	thermal protection activation temperature			130	-	_	°C
$V_{uvp(VBAT)}$	undervoltage protection on pin VBAT			2.3	-	2.7	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{O(ocp)}	overcurrent protection output current		2.5	-	-	A
DC-to-DC	converter		1		'	
V _{BST}	voltage on pin V _{BST}	DCVOS = 111111; fixed boost mode and switching amplifier	9.8	10	10.2	V

 L_{BST} = boost converter inductance; R_L = load resistance; L_L = load inductance (speaker). This parameter is not tested during production; the value is guaranteed by design and checked during product validation.

12.2 AC characteristics

Table 10. AC characteristics

All parameters are guaranteed for V_{BAT} = 4.0 V; V_{DDD} = V_{DDE} = 1.8 V; V_{DDP} = V_{BST} = 10 V, adaptive boost mode; L_{BST} = 1 $\mu H^{[1]}$; R_L = 8 $\Omega^{[1]}$; L_L = 44 $\mu H^{[1]}$; f_i = 1 kHz; f_s = 48 kHz; T_{amb} = 25 °C; default settings, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Amplifier o	output power						
P _{o(AVG)}	average output power	hands-free speaker, THD+N =	1 %				
		$R_L = 8 \Omega$; $L_L = 44 \mu H$; $V_{BST} = 10 V$; $V_{BAT} = 4.0 V$; $V_{DDD} = 1.8 V$		5.3	5.6	-	W
		$R_L = 6 \Omega$; $L_L = 32 \mu H$; $V_{BST} = 10 V$; $V_{BAT} = 4.0 V$; $V_{DDD} = 1.8 V$		5.8	6.1	-	W
		$R_L = 4 \Omega$; $L_L = 22 \mu H$; $V_{BST} = 9 V$; $V_{BAT} = 4.0 V$; $V_{DDD} = 1.8 V$		6.0	6.2	-	W
		receiver speaker; THD+N = 1 %	6; V	_{BST} = 1	0 V		
		R_L = 32 Ω; handset call; V_{BAT} = 4.0 V		0.15	0.2	-	W
		R_L = 32 Ω; multimedia playback; V_{BAT} = 4.0 V		1.10	1.5	-	W
Amplifier o	output pins (OUTP and OUTN)					,	
V _O (offset)	output offset voltage after trimming	absolute value; after trimming; V _{DDP} = 3.4 V to 10 V; V _{BAT} = 3.4 V to 5 V		-	-	1.0	mV
Amplifier p	erformances				<u> </u>	l	
η _{po}	output power efficiency	on pin V_{BAT} ; operating mode with load $R_L = 8~\Omega$; DC-to-DC in adaptive boost mode; $V_{BAT} = 4.0~V$; $V_{DDP} = 10~V$, $P_o = 380 \text{mW}$ (average music playback output power)	[2]	-	81	-	%
		on pin V_{BAT} ; Input: 100 Hz sinewave; $R_L = 8 \Omega$; DC-to-DC in adaptive boost mode; $V_{BAT} = 4.0 \text{ V}$; $V_{DDP} = 10 \text{ V}$; $P_o = 600 \text{ mW}$	[2]	-	91	-	%
		on pin V_{BAT} ; Input: 100 Hz sinewave; $R_L = 8 \Omega$; DC-to-DC in adaptive boost mode; $V_{BAT} = 4.0 \text{ V}$; $V_{DDP} = 10 \text{ V}$; $P_o = 4 \text{ W}$	[2]	-	82	-	%
THD+N	total harmonic distortion-plus-	P_0 = 2.0 W; R_L = 4 Ω or 8 Ω	[1]	-	0.015	0.09	%
	noise	$P_0 = 0.1 \text{ W}; R_L = 32 \Omega$	[1]	-	0.04	0.09	%
				1	1		1

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$V_{n(o)}$	output noise voltage	a-weighted; no input signal; low noise mode; f _s = 48 kHz	[2] [3]	I -	14	18	μV
		a-weighted; no input signal; low noise mode; f _s = 44.1 kHz.	[2] [3]		15	18	μV
		a-weighted; no input signal; low noise mode; f_s = 16 kHz, high performance or f_s = 32kHz, high performance	[2] [3]		15	18	μV
		a-weighted; no input signal; low-noise mode; f_s = 16 kHz, or f_s = 32 kHz	[2] [3]	1-	-	50	μV
DR	dynamic range	a-weighted; V_{BAT} = 3.4 V to 5 V; S/N = maximum signal (at THD = 1 %) - $V_{n(o)}$; no signal applied		110	114	-	dB
S/N	signal-to-noise ratio	a-weighted; V_{BAT} = 3.4 V to 5 V; S/N = maximum signal (at THD = 1 %) - $V_{n(o)}$; with signal applied	[2]	100	-	-	dB
PSRR	power supply rejection ratio (from V _{BAT})	booster in follower mode ($V_{DDP} = V_{BAT}$); $f_{ripple} = 217$ Hz square wave; $V_{ripple} = 50$ m V_{pp} ; $V_{BAT} = 4.0$ V		70	80	-	dB
		booster in follower; f_{ripple} = 20 Hz to 1 kHz sinewave; V_{ripple} = 200 mV _{RMS} ; V_{BAT} = 3.4 V to 5.0 V		70	80	-	dB
		booster in follower mode ($V_{DDP} = V_{BAT}$); $f_{ripple} = 1$ kHz to 20 kHz sinewave; $V_{ripple} = 200$ mV _{RMS} ; $V_{BAT} = 3.4$ V to 5.0 V		55	64	-	dB
ΔG	gain variation over frequency	BW = 20 Hz to 15 kHz; V _{BAT} = 3.4 V to 5 V; P _o = 2.0 W; R _L = 8 Ω		-0.1	-	0.7	dB
V_{POP}	pop noise	At mode transition and gain change, with $C_L < 200 \ pF^{[4]}$		-	-	2	mV
R_L	load Impedance			3.2	8	38.4	Ω
C _L	load capacitance	[5]		-	200	1000	pF
L _L	load inductance			30	-	-	μΗ

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{sw}	switching frequency	directly coupled to the TDM input frequency		256	-	384	kHz
G _(TDM-VO)	TDM to V _O gain	INPLEV = 0 dB		6	-	21	dBV
		INPLEV = −6 dB		0	-	15	dBV
Amplifier p	oower-up, power-down and pro	pagation delays					
t _{d(on)PLL}	PLL turn-on delay time	PLL locked on BCK		-	1.3	-	ms
		PLL locked on FS		-	$(2^5 \times 1 / f_s) + 0.3$	-	ms
		PLL locked on MCLK; MCLK = 13 MHz and AUDFS = 11 or 12 AND DIRECTPLL = 0		-	6.5	-	ms
		PLL locked on MCLK; MCLK = 13 MHz and AUDFS is not 11 or 12		-	1.3	-	ms
		PLL locked on MCLK; MCLK = 13 MHz and AUDFS = 11 or 12 AND DIRECTPLL = 1		-	1.3	-	ms
		PLL locked on MCLK; MCLK is not 13 MHz		-	1.3	-	ms
t _{d(on)amp}	amplifier turn-on delay time	$f_s = 48 \text{ kHz}^{[6]}$		-	55	-	μs
t _{d(pd)}	turn-off delay time			-	115	-	μs
t _{d(alarm)}	alarm delay time			-	300	-	ms
t _{PD}	propagation delay	f _s = 96 kHz	[3]	-	330	600	μs
		f _s = 44.1 kHz/48 kHz	[3]	-	650	700	μs
		f _s = 32 kHz/32 kHz HP	[3]	-	700	750	μs
		f _s = 16 kHz/16 kHz HP	[3]	-	890	940	μs
Booster in	ductance						
L	inductance			0.33	1.0	2.2	μΗ
f _b	booster switching frequency	fixed boost; V_{DDP} = 10 V; I_{load} = 1 A; f_s = 48 kHz		-	2.05	-	MHz
Sensing p	erformance						
ΔV _{sense} / I _{sense}	V _{sense} /I _{sense} ratio mismatch	pilot tone 100 mVpk	[7]	-	2	-	%
THD+N	total harmonic distortion-plus- noise on current sensing	V _i = −12 dBFs		-	-	0.75	%
S/N	signal-to-noise ratio on current sensing	I _O = 1 A (peak); a-weighted		62	65	-	dB
BrownOut	Detection (BOD)						_
V _{th(BOD)}	BOD threshold voltage	BODTHLVL = 10 ^[8]		1.55	1.575	1.6	V
V _{hys(BOD)}	BOD hysteresis	BODHYS = 1		-	20	-	mV
t _{t(BOD)}	BOD delay time	BODFILT = 10		-	10	-	μs

TFA9894_SD5

All information provided in this document is subject to legal disclaimers.

Symbol	Parameter	Conditions	Min	Тур	Ma	ax Uı	nit
Clocks							
t _{jit(p-p)}	input clock jitter time	MCLK	-	0.5	1.0) ns	s
		BCK (3.072 MHz)	-	1.0	2.0) ns	s
		FS ^[9]	-	-	20	ns	S
δ _{i(clk)}	clock input cuty cycle	MCLK	40	-	60	%	D D

- [1] [2] [3] [4] [5] [6] [7]

- L_{BST} = boost converter inductance; R_L = load resistance; L_L = load inductance (speaker). This parameter is not tested during production; the value is guaranteed by design and checked during product validation. TFA9894/N1 supports 44.1 kHz, 48 kHz, and 96 kHz. TFA9894/N2 supports 16 kHz, 32 kHz, 44.1 kHz, 48 kHz, and 96 kHz.. When C_L exceeds 200 pF, Low Power Mode must be disabled. When C_L is above 200pF, Low Power Mode must be disabled. At power up, audio is output on OUTP/OUTN after $t_{d(on)\text{PPLL}}$. Intended for Speaker protection. In combination with NXP Speaker protection a speaker temperature accuracy of ±10 °C can be realized. Recommended setting
- Recommended setting.

 When the PLL is locked on FS on TFA9894N2 devices, the system is less sensitive to jitter. [8] [9]

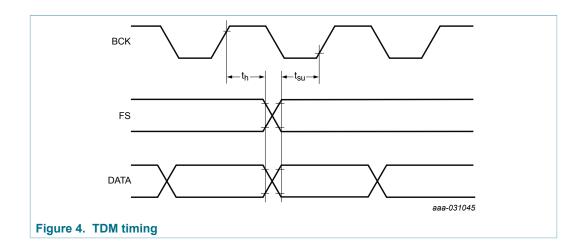

12.3 TDM timing characteristics

Table 11. TDM bus interface characteristics

All parameters are guaranteed for V_{BAT} = 4.0 V; V_{DDD} = V_{DDE} = 1.8 V; V_{DDP} = V_{BST} = 10 V, adaptive boost mode; L_{BST} = 1 $\mu H^{[1]}$; R_L = 8 $\Omega^{[1]}$; L_L = 44 $\mu H^{[1]}$; f_i = 1 kHz; f_s = 48 kHz; T_{amb} = 25 °C; default settings, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit			
f _s	sampling frequency	pin FS; audio mode ^[2]	pin FS; audio mode ^[2]							
		TFA9894/N2		16	-	48	kHz			
		TFA9894/N1		44.1	-	48	kHz			
	on pin FS; 96 kHz mode		-	96	-	kHz				
f _{clk}	clock frequency	on pin BCK; audio mode	[2]	32f _s	-	384f _s	kHz			
		on pin BCK; 96 kHz mode		-	-	96f _s	kHz			
t _{su}	set-up time	FS edge to BCK HIGH	[3]	10	-	-	ns			
		DATA edge to BCK HIGH		10	-	-	ns			
t _h	hold time	BCK HIGH to FS edge	[3]	10	-	-	ns			
		BCK HIGH to DATA edge		10	-	-	ns			

- L_{BST} = boost converter inductance; R_L = load resistance; L_L = load inductance. The TDM bit clock input (BCK) is used as a clock input for the amplifier and the DC-to-DC converter. Note that both the BCK and FS signals need to be present for the clock to operate correctly. This parameter is not tested during production; the value is guaranteed by design and checked during product validation. [2]

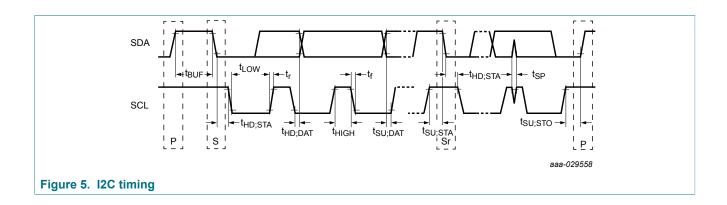

12.4 I²C timing characteristics

Table 12. I²C-bus interface characteristics

All parameters are guaranteed for V_{BAT} = 4.0 V; V_{DDD} = V_{DDE} = 1.8 V; V_{DDP} = V_{BST} = 0 V, adaptive boost mode; L_{BST} = 1 $\mu H^{[1]}$; R_L = 8 $\Omega^{[1]}$; L_L = 44 $\mu H^{[1]}$; f_i = 1 kHz; f_s = 48 kHz; T_{amb} = 25 °C; default settings, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{SCL}	SCL clock frequency			-	-	400	kHz
t _{LOW}	LOW period of the SCL clock			1.3	-	-	μs
t _{HIGH}	HIGH period of the SCL clock			0.6	-	-	μs
t _r	rise time	SDA and SCL signals	[2]	20 + 0.1 C _b	-	-	ns
t _f	fall time	SDA and SCL signals	[2]	20 + 0.1 C _b	-	-	ns
t _{HD;STA}	hold time (repeated) START condition		[3]	0.6	-	-	μs
t _{SU;STA}	set-up time for a repeated START condition			0.6	-	-	μs
t _{su;sto}	set-up time for STOP condition			0.6	-	-	μs
t _{BUF}	bus free time between a STOP and START condition			1.3	-	-	μs
t _{SU;DAT}	data set-up time			100	-	-	ns
t _{HD;DAT}	data hold time			0	-	-	μs
t _{SP}	pulse width of spikes that must be suppressed by the input filter		[4]	0	-	50	ns
C _b	capacitive load for each bus line			-	-	400	pF

- L_{BST} = boost converter inductance; R_L = load resistance; L_L = load inductance (speaker). C_b is the total capacitance of one bus line in pF. The maximum capacitive load for each bus line is 400 pF. After this period, the first clock pulse is generated. To be suppressed by the input filter.
- [1] [2] [3] [4]

13 Application information

13.1 External components

The DC-to-DC converter needs a battery supply voltage capacitor (C_{VBAT}), an output capacitor (C_{VDDP}), and an inductor (L_{BST}) to work properly. The nominal values of these components are 22 μ F, 33 μ F, and 1 μ H, respectively. If a larger coil is used, the capacitance must also be increased. A 1 μ F decoupling capacitor (C_{VDDD}) must be connected close to the VDDD pin. The VDDE pin must be connected externally to the VDDD pin. One 4.7 k Ω resistor (RVS) must be connected between each voltage sensing input and its corresponding amplifier output (VSP/OUTP and VSN/OUTN).

13.1.1 DC-to-DC converter output capacitor

A ceramic capacitor is required at the output of the DC-to-DC converter (C_{VDDP}).

Capacitors constructed using X5R (-55 °C to +85 °C) or X7R (-55 °C to +125 °C) dielectric materials are preferred because they are compact, feature low ESR, and are sufficiently stable over a wide temperature range. The capacitance value decreases over the DC biasing voltage range (50 % to 85 % decrease). Consequently, the selected capacitor must have a nominal value three to four times higher than the required minimum effective capacitance.

Note: The DC-to-DC converter capacitor connected to pin VBST (C_{VDDP}) is critical for stability. The recommended effective value (the capacitance value at the maximum boost voltage) of C_{VDDP} depends on the coil inductance, and is given in Table 13. The position of the capacitor and the layout of the board are also critical. It is recommended to connect C_{VDDP} as close as possible to the BST and GNDB pins without vias in the PCB tracks.

In many applications, it is desirable to limit the height of components as much as possible. This can be achieved for C_{VDDP} by placing two smaller capacitors in parallel. The rated voltage should be 10 V or higher.

Table 13. DC-to-DC minimum output capacitor

Effective coil value (at maximum current)	Minimum effective capacitance (at the boost voltage)
0.47 μH	3.4 µF
1 μH ^[1]	4 μF
1.5 µH	12 μF
2.2 μΗ	20 μF

^[1] Recommended value; larger values are not preferred because of the cost of and space needed for the coil (L_{BST}) and the capacitor (C_{VDDP}).

The values in the <u>Table 14</u> and <u>Table 15</u> are guaranteed for capacitors rated X5R or higher.

Table 14. DC-to-DC recommended output capacitor

Specification	Conditions	Min	Тур	Max	Unit
nominal capacitance; 20 % tolerance	6 Ω or 8 Ω speaker; 1 μH inductor (L _{BST})	-	33	-	μF
minimum effective capacitance	6 Ω or 8 Ω speaker; 1 μ H inductor (L _{BST})	4	-	-	μF
rated voltage		10	-	-	V

13.1.2 Battery capacitor

C_{VBAT} must be at least half the value of C_{VDDP}.

Table 15. Battery Recommended capacitor

Specification	Min	Тур	Max	Unit
nominal capacitance; 20 % tolerance	-	22	-	μF
rated voltage	10	-	-	V

13.1.3 DC-to-DC converter inductor

An inductor is required at the output of the DC-to-DC converter (L_{BST}). For stability, the inductance of the coil should remain above 0.33 μH and below 2.2 μH under all conditions. The most commonly available values are 1 μH and 1.5 μH . A nominal value 1 μH provides the optimum balance between current capability, component size and efficiency.

The choice of inductor is configured using DCCV bit. It is strongly influenced by the impedance of the speaker used in the application. The speaker impedance determines the output current of the DC-to-DC converter. The coil current contains a ripple around the average current resulting in a peak inductor current, $I_{L(peak)}$. The value of the peak inductor current is determined by the minimum required battery voltage, the boost voltage and the inductor value.

Recommend specifications for the DC-to-DC convertor inductor are given in <u>Table 16</u>.

Table 16. DC-to_DC Recommended inductor

Specification	Min	Тур	Max	Unit
nominal inductance; 20 % tolerance	0.47 ^[1]	-	2.2	μΗ
DC resistance	-	-	100	mΩ
saturation current	-	4.2	-	Α

[1] 0.33 µH (min) at I_{L(peak)}.

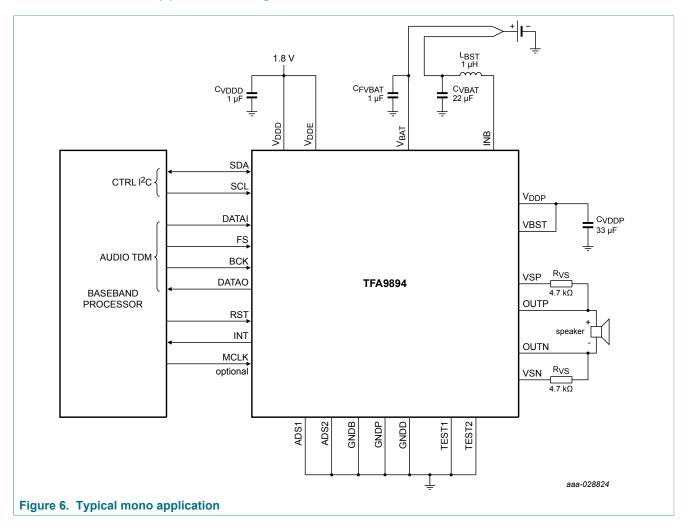
13.2 PCB layout considerations

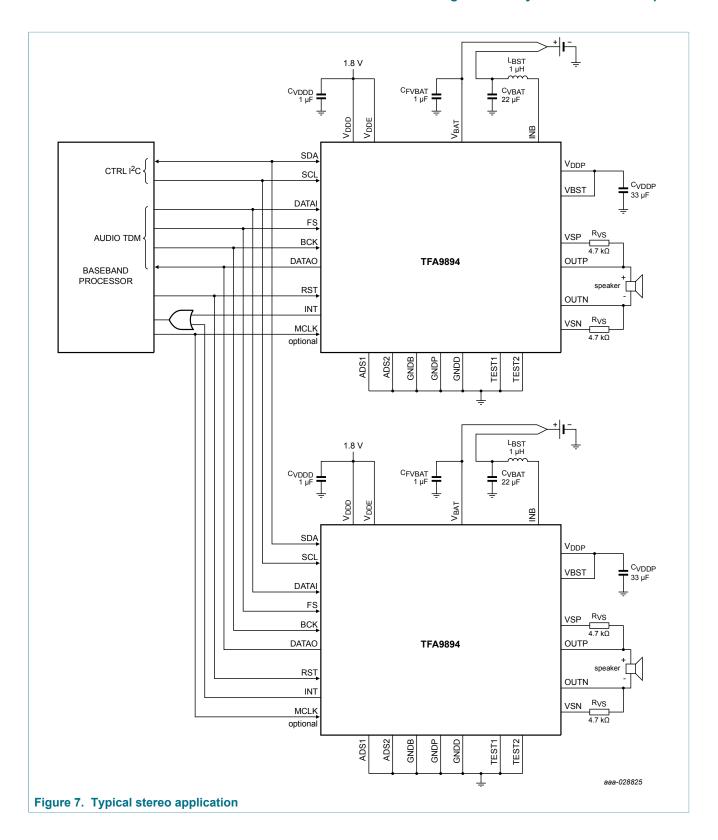
Great care should be taken when designing the PCB layout for a class-D amplifier and booster circuit since the layout can affect the audio performance, the booster performance, the Electromagnetic Compatibility (EMC) performance and/or the thermal performance.

13.2.1 DC-to-DC converter stability

To avoid stability problems, the DC-to-DC converter output capacitor must to be connected as close as possible to GNDB/GNDP via thick tracks as well as to V_{BST}/V_{DDP} in the top layer.

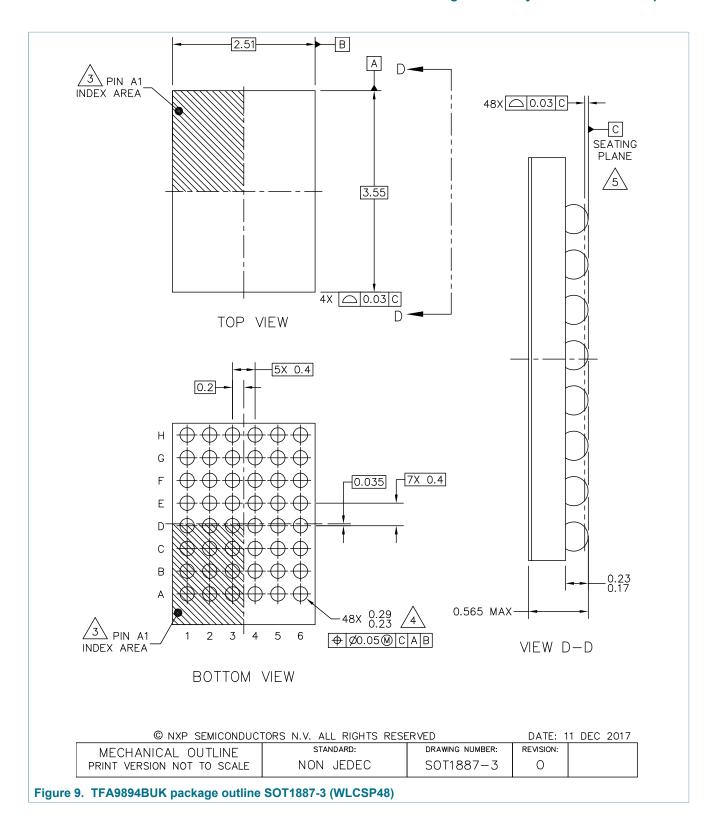
13.2.2 EMC considerations

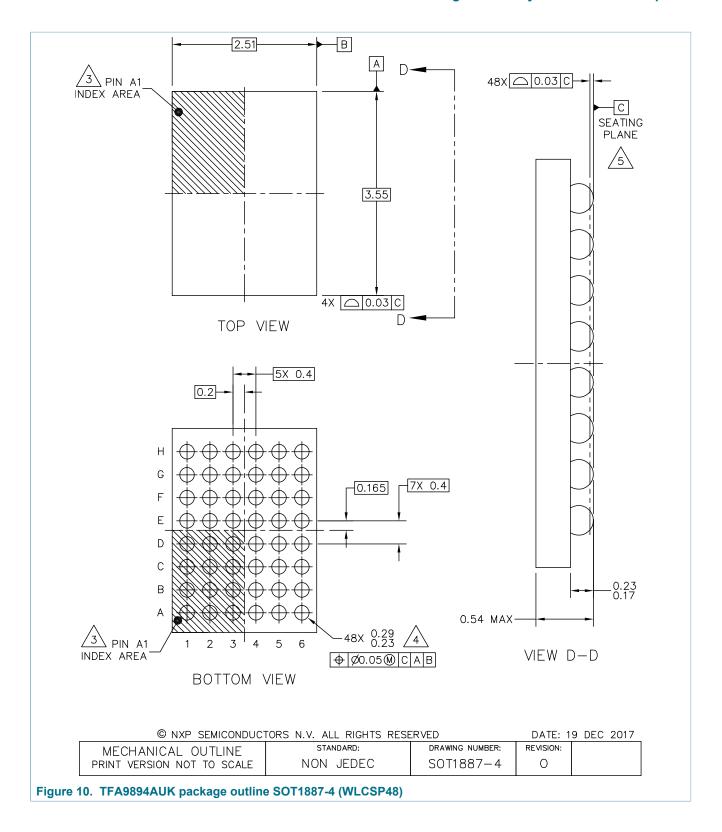

EMC standards define to what degree a (sub)system is susceptible to externally imposed electromagnetic influences and to what degree a (sub)system is responsible for emitting electromagnetic signals in standby and in normal operating modes.


EMC immunity and emission values are normally measured over a frequency range from 180 kHz up to 3 GHz.

The coupling capacitors on pins V_{DDD} , V_{DDP} , and V_{BAT} and the booster inductor L_{BST} should be placed close to the TFA9894, referenced to a solid ground plane. The design should include a solid ground plane below the IC.


Long speaker cables (or traces) should be avoided when designing a filterless class-D amplifier. Long speaker cables have a negative effect on electromagnetic emissions. Speaker traces/cables of less than 10 cm are recommended.


13.3 Application diagrams





14 Package outline

15 Soldering of WLCSP packages

15.1 Introduction to soldering WLCSP packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering WLCSP (Wafer Level Chip-Scale Packages) can be found in application note AN10439 "Wafer Level Chip Scale Package" and in application note AN10365 "Surface mount reflow soldering description".

Wave soldering is not suitable for this package.

All NXP WLCSP packages are lead-free.

15.2 Board mounting

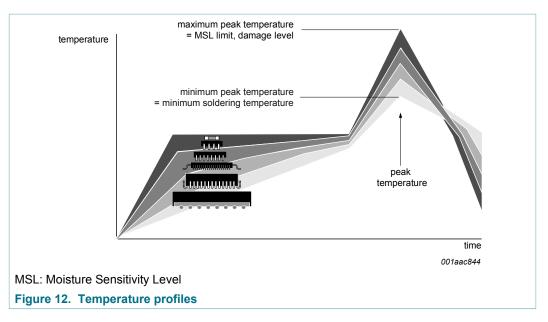
Board mounting of a WLCSP requires several steps:

- 1. Solder paste printing on the PCB
- 2. Component placement with a pick and place machine
- 3. The reflow soldering itself

15.3 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 12</u>) than a SnPb process, thus reducing the process window.
- Solder paste printing issues, such as smearing, release, and adjusting the process window for a mix of large and small components on one board.
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature), and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic) while being low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 17.


Table 17. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm ³)			
	< 350	350 to 2 000	> 2 000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must always be respected.

Studies have shown that small packages reach higher temperatures during reflow soldering (see Figure 12).

TFA9894_SDS

For further information on temperature profiles, refer to application note *AN10365* "Surface mount reflow soldering description".

15.3.1 Stand off

The stand off between the substrate and the chip is determined by:

- · The amount of printed solder on the substrate
- · The size of the solder land on the substrate
- · The bump height on the chip

The higher the stand off, the better the stresses are released due to TEC (Thermal Expansion Coefficient) differences between substrate and chip.

15.3.2 Quality of solder joint

A flip-chip joint is considered to be a good joint when the entire solder land has been wetted by the solder from the bump. The surface of the joint should be smooth and the shape symmetrical. The soldered joints on a chip should be uniform. Voids in the bumps after reflow can occur during the reflow process in bumps with high ratio of bump diameter to bump height, i.e. low bumps with large diameter. No failures have been found to be related to these voids. Solder joint inspection after reflow can be done with X-ray to monitor defects such as bridging, open circuits and voids.

15.3.3 Rework

In general, rework is not recommended. By rework, we mean the process of removing the chip from the substrate and replacing it with a new chip. If a chip is removed from the substrate, most solder balls of the chip are damaged. In that case it is recommended not to reuse the chip again.

Device removal can be done when the substrate is heated until it is certain that all solder joints are molten. The chip can then be carefully removed from the substrate without damaging the tracks and solder lands on the substrate. Removing the device must be done using plastic tweezers, because metal tweezers can damage the silicon. The

surface of the substrate should be carefully cleaned and all solder and flux residues and/ or underfill removed. When a new chip is placed on the substrate, use the flux process instead of solder on the solder lands. Apply flux on the bumps at the chip side as well as on the solder pads on the substrate. Place and align the new chip while viewing with a microscope. To reflow the solder, use the solder profile shown in application note *AN10365 "Surface mount reflow soldering description"*.

15.3.4 Cleaning

Cleaning can be done after reflow soldering.

16 Revision history

Table 18. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
TFA9894_SDS v.3.1	20190513	Product data sheet	-	TFA9894_SDS v.3	
Modifications:	• Section 7.1 "Pinning" has been updated.				
TFA9894_SDS v.3	20181218	Product data sheet		TFA9894_SDS v.2	
Modifications:	Text and graphics have been updated throughout this document.				
TFA9894_SDS v.2	20180719	Product data sheet	-	TFA9894_SDS v.1	
Modifications:	 POD versions corrected in <u>Table 2</u>. POD names corrected in <u>Figure 8</u>, <u>Figure 9</u>, <u>Figure 10</u>, and <u>Figure 11</u>. List of Figures has been updated. 				
TFA9894_SDS v.1	20180529	Product data sheet	-	-	

17 Legal information

17.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

TFA9894 SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2019. All rights reserved.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP

Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TFA9894_SDS

High Efficiency Class-D Audio Amplifier

Tables

-		T 1 40	10 1 11	4.0
1 ab. 1.	Quick reference data4	Tab. 10.	AC characteristics	19
Tab. 2.	Ordering information6	Tab. 11.	TDM bus interface characteristics	23
Tab. 3.	Pinning9	Tab. 12.	I2C-bus interface characteristics	24
Tab. 4.	Address selection via pins ADS1 and ADS212		DC-to-DC minimum output capacitor	25
Tab. 5.	I2C bus write cycle13	Tab. 14.	DC-to-DC recommended output capacitor	26
Tab. 6.	I2C-bus read cycle13	Tab. 15.	Battery Recommended capacitor	26
Tab. 7.	Limiting values14	Tab. 16.	DC-to_DC Recommended inductor	26
Tab. 8.	Thermal characteristics15	Tab. 17.	Lead-free process (from J-STD-020D)	34
Tab. 9.	DC characteristics16	Tab. 18.	Revision history	37

TFA9894_SDS

High Efficiency Class-D Audio Amplifier

Figures

Fig. 1.	•		•	TFA9894BUK package outline SOT1887-3	•
Fig. 2.	Bump configuration				. 31
Fig. 3.	Bump mapping	8	Fig. 10.	TFA9894AUK package outline SOT1887-4	
Fig. 4.	TDM timing				. 32
Fig. 5.				TFA9894CUK package outline SOT1887-5	
Fig. 6.	Typical mono application	28		(WLCSP48)	. 33
Fig. 7.	Typical stereo application	29	Fig. 12.	Temperature profiles	. 35
Fig. 8.	TFA9894UK package outline SOT1887-2				
	(WLCSP48)	30			

Contents

1	General description	
2	Features and benefits	
3	Applications	3
4	Quick reference data	4
5	Ordering information	6
6	Block diagram	7
7	Pinning information	8
7.1	Pinning	8
3	Functional description	11
9	I2C-bus interface and register settings	12
9.1	TFA9894 addressing	12
9.2	I2C-bus write cycle	12
9.3	I2C-bus read cycle	13
10	Limiting values	
11	Thermal characteristics	15
12	Characteristics	16
12.1	DC characteristics	16
12.2	AC characteristics	19
12.3	TDM timing characteristics	23
12.4	I2C timing characteristics	24
13	Application information	25
13.1	External components	25
13.1.1	DC-to-DC converter output capacitor	25
13.1.2	Battery capacitor	
13.1.3	DC-to-DC converter inductor	26
13.2	PCB layout considerations	27
13.2.1	DC-to-DC converter stability	27
13.2.2	EMC considerations	27
13.3	Application diagrams	28
14	Package outline	
15	Soldering of WLCSP packages	34
15.1	Introduction to soldering WLCSP packages	
15.2	Board mounting	34
15.3	Reflow soldering	34
15.3.1	Stand off	
15.3.2	Quality of solder joint	
15.3.3	Rework	35
15.3.4	Cleaning	
16	Revision history	
17	Legal information	38

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

TFA9894BUK/N1AZ