


### **Pin Configuration**

Figure 1. 16-pin TSSOP pinout



#### **Pin Definitions**

| Pin Name            | Pin Number  | Description                                                    |  |
|---------------------|-------------|----------------------------------------------------------------|--|
| XIN                 | 1           | Reference input Or crystal input                               |  |
| VDD                 | 2           | 3.3 V voltage supply                                           |  |
| AVDD                | 3           | 3.3 V analog voltage                                           |  |
| CLKSEL              | 4 (-21)     | 0 = 33.33 MHz out, 1 = 25 MHz Out. Weak pull-up.               |  |
| AVSS                | 5           | Analog ground                                                  |  |
| VSSL                | 6           | K ground                                                       |  |
| CLK(A:D)            | 7, 8, 9, 12 | ock outputs at V <sub>DDL</sub> level                          |  |
| SSON                | 10          | oread spectrum enable pin 0 = SS off; 1 = SS on. Weak pull-up. |  |
| VDDL                | 11          | V clock voltage supply                                         |  |
| VSS                 | 13          | Ground                                                         |  |
| REF                 | 14          | ference output at V <sub>DD</sub> level                        |  |
| NC                  | 15          | o connect                                                      |  |
| XOUT <sup>[1]</sup> | 16          | Crystal output                                                 |  |

#### Notes

Float XOUT if XIN is externally driven.



### **Maximum Ratings**

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

| Supply voltage $(V_{DD}, AV_{DD}, V_{DDL})$ | –0.5 to +7.0 V                    |
|---------------------------------------------|-----------------------------------|
| DC input voltage                            | –0.5 V to V <sub>DD</sub> + 0.5 V |

| Storage temperature                                     |                   |
|---------------------------------------------------------|-------------------|
| (Non-condensing)                                        | –55 °C to +125 °C |
| Junction temperature                                    | –40 °C to +125 °C |
| Data retention at Tj = 125 °C                           | > 10 years        |
| Package power dissipation                               | 350 mW            |
| Static discharge voltage (per MIL-STD-883, Method 3015) | ≥ 2000 V          |
|                                                         |                   |

### **Recommended Operating Conditions**

| Parameter         | Description                                 | Min   | Тур  | Max   | Unit |
|-------------------|---------------------------------------------|-------|------|-------|------|
| $V_{DD,} AV_{DD}$ | Supply voltage                              | 3.135 | 3.30 | 3.465 | V    |
| $V_{DDL}$         | Supply voltage for CLK (A-D)                | 3.135 | 3.30 | 3.465 | V    |
| T <sub>A</sub>    | Ambient temperature (industrial temp grade) | -40   | -    | 85    | °C   |
| C <sub>LOAD</sub> | Max. output load capacitance                | -     | -    | 15    | pF   |
| F <sub>ref</sub>  | Reference frequency                         | -     | 25   | -     | MHz  |

# **Crystal Specification**

| Parameter [2]      | Description                    | Min | Тур | Max | Unit |
|--------------------|--------------------------------|-----|-----|-----|------|
| CR <sub>load</sub> | Crystal load capacitance (-21) | _   | 15  | _   | pF   |
| ESR                | Equivalent series resistance   | _   | _   | 50  | Ω    |

### **DC Electrical Specifications**

| Parameter                      | Description                    | Condition                                                          | Min                   | Тур | Max                   | Unit |
|--------------------------------|--------------------------------|--------------------------------------------------------------------|-----------------------|-----|-----------------------|------|
| I <sub>OH</sub>                | Output high current            | $V_{OH} = V_{DD} - 0.5 \text{ V}, V_{DD}/V_{DDL} = 3.3 \text{ V}$  | 12                    | 24  | _                     | mA   |
| I <sub>OL</sub>                | Output low current             | V <sub>OL</sub> = 0.5 V, V <sub>DD</sub> /V <sub>DDL</sub> = 3.3 V | 12                    | 24  | _                     | mA   |
| I <sub>IH</sub>                | Input high current             | $V_{IH} = V_{DD}$                                                  | _                     | 5   | 10                    | μΑ   |
| I <sub>IL</sub>                | Input low current              | V <sub>IL</sub> = 0 V                                              | _                     | _   | 50                    | μΑ   |
| V <sub>IH</sub>                | Input high voltage             | CMOS levels                                                        | 0.7 × V <sub>DD</sub> | -   | _                     | V    |
| V <sub>IL</sub>                | Input low voltage              | CMOS levels                                                        | _                     | _   | 0.3 × V <sub>DD</sub> | V    |
| C <sub>IN</sub> [3]            | Input capacitance              | Input pins excluding XIN                                           | _                     | _   | 7                     | pF   |
| R <sub>UP</sub> <sup>[3]</sup> | Pull-up resistor on input pins | $V_{DD}$ = 3.14 to 3.47 V, measured at $V_{IN}$ = 0 V              | 80                    | 100 | 150                   | kΩ   |
| I <sub>DD</sub>                | Supply current                 | AV <sub>DD</sub> /V <sub>DD</sub> /V <sub>DDL</sub> Current.       | _                     | 42  | 60                    | mA   |

#### **Thermal Resistance**

| Parameter [3] | Description                           | Test Conditions                                                                                 | 16-pin TSSOP | Unit |
|---------------|---------------------------------------|-------------------------------------------------------------------------------------------------|--------------|------|
| $\theta_{JA}$ |                                       | Test conditions follow standard test methods and procedures for measuring thermal impedance, in |              | °C/W |
| $\theta_{JC}$ | Thermal resistance (junction to case) | accordance with EIA/JESD51.                                                                     | 14           | °C/W |

#### Notes

- A fundamental parallel resonant crystal must be used.
   Guaranteed by Characterization, not 100% tested.
   These parameters are guaranteed by design and are not tested.

Document Number: 38-07350 Rev. \*E



### **AC Electrical Specifications**

| Parameter [4] | Description                     | Condition                                                                                              | Min | Тур | Max | Unit |
|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| DC            | Output duty cycle               | Duty Cycle is defined in Figure 2, 50% of V <sub>DD</sub>                                              | 45  | 50  | 55  | %    |
| ER            | Rising edge rate                | Output clock edge rate,<br>measured from 20% to 80% of $V_{DD}$ ,<br>$C_{LOAD}$ = 15 pF. See Figure 3. | 0.8 | 1.4 | _   | V/ns |
| EF            | Falling edge rate               | Output clock edge rate,<br>measured from 80% to 20% of $V_{DD}$ ,<br>$C_{LOAD}$ = 15 pF. See Figure 3. | 0.8 | 1.4 | _   | V/ns |
| tj            | RMS clock cycle-to-cycle Jitter | RMS cycle-to-cycle jitter with spread on. Measured at V <sub>DD</sub> /2.                              | _   | 15  | 40  | ps   |

### **Voltage and Timing Definitions**

Figure 2. Duty Cycle Definition

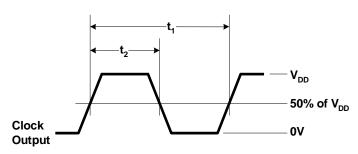
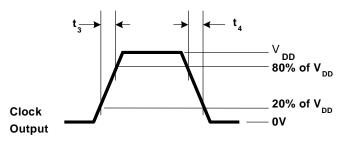
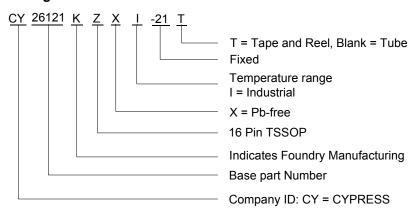




Figure 3. ER = (0.6 ×  $V_{DD}$ ) /t<sub>3</sub>, EF = (0.6 ×  $V_{DD}$ ) /t<sub>4</sub>



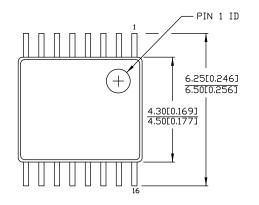
#### Notes


<sup>4.</sup> Guaranteed by Characterization, not 100% tested.



### **Ordering Information**

| Ordering Code   | Package Type                 | Operating Range             |
|-----------------|------------------------------|-----------------------------|
| CY26121KZXI-21  | 16-pin TSSOP                 | Industrial, –40 °C to 85 °C |
| CY26121KZXI-21T | 16-pin TSSOP – Tape and Reel | Industrial, –40 °C to 85 °C |

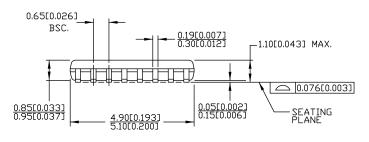

#### **Ordering Code Definitions**

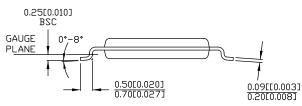




### **Package Drawing and Dimensions**

Figure 4. 16-pin TSSOP (4.40 mm Body) Z16.173/ZZ16.173 Package Outline, 51-85091





DIMENSIONS IN MMCINCHES) MIN. MAX.

REFERENCE JEDEC MO-153

PACKAGE WEIGHT 0.05gms

| PART #   |                |  |
|----------|----------------|--|
| Z16.173  | STANDARD PKG.  |  |
| ZZ16.173 | LEAD FREE PKG. |  |





51-85091 \*E



### **Acronyms**

Table 1. Acronyms Used in this Document

| Acronym | Description                       |  |
|---------|-----------------------------------|--|
| ESR     | Equivalent Series Resistance      |  |
| PLL     | Phase-Locked Loop                 |  |
| TSSOP   | Thin-Shrunk Small Outline Package |  |

### **Document Conventions**

#### **Units of Measure**

Table 2. Units of Measure

| Symbol | Unit of Measure |
|--------|-----------------|
| °C     | degree Celsius  |
| kΩ     | kilohm          |
| MHz    | megahertz       |
| μΑ     | microampere     |
| mA     | milliampere     |
| mW     | milliwatt       |
| ns     | nanosecond      |
| Ω      | ohm             |
| %      | percent         |
| pF     | picofarad       |
| ps     | picosecond      |
| V      | volt            |



# **Document History Page**

| Davi | CON No  | Janua Data | Orig. of      | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|---------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev. | ECN No. | Issue Date | Change        | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| **   | 121669  | 02/11/03   | CKN           | New data sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *A   | 2440886 | See ECN    | KVM /<br>AESA | Updated Ordering Information: Added part numbers CY26121ZXC-21, CY26121ZXC-21T, CY26121ZXI-21, and CY26121ZXI-21T. Added part numbers CY26121KZC-21, CY26121KZC-21T, CY26121KZI-21, and CY26121KZI-21T. Added part numbers CY26121KZXC-21, CY26121KZXC-21T, CY26121KZXI-21T, CY26121KZXI-21, and CY26121KZXI-21T. Removed part numbers CY26121KZXI-21T. Removed part numbers CY26121ZI-11, CY26121ZI-11T, CY26121ZI-31 and CY26121ZI-31T. Added Note "Not recommended for new designs." and referred in some MPNs Updated to new template. |
| *B   | 2899683 | 03/26/10   | KVM           | Removed reference to -2, -3, -11, -31 parts in all instances across the document. Updated Ordering Information: Removed inactive parts. Removed Note "Not recommended for new designs." and its references. Updated Package Drawing and Dimensions.                                                                                                                                                                                                                                                                                        |
| *C   | 3383431 | 09/26/2011 | PURU          | Updated Logic Block Diagram. Added Ordering Code Definitions under Ordering Information. Updated Package Drawing and Dimensions. Added Acronyms and Units of Measure.                                                                                                                                                                                                                                                                                                                                                                      |
| *D   | 4556342 | 10/30/2014 | TAVA          | Updated Package Drawing and Dimensions: spec 51-85091 – Changed revision from *C to *E. Updated to new template. Completing Sunset Review.                                                                                                                                                                                                                                                                                                                                                                                                 |
| *E   | 5279177 | 05/20/2016 | PSR           | Added Thermal Resistance. Updated to new template.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



### Sales, Solutions, and Legal Information

#### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

#### **Products**

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc **Touch Sensing** cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

#### PSoC<sup>®</sup>Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

#### **Cypress Developer Community**

Forums | Projects | Video | Blogs | Training | Components

#### **Technical Support**

cypress.com/support

© Cypress Semiconductor Corporation, 2003-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems of the medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# Cypress Semiconductor:

<u>CY26121KZXI-21</u> <u>CY26121KZXI-21T</u> <u>CY26121ZC-21</u> <u>CY26121KZI-21</u> <u>CY26121KZC-21T</u> <u>CY26121ZI-21</u> CY26121KZC-21 CY26121KZI-21T CY26121ZC-21T