LIN System Basis ICs

Datasheet

Contents

1. LIST OF TABLES	4
2. LIST OF FIGURES	4
3. ELECTRICAL SPECIFICATION	5
3.1. DC CHARACTERISTICS	11
4. PIN CONFIGURATION	15
4.1. MLX80030 AND MLX80050 - SOIC8	
3. FUNCTIONAL DESCRIPTION	17
3.1. SUPPLY PIN VS	
4. OPERATIONAL MODES	21
4.1. MODES OVERVIEW 4.2. INITIALISATION AND STANDBY MODE 4.3. NORMAL MODE 4.4. SILENT MODE. 4.5. SLEEP MODE. 4.6. INIT-STATE.	
5. WAKE UP PROCEDURES	28
5.1. WAKE UP SOURCE RECOGNITION IN MLX80031/51	28
6. FUNCTIONALITY	29
6.1. RESET BEHAVIOUR OF MLX8003x/5x 6.2. THERMAL SHUTDOWN 6.3. VS UNDER VOLTAGE RESET 6.4. LIN-TRANSCEIVER	
U.T. LIIN INAINOCLIVEN	

LIN System Basis ICs

6.5. VOLTAG	e Regulator	30
7. WINDOW-\	WATCHDOG (ONLY MLX80031/51)	31
7.2. ALL WA 7.2.1. At 7.2.2. W	O31/51 WATCHDOG BEHAVIOUR TCHDOG START-UP SCENARIOS Teer power-on and initialization Take up indicated transition to Standby Mode from Sleep or Silent Mode Indervoltage reset on VCC on Normal Mode or Silent Mode	32 32 32
7.2.4. EI 7.3. CALCUL	N indicated transition from Silent Mode to Normal Mode	32 33
8. FAIL-SAFE I	FEATURES	35
9. APPLICATIO	ON HINTS	36
	PERATING AREA	
10. ESD AND	EMC	38
10.1.1. 10.1.2. 10.1.3. 10.1.4. 10.1.5. 10.2. TYPICA 10.2.1. 10.2.2. 10.2.3.	Automotive Qualification Test Pulses Test Pulses On supply Lines Test pulses on Pin LIN Test pulses on signal lines EMV Test pulse definition LAPPLICATION CIRCUITRY External Circuitry on Supply Lines External Circuitry on LIN Lines External Circuitry on Signal Lines External Circuitry on Signal Lines CAL SPECIFICATION	
	B PACKAGE	
	HISTORY	
	D INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS VICENING PROCESSES	
14. DISCLAIM	ER	48
15. CONTACT		49

LIN System Basis ICs

1. List of Tables

Table 1: Absolute maximum ratings	5
Table 2: Voltage Regulator and Reset Unit	6
Table 3: LIN DC Characteristics	10
TABLE 4: AC CHARACTERISTICS	11
TABLE 5: MLX80050/30 PIN LIST IN SOIC8	15
TABLE 6: MLX80051/31 PIN LIST IN QFN20	16
TABLE 7: MLX80050/30 OPERATION MODES	22
TABLE 8: MLX80051/31 OPERATION MODES	22
Table 9: Parameters of Window Watchdog	34
TABLE 10: WINDOW WATCHDOG TIMING SELECTION	34
TABLE 11: TEST PULSES SUPPLY LINE	38
TABLE 12: TEST PULSES LIN	39
TABLE 13: TEST PULSES SIGNAL LINES	39
TABLE 14: TEST PULSES SHAPES ISO7637-2	40
TABLE 15: TEST PULSES SHAPES ISO7637-3	41
Table 16: SOIC8 dimensions	43
Table 17: QFN20 Package Dimensions	44
2. List of Figures	
FIGURE 1: LIN PROPAGATION DELAYS	14
Figure 2: LIN duty cycles	14
FIGURE 3: MLX80050/30 BLOCK DIAGRAM	17
FIGURE 4: MLX80051/31 BLOCK DIAGRAM	
FIGURE 5: MLX8005x3x STATE DIAGRAM OF MODES OF OPERATION	21
FIGURE 6: LIN WAKE-UP FROM SILENT MODE	24
FIGURE 7 LOCAL WAKE-UP FROM SILENT MODE VIA WAKE	25
FIGURE 8: REMOTE WAKE-UP FROM SLEEP MODE	26
FIGURE 9: LOCAL WAKE-UP FROM SLEEP MODE	27
FIGURE 10: VCC RESET BEHAVIOR	29
FIGURE 11: MLX80031/51 WATCHDOG BEHAVIOR	31
FIGURE 12: WATCHDOG TIMING	32
FIGURE 13: WATCHDOG OPEN AND CLOSE WINDOW TOLERANCES	33
FIGURE 14: SAFE OPERATING AREA FOR MLX80030/50 IN SOIC-8 FOR VSUP UP TO 18V	36
FIGURE 15: SAFE OPERATING AREA FOR MLX80031/51 IN QFN20 FOR VSUP UP TO 18V	36
FIGURE 16: APPLICATION CIRCUIT WITH MLX80050 OR MLX80030 (SLAVE NODE)	37
FIGURE 17: APPLICATION CIRCUIT WITH MLX80031 OR MLX80051 (SLAVE NODE)	37
FIGURE 18: SOIC8 DRAWING	
FIGURE 10: OEN20 DRAWING	11

LIN System Basis ICsDatasheet

3. Electrical Specification

All voltages are referenced to ground (GND), positive currents flow into the IC.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage at VS	Vs	Respective to GND	-0.3	40	V
Transient voltage ISO 7637/2		pulse 1, 2	-100	100	V
Transient voltage ISO 7637/2		pulse 3A; 3B, coupling 1nF	-150	100	V
DC voltage LIN	V _{LIN_DC}	Respective to GND and VS Loss of Ground (VGND = VS)	-20 -30	40 40	V
DC voltage WAKE	V _{WAKE_DC}	Respective to GND and VS Loss of Ground (VGND = VS)	-20 -30	40 40	V
DC voltage INH	V _{INH_DC}		-0.3	V _S +0.3	V
DC voltage VCC	V _{VCC_DC}		-0.3	7	V
DC voltage RTG	V_{RTG_DC}		-0.3	7	V
Input voltage at low voltage I/O's (EN, TxD, RxD, NRES, WDI, RB _{WD} , MODE)	V _{IN}		-0.3	7	V
	V _{ESDIEC}	IEC 61000-4-2, direct ESD Pin LIN with LIN cap 220pF Pin VS to GND	20 15		kV
	V _{ESDIECind}	IEC 61000-4-2, indirect ESD Pin LIN with LIN cap 220pF	15		kV
ESD voltage	V _{ESDHBM}	HBM (CDF-AEC-Q100-002) Pin LIN Pin WAKE, KL15, VS Other pins	±6 ±4 ±2		kV kV kV
	V _{ESDCDM}	CDM (AEC-Q100-011)	±500		V
Power dissipation	P ₀		Internal limited' see also chapter 9.1		
Thermal resistance from junction to ambient	R _{THJA_SOIC8}	JEDEC 1s0p board, no air flow		150	K/W
	R _{THJA_QFN20}	JEDEC 1s0p board, no air flow		50	K/W
Junction temperature	T _J		-40	150	°C
Storage temperature	T _{STG}		-55	150	°C

Table 1: Absolute maximum ratings

LIN System Basis ICs Datasheet

3.1. DC Characteristics

Unless otherwise specified all values in the following tables are valid for $V_S = 5$ to 27V and $T_{AMB} = -40$ to 125° C. All voltages are referenced to ground (GND), positive currents flow into the IC. For MLX80031/51 apply: RTG connected to VCC.

Table 2: Voltage Regulator and Reset Unit

	Parameter	Symbol	Condition	Min	Тур	Max	Unit	T ^[1]
Supply	Voltage Pin VS							
	Nominal DC operating voltage	Vs		5		27	V	Α
1.01	Vs under voltage reset	Vsuvr_off	V _S ramp up	4.1		5.0	V	Α
1.02	Vs under voltage reset	Vsuvr_on	V _S ramp down	3.7		4.8	V	Α
1.03	Vs under voltage reset hysteresis	V _{SUVR_HYS}	Vsuvr_off - Vsuvr_on	0.04	0.3	0.7	V	А
Supply	y currents MLX80030, MLX800	50						
2.00	Supply current, normal mode	I _{VS_nor}	$V_S \le 14V, \ V_{EN} > 2V$. LIN recessive, no load at VCC	400	750	1500	μА	А
2.01	Supply current, sleep mode	Ivs_sleep	$V_S \le 14V$ $T_A = -40 ^{\circ}\text{C}$ $T_A = 25 ^{\circ}\text{C}$ $T_A \le 85 ^{\circ}\text{C}$ $T_A \le 125 ^{\circ}\text{C}$		15	30 20 30 45	μА	А
2.02	Supply current, silent mode	Ivs_sil	$V_S \le$ 14V, LIN recessive no load at VCC $T_A = -40~^{\circ}\text{C}$ $T_A = 25~^{\circ}\text{C}$ $T_A \le 85~^{\circ}\text{C}$ $T_A \le 125~^{\circ}\text{C}$		65	85 95 100 125	μА	А
Supply	y currents MLX80031, MLX800	51						
2.00	Supply current, normal mode	I _{VS_nor}	$V_S \le 14V$, $V_{EN} > 2V$, $RB_{WD} = 60k$ LIN recessive, no load at VCC	400	750	1500	μА	А
2.01	Supply current, sleep mode	Ivs_sleep	$V_S \leq 14V$ $T_A = -40 ^{\circ}\text{C}$ $T_A = 25 ^{\circ}\text{C}$ $T_A \leq 85 ^{\circ}\text{C}$ $T_A \leq 125 ^{\circ}\text{C}$		15	30 20 30 45	μА	А
2.02	Supply current, silent mode	I _{VS_sil}	$V_S \le$ 14V, LIN recessive no load at VCC $T_A = -40~^{\circ}\text{C}$ $T_A = 25~^{\circ}\text{C}$ $T_A \le 85~^{\circ}\text{C}$ $T_A \le 125~^{\circ}\text{C}$		65	85 95 100 125	μА	А

LIN System Basis ICs

Datasheet

Voltage	Regulator Pin VCC							
MLX800	050, MLX80051 (RTG connect	ed to VCC)						
3.01	Output voltage VCC	V _{CCn5}	$\begin{aligned} 6\text{V} &\leq \text{V}_S \leq 18\text{V} \\ 1\text{mA} &\leq \text{I}_{\text{LOAD}} \leq 70\text{mA} \\ & \text{T}_A = 25^{\circ}\text{C} \\ & \text{T}_A = -40^{\circ}\text{C to } 125^{\circ}\text{C} \end{aligned}$	4.90 4.85	5.0	5.10 5.15	V	А
	Output voltage VCC under disturbances functional state A	VCCndis5	$6V \leq V_S \leq 18V, T_A = 25^{\circ}C$ $R_{LOAD} = 330 \ \Omega$	4.75		5.25	V	С
3.02		V _{D10_5}	$V_{\text{S}} > 4V$, I_{VCC} = 10mA		75	120	mV	С
3.03	Drop-out voltage [2]	V _{D30_5}	$V_{\text{S}} > 4V$, I_{VCC} = 30mA		220	350	mV	С
3.04		V _{D70_5}	$V_S > 4V$, $I_{VCC} = 70mA$		500	800	mV	С
3.05	Line regulation	V _{LNR5}	$6V \leq V_S \leq 18V, \ I_{VCC} = \\ 30mA \\ 6V \leq V_S \leq 18V, \ I_{VCC} = \\ 70mA$			20 100	mV	А
3.06		V _{LDR10_5}	1 mA < I _{LOAD} < 10 mA			50	mV	Α
3.07	Load regulation	V _{LDR30_5}	1 mA < I _{LOAD} < 30 mA			90	mV	А
3.08		V _{LDR70_5}	1 mA < I _{LOAD} < 70 mA			150	mV	А
3.09	Output current limitation [3]	IVCCLIM_5	$V_S > 6V$ $T_A = -40 ^{\circ}C$ $25 ^{\circ}C \le T_A \le 125 ^{\circ}C$	-135 -150	-110	-75 -80	mA	А
3.10	Load capacity	CLOAD		2.2	22		μF	D
MLX800	030, MLX80031 (RTG connect	ed to VCC)						
3.01	Output voltage VCC	V _{CCn3}	$\begin{array}{c} 4~V \leq V_S \leq 18~V \\ 1m~A \leq I_{LOAD} \leq 70~mA \\ T_A = 25~^{\circ}C \\ T_A = -40~^{\circ}C~to~125~^{\circ}C \end{array}$	3.234 3.201	3.3	3.366 3.399	V	А
	Output voltage VCC under disturbances functional state A	VCCndis3	6 V \leq V _S \leq 18 V, T _A = 25 °C R _{LOAD} = 330 Ω	3.135		3.465	V	С
3.02	Drop-out voltage [2]	V _{D10_3}	$V_{\text{S}} > 3~\text{V}$, I_{VCC} = 10 mA			100	mV	С
3.03		V _{D30_3}	$V_{\text{S}} > 3 \text{ V}$, I_{VCC} = 30 mA			300	mV	С
3.04		V _{D70_3}	$V_{\text{S}} > 3 \text{ V}$, I_{VCC} = 70 mA			700	mV	С
3.05	Line regulation	VLNR_3	$5~V \le V_S \le 18~V,~I_{VCC} = 30 mA$ $5V \le V_S \le 18V,~I_{VCC} = 70 mA$			20 100	mV	А
3.06	Load regulation	V _{LDR10_3}	1 mA < I _{LOAD} < 10 mA			50	mV	Α
3.07		V _{LDR30_3}	1 mA < I _{LOAD} < 30 mA			90	mV	А
3.08		V _{LDR70_3}	1 mA < I _{LOAD} < 70 mA			150	mV	Α
3.09	Output current limitation [3]	IVCCLIM_3	V _S > 4 V T _A = -40 °C	-135	-110	-75	mA	А

LIN System Basis ICs

			25 °C ≤ T _A ≤ 125 °C	-150		-80			
3.10	Load capacity	CLOAD		2.2	22		μF	D	

4.01	Output voltage low	Vol_NRES	I _{NRES} = 1 mA			0.25	V	P
4.02	Leakage current low	I _{leak_RxD}	V _{NRES} = 0 V	-5		5	μΑ	F
4.03	Leakage current high	I _{leak_RxD}	V _{NRES} = V _{CC}	-5		5	μΑ	1
	Output voltage high NRES under disturbances to fulfil functional state A	V _{OH_NRES}	R _{load} = 2.7 k to VCC	V _{CC} -1			V	(
MLX8	0050, MLX80051							
5.01	VCC reset threshold on NRES pin	V _{RES5V}	t > t _{rr}	3.9	4.10	4.3	V	,
5.02	V _{RES} Hysteresis V _{RESHYS} = V _{RES(ON)} - V _{RES(OFF)}	VRESHYS5V				200	mV	(
MLX8	0030, MLX80031							
5.01	VCC reset threshold on NRES pin	V _{RES3V}	t > t _{rr}	2.75	2.95	3.15	V	,
5.02	VRES Hysteresis VRESHYS = VRES(ON) - VRES(OFF)	V _{RESHYS3V}				100	mV	
nput P	Pin EN							
6.01	Input voltage low	VIL_EN				0.8	V	
6.02	Input voltage high	V _{IH_EN}		2.0			V	
6.03	Hysteresis	V _{HYS_EN}		50	100	700	mV	
6.04	Pull-down resistor	R _{pd_EN}	V _{EN} =VCC	50	125	250	kΩ	
nput F	in WAKE (MLX80031, MLX800	51)						
7.01	High level input voltage	VIH_WAKE	Sleep mode	Vs-1V			V	
7.02	Low level input voltage	VIL_WAKE	Sleep mode			Vs-3.3V	V	
7.03	Pull up current WAKE	I _{WAKE_PU}	Normal & sleep	-30	-15	-1	μΑ	
7.04	Leakage current WAKE high	I _{WAKE_lk}	V _S = 18V	-5		5	μΑ	
nput	Pin KL15 (MLX80031, MLX8005	1)						
8.01	High level input voltage	V _{IH_KL15}	$Rv = 50k\Omega$	4		V _S +0.3V	V	
8.02	Low level input voltage	VIL_KL15	$Rv = 50k\Omega$	-1		2	V	
8.03	Pull down current KL15	I _{KL15_PD}			30	65	μA	
nput	Pin MODE (MLX80031, MLX800	51)						
23.01	Input voltage low	VIL_MODE				0.8	V	
23.02	Input voltage high	VIH_MODE		2.0			V	

LIN System Basis ICs

23.03	Hysteresis	V _{HYS_MODE}		50	100	600	mV	С
23.04	Pull-down resistor	R _{pd_MODE}	V _{MODE} = VCC	200		600	kΩ	Α

Input P	in NWDI (MLX80031, MLX8005	51)						
9.01	Input voltage low	V _{IL_NWDI}				0.8	V	Α
9.02	Input voltage high	V _{IH_NWDI}		2.0			V	Α
9.03	Hysteresis	V _{HYS_NWDI}		50	100	600	mV	С
9.04	Pull-up resistor to VCC	R _{pu_NWDI}	VN _{WDI} = 0V	125	250	375	kΩ	Α
9.05	Min low pulse width	T _{minlow_NWDI}	one WD_OSC clock period	1			1	D
Watcho	log Oscillator pin RBWD (MLX8	80031, MLX	80051)					
10.01	Voltage at RB _{WD}	V_{RBwd}	Ι _{ΟυΤ} = -50 μΑ		1.2		V	Α
10.02	Range of RB _{WD} resistance	RBwd		20		60	kΩ	В
10.03	RB _{WD} short resistance threshold to enable fail-safe state	RBwdsh	see paragraph 7.3	0		330	Ω	В
Output	INH (MLX80031, MLX80051)			·			•	
11.01	ON Resistance	Ron_inh	V _S = 12V		20	60	Ω	Α
11.02	Leakage current INH high	leakH_INH	Sleep Mode, V _{INH} = 18V, V _S = 18V	-5		5	μA	А
11.03	Leakage current INH low	I _{leakL_INH}	Sleep Mode, V _{INH} = 0V, V _S = 18V	-5		5	μA	А
Therma	l Protection							
	Thermal shutdown	TJSHD		155	170	190	°C	D
	Thermal hysteresis	TJHYS			10	30	°C	D

Notes:

- [1] A = 100% serial test, B = Operating parameter, C = characterization data, D = Value guaranteed by design
- [2] The nominal VCC voltage is measured at VSUP = 12V. If the VCC voltage is 100mV below its nominal value then the voltage drop is VD = VSUP = VCC
- [3] Functionality range of current limitation at silent mode is limited by reset threshold VRES. Below them the IC change to normal mode.

 Validity for IVCC_MAXsil: VCCn (min)

 VCC

 VRES

Table 3: LIN DC Characteristics

Param	eter	Symbol	Condition	Min	Тур	Max	Unit	T [1]
Genera	al			'				
12.01	Pull up current LIN (recessive)	I _{INLINpu}	V _{LIN} = 18 V, V _S = 6V			80	μΑ	Α
12.02	Pull up resistor LIN	RLINpu	$V_S = 12V$, $V_{LIN} = 0V$	20	30	60	$k\Omega$	Α
12.03	Reverse current LIN (dominant)	I _{INLINdom}	V _S = 12V, V _{LIN} = 0V	-400			μΑ	А
12.04	Reverse current LIN (recessive)	I _{INLINrec}	$\begin{array}{l} V_{LIN} \geq V_{S_i} \; 8V \leq \; V_{LIN} \leq \\ 18V, \\ 8V \leq \; V_{S} \leq 18V \end{array} \label{eq:vlin}$	0		23	μΑ	Α
12.05	Reverse current LIN (loss of battery)	I _{INLIN_lob}	$V_S = 0V$, $0V \le V_{LIN} \le 18V$	0		23	μΑ	А
12.06	Reverse current LIN (loss of ground)	I _{INLIN_log}	$\begin{array}{l} V_S\text{= }12V\text{, }0V\leq \ V_{LIN}\leq \\ 18V \end{array}$	-10		50	μΑ	Α
	Voltage drop serial Diode	$V_{SerDiode}$		0.4	0.7	1.0	V	D
	Battery Shift	V_{Shift_BAT}	related to VS	0		11.5	%	D
	Ground Shift	V_{Shift_GND}	related to VS	0		11.5	%	D
	Ground-Battery shift difference	V_{Shift_diff}	related to VS	0		8	%	D
Receiv	er							
12.07	Receiver dominant voltage	V_{BUSdom}				0.4*V _S		Α
12.01	Receiver recessive voltage	V _{BUSrec}		0.6*Vs				Α
12.08	Centre point of receiver threshold V _{thr_cnt} = (V _{thr_rec} +V _{thr_dom})/2	V_{thr_cnt}	$7.0 \text{ V} \le \text{V}_{\text{S}} \le 18 \text{ V}$	0.475*Vs	0.5*V _S	0.525*V _S	V	А
12.09	Receiver Hysteresis Vhys = Vthr_rec-Vthr_dom	V_{hys}			0.15*V _S	0.175*V _S		А
Transn	nitter							
			$R_{load} = 500\Omega$, $V_S = 5V$	0		1.2		D
12.10	Transmitter dominant voltage	Vol _{bus}	R_{load} = 500 Ω , V_S >= $7V$	0		0.2*Vs	V	Α
12.11	Current limitation LIN	I _{LIM}	$V_{LIN} = V_S$, $TxD = 0V$	40	120	200	mA	Α
12.12	Transmitter recessive voltage	Voh _{BUS}	No load, $V_{EN} = 0/5V$, $VTxD = 5V$	0.8*V _S		Vs	V	А

Input/O	utput Pin TxD							
13.01	Input voltage low TxD	$V_{\text{IL_TxD}}$	rising			0.8	V	Α
13.02	Input voltage high TxD	$V_{\text{IH_TxD}}$		2			V	Α
13.03	Hysteresis	V _{HYS_TxD}		50		700	mV	С
13.04	Pull-up resistor to VCC	R_{pu_TxD}	$V_{TxD} = 0V$	125	250	375	kΩ	Α

LIN System Basis ICs

13.06	Low level output current	l _{OL_TxD}	local wake-up request; standby mode; V _{TxD} = 0.4V	1.5			mA	A
Output	Pin RxD							
14.01	Output voltage low RxD	$V_{\text{OL_RxD}}$	$I_{RxD} = 2 \text{ mA}$			0.6	V	Α
14.02	Pull-up resistor to VCC	R_{pu_RxD}	$V_{RxD} = 0V$	3	5	7	kΩ	Α
14.03	Leakage current high	I _{leak_RxD}	$V_{RxD} = VCC$	-5		5	μΑ	Α
	Output voltage high RxD under disturbances to fulfil functional state A	V _{OH_RxD}	R _{load} = 2.7k to VCC	Vcc-1			V	С

Notes:

[1] A = 100% serial test, B = Operating parameter, C = characterization data, D = Value guaranteed by design

3.2. AC Characteristics

 $6V \leq V_S \leq 27V,\, \text{-}40^{\circ}C \leq T_A \leq 125^{\circ}C,\, RTG$ connected to VCC, unless otherwise specified

Table 4: AC Characteristics

	Parameter	Symbol	Condition	Min	Тур	Max	Unit	T ^[1]	
Reset parameter on NRES									
16.01	Reset time	t _{Res}	V _S = 14V	2.5	4	5.5	ms	Α	
16.02	Reset rising time	trr	Vs = 14V	3.0	6.5	12	μS	Α	
Watchd	log parameter on NRES (MLX80031	, MLX80051)							
17.01	Watchdag Oscillator Pariod	twposc20	RB_{WD} = $20k\Omega \pm 1\%$	7.0	8.05	9.0	μS	Α	
17.02	Watchdog-Oscillator Period	twDosc60	$RB_{WD} = 60 k\Omega \pm 1\%$	19.0	23.05	25.2	μS	Α	
	Watchdog Close Window	tcw	tCW = cycles * tWDOSC		1053		cycles	D	
	Watchdog Open Window	tow	tOW = cycles * tWDOSC		1105		cycles	D	
17.05	Watchdog Reset Low Time	twDres		3	4	5	ms	Α	
	Watchdog Lead Window	t ldt	tOWS = cycles * tWDOSC		7895		cycles	D	
17.06	Watchdog Safety Oscillator	tWDsafety	RBWD open / RBWD gnd	30	50	75	μs	А	

LIN System Basis ICs

18.01	Remote Wake-up filter time	twu_remote		30	70	150	μS	Α
10.01	Kemole wake-up miler lime	Lwu_remote	a	30	70	150	μs	Α
18.02	Wake-up filter time on WAKE (only MLX80051,MLX80031)	t _{wu_WAKE}	Sleep or Silent Mode, WAKE falling edge	10		50	μS	А
18.03	Wake-up filter time on KL15 (only MLX80051,MLX80031)	twu_KL15	Sleep or Silent Mode, KL15 rising edge	80	168	250	μЅ	А
18.04	Propagation delay from Normal Mode to Sleep Mode via EN	t _{pd_sleep}	V _{EN} = 0V	5	15	20	μs	Α
18.05	Propagation delay from Standby Mode to Normal Mode via EN	tpd_norm	V _{EN} = 5V	5	15	20	μs	А
18.06	Propagation delay from Silent Mode to Normal Mode via EN	t _{pd_sil_n}	V _{EN} = 5V Silicon Revision C	5	15	40	μs	А
18.07	Propagation delay: go to silent mode after EN=H/L	t _{pd_sil}	check falling edge on RBwd, EN = 0V Silicon Revision C			20	μS	А
	Setup time TxD to EN for low slew mode	t _{set_TxD_EN}		5			μS	В
	Hold time TxD after EN for low slew mode	thold_TxD_EN		20			μs	В
	TXD hold time for mode change	thold_TxD_MCH				2	μS	D
18.08	Debouncing time EN	t _{deb_EN}		2	5	20	μS	Α
18.09	TxD dominant time out	t _{TxD_to}	Normal Mode, V _{TxD} = 0V	27		60	ms	А
18.10	Standby time out	t _{sby_to}	Standby Mode, V _{EN} = 0V	150		500	ms	Α
18.11	Wake up time vs. EN	t _{wu_EN}	Wake form sleep via EN=L/H	2	5	20	μS	Α
Seneral	LIN Parameter							
19.01	Receiver propagation delay LIN -> RxD	t _{dr_RxD}	C _{L(RXD)} = 50 pF			6	μЅ	А
19.02	Symmetry prop. delay LIN->RxD	t _{dsym_RxD}	t _{dr_RXD} - t _{df_RXD}	-2		2	μS	А
19.03	Receiver debouncing time	t _{deb_LIN}		1.5	2.8	4.0	μS	D

LIN System Basis ICs

19.04	slew rate rising edge LIN	dV/dTrise	Normal Mode LIN-Load: 1kΩ/1nF	1.0	1.5	2.5	V/μs	С
19.05	slew rate falling edge LIN	dV/dTfall		-2.5	-1.5	-1.0	V/μs	С
19.06	slew rate rising edge LIN	dV/dTrise			0.8	1.3	V/μs	С
19.07	slew rate falling edge LIN	dV/dTfall	LIN-Load: 1kΩ/1nF	-1.3	-0.8	-0.3	V/µs	С
	Internal capacity	C_{LIN}	Pulse at LIN via 10kOhm with 0/10V; VS = open		25	35	pF	D
LIN tran	sceiver parameter according to LI	N Physical La	yer Spec. rev. 2.0, tabl	e 3.4 (20kb	it/s)			
Conditio	ons: Normal slew mode; $V_S = 7$ TxD signal: $t_{Bit} = 50 \mu s$, t_{w}			Ω/6.8nF; 50	0Ω/10nF			
	Minimal recessive bit time	t _{rec(min)}		40	50	58	μs	
	Maximum recessive bit time	trec(max)		40	50	58	μs	
20.01	Duty cycle 1	D ₁	$D_1 = t_{rec(min)} / (2*t_{Bit})$	0.396				Α
20.02	Duty cycle 2	D ₂	$D_2 = t_{rec(max)} / (2*t_{Bit})$			0.581		Α
Transce	eiver parameter according to LIN P	hysical Layer	Spec. rev. 2.0, table 3.	.4 (10.4kbit/	/s)			
Conditio	hns: Low slew mode; V_S =7.0\ TxD signal: t_{Bit} = 96 μ s, t_w			.8nF; 500Ω	/10nF			
	Minimal recessive bit time	trec(min)		80	96	113	μS	
	Maximum recessive bit time	t _{rec(max)}		80	96	113	μS	
21.01	Duty cycle 1	D ₃	$D_3 = t_{rec(min)} / (2*t_{Bit})$	0.417				А
21.02	Duty cycle 2	D ₄	$D_4 = t_{rec(max)} / (2*t_{Bit})$			0.590		Α
LIN tran	nsceiver parameter according to SA	AE J2602 (10.	4kbit/s)					
Conditio	hns: Low slew mode; $V_S = 7.0$ \ TxD signal: $t_{Bit} = 96\mu s$, t_w			8nF;500Ω/′	10nF			
22.01	Minimal recessive delay TxD -> LIN	tx_rec_min				48	μS	А
22.02	Maximum recessive delay TxD -> LIN	tx_rec_max				48	μS	А
22.03	Minimal dominant delay TxD -> LIN	t _{x_dom_min}				48	μS	А
22.04	Maximum dominant delay TxD -> LIN	t _{x_dom_max}				48	μ\$	А
22.05	Maximum rec. to dom. delay	T _{r_d_max}	tx_rec_max - tx_dom_min			15.9	μS	Α
22.06	Maximum dom. to rec. delay	T _{d_r_max}	tx_dom_max - tx_rec_min			17.2	μS	Α
	1							

Notes:

 $[1] \qquad A = 100\% \ serial \ test, \ B = Operating \ parameter, \ C = characterization \ data, \\ D = Value \ guaranteed \ by \ design$

3.3. Timing diagrams

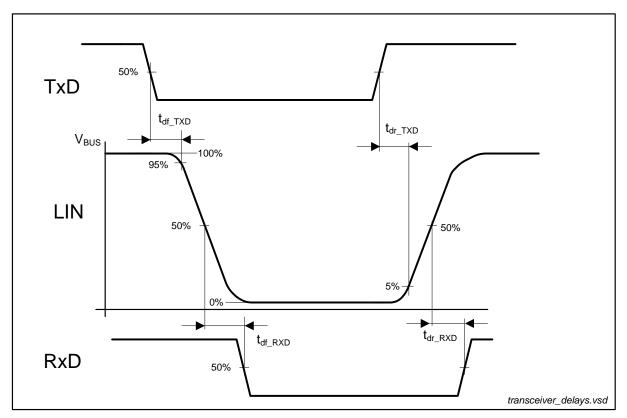


Figure 1: LIN propagation delays

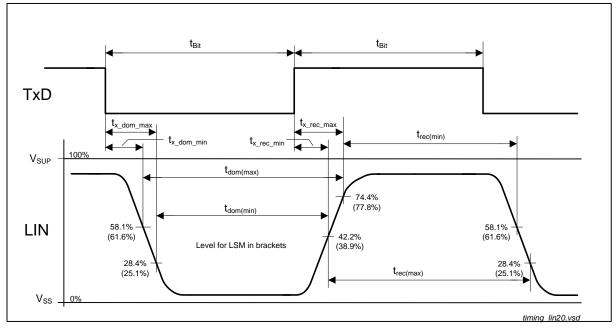
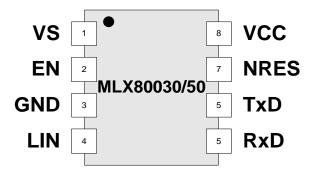
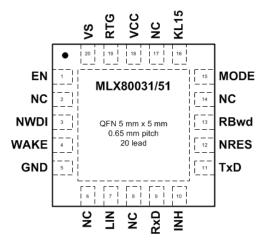



Figure 2: LIN duty cycles

4. Pin Configuration

4.1. MLX80030 and MLX80050 - SOIC8



Pin	Name	Ю-Тур	Description
1	VS	Р	Battery supply voltage
2	EN	1	Mode control pin, enables the normal operation mode when HIGH
3	GND	G	Ground
4	LIN	I/O	LIN bus transmitter/receiver pin, (low = dominant)
5	RxD	I/O	Received data from LIN bus, low in dominant state; internal pull-up resistor
6	TxD	I/O	Transmit data input (low = dominant)
7	NRES	0	Undervoltage reset output (open drain), low active
8	VCC	Р	Voltage regulator output

Table 5: MLX80050/30 pin list in SOIC8

4.2. MLX80031 and MLX80051 in QFN20

Pin	Name	Ю-Тур	Description
1	EN	I	Mode control pin, enables the normal operation mode when HIGH
2	NC		not connected
3	NWDI	1	Watchdog trigger input; negative edge; pull-up
4	WAKE	1	High voltage input for local wake up, negative edge triggered
5	GND	G	Ground
6	NC		not connected
7	LIN	I/O	LIN bus transmitter/receiver pin, (low = dominant)
8	NC		not connected
9	RxD	I/O	Received data from LIN bus, low in dominant state; internal pull-up resistor
10	INH	0	High side switch; High voltage
11	TxD	I/O	Transmit data input (low = dominant)
12	NRES	0	Reset output (open drain), low active
13	RB_WD	1/0	Bias resistor for watchdog oscillator
14	NC		not connected
15	MODE	1	Input to control window watchdog
16	KL15	1	High voltage input for local wake up, positive edge triggered
17	NC		not connected
18	VCC	I	Voltage regulator sense input
19	RTG	Р	Voltage regulator output
20	VS	Р	Battery supply voltage
	EP	G	Exposed pad should be connected to Ground

Table 6: MLX80051/31 pin list in QFN20

3. Functional Description

The MLX8003x/5x consists of a low drop 3.3V/5V voltage regulator capable to drive 70mA and a LIN bus transceiver, which is a bi-directional bus interface for data transfer between LIN bus and the LIN protocol controller. Additionally integrated is a Window-Watchdog/RESET unit with a fixed power-on-reset delay of 4 ms and an adjustable watchdog time defined by an external bias resistor.

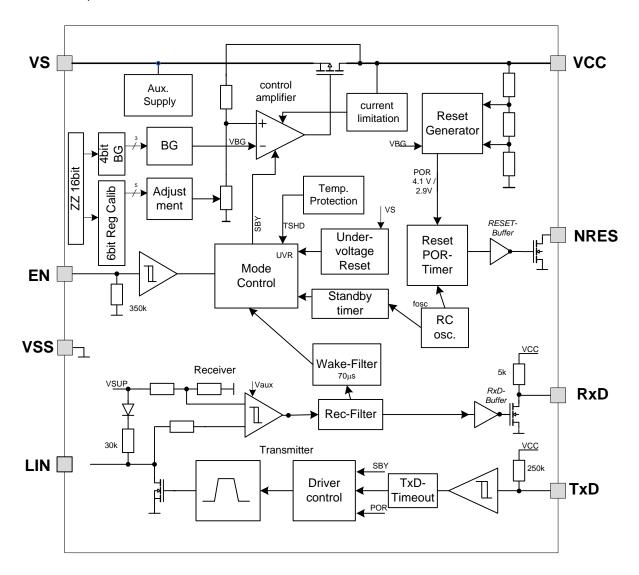


Figure 3: MLX80050/30 Block Diagram

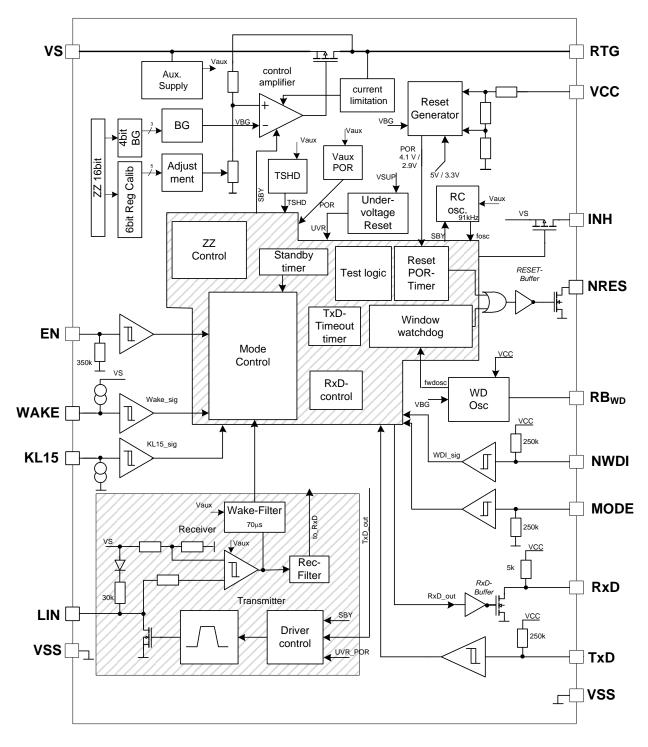


Figure 4: MLX80051/31 Block Diagram

LIN System Basis ICs

Datasheet

3.1. Supply Pin VS

VS is the operational voltage pin of MLX8005x/3x. The voltage range is VS = 6 to 18V. After switching on VS, the MLX8003x/5x starts at Standby Mode and the VCC voltage regulator ramps up. An undervoltage detection unit prevent an undefined operation for Vs < 4V.

VS- Power-ON

If VS is switched on, the MLX8003x/5x starts in Standby Mode. A combination of dynamic POR and under voltage reset circuitry generates a POR signal, which switches the MLX8003x/5x on. This power on behaviour is independent from the status of the EN-pin.

Power-on reset and under-voltage reset operate independent from each other, which secures the independence from the rise time of VS.

3.2. EN input pin

The ENable input is the mode control pin of MLX8003x/5x in combination with the TxD input.

The MLX8003x/5x is switched into the Sleep Mode with a falling edge and into normal mode with a rising edge at the EN pin. The state machine goes to Normal Mode after t_{Res} (see also Table 4: AC Characteristics). The Normal Mode will be kept as long as EN remains high.

The Normal Mode can be entered from Standby Mode, when the pin EN is driven HIGH. To prevent unwanted mode transitions, the EN input contains a debounce filter as specified ($t_{EN \ deb}$).

The pin EN contains a weak pull down resistor. The input thresholds are compatible to 3.3V and 5V supply systems.

MLX80031/51:

Additionally the positive edge on pin EN results in an immediate reset of the active low interrupt on pin RxD as well as the wake-up source recognition flag on pin TxD.

3.3. Ground pin GND

This is the reference pin of the IC. The absence of GND connection will not influence or disturb the communication between other LIN bus nodes.

3.4. LIN

This bidirectional pin consists of a low side driver in the output path and a high-voltage comparator in the input path. Furthermore is integrated a LIN pull-up resistor between LIN and VS pin. Low side driver consist a current limitation.

3.5. Receiver Output RxD

The pin RxD is a buffered open drain output. Output signals can be shifted by the external pull up resistor to 3.3V and 5V supply systems.

3.6. Transmit Input TxD

The transmit data stream of the LIN protocol controller applied to the pin TxD is converted into the LIN bus signal with slew rate control in order to minimize electromagnetic emissions.

The pin TxD contains a weak pull up resistor. The input thresholds are compatible to 3.3V and 5V supply systems. To enable the transmit path, the TxD pin has to be driven recessive (HIGH) after or during the normal mode has been entered.

3.6.1. TxD dominant time-out feature

With the first dominant level on pin TxD after the transmit path has been enabled, the dominant time-out counter is started. In case of a faulty blocked permanent dominant level on pin TxD the transmit path will be disabled after the specified time t_{TxD} to. The time-out counter is reset by the first negative edge on pin TxD.

LIN System Basis ICs
Datasheet

3.7. Output NRES

The NRES pin outputs the reset state as well as the watchdog condition in MLX80031 and MLX80051.

3.8. Voltage regulator pins VCC and RTG

The MLX80030/50 has an integrated low drop linear regulator with a p-channel-MOSFET as driving transistor. This regulator outputs a voltage of 5V $\pm 2\%$ (MLX80050/51) or 3.3V $\pm 2\%$ (MLX80030/31) with a load current of max. 70mA. The current limitation unit limits the output current for short circuits or overload to 130mA by decreasing the VCC voltage. This way the power dissipation is held constant at a maximum value.

The voltage regulator has two pins, output pin RTG and sense input pin VCC. For MLX80030/50 both, RTG and VCC, are commonly bonded to pin VCC on the package.

Devices MLX80031/51 has both pins bonded and provides the possibility to use an external npn transistor to boost the maximum load current. In this case the basis of the npn transistor has to be connected to the RTG pin and the emitter to the VCC pin. In case of using the internal voltage regulator, both pins have to be connected to each other.

3.9. INH Output (only MLX80031/51)

INH switches to high (VS connected to INH) in case of Standby or Normal Mode. INH is switched off at Silent and Sleep Mode. The pin will be used for switch on an external power supply or for switch off the external 1k master resistor in master node applications.

3.10. WAKE Input (only MLX80031/51)

High voltage input pin for local wake-up functionality. With a falling edge on WAKE the IC wakes-up from Silent Mode or Sleep Mode to Standby Mode.

The pin WAKE provides a weak pull up current source towards Vs which provides a HIGH level on the pin in case of open circuit failures or if no local wake-up feature is required. In such applications it is recommended to connect the pin WAKE directly to pin Vs in order to prevent influences due to EMI.

3.11. KL15 Input (only MLX80031/51)

High voltage input pin for local wake-up functionality. With a rising edge on KL15 the IC wakes-up from Silent Mode or Sleep Mode to Standby Mode.

The pin KL15 provides a weak current sink towards GND which provides a LOW level on the pin in case of open circuit failures or if no local wake-up feature is required. In such applications it is recommended to connect the pin KL15 directly to GND in order to prevent influences due to EMI. KL15 is typically connected to the ignition terminal and generates a local wake-up at start of ignition.

3.12. Watchdog Trigger Input NWDI (only MLX80031/51)

This input is used to trigger the integrated window watchdog in MLX80031/51. Every falling edge on NWDI in watchdog open window is used to reset the watchdog timer. An internal pull up resistor of 250k secures a stable high condition if this pin is open. The NWDI input is a low voltage CMOS input. The minimum low time of NWDI is one WD_OSC clock period to allow falling edge detection.

3.13. Watchdog Oscillator Resistor RB_{WD} (only MLX80031/51)

A resistor between RBWD and GND defines the window watchdog times as trigger time.

3.14. Mode Input MODE (only MLX80031/51)

Special pin for to disable the window watchdog function. For normal watchdog operation connect the MODE pin to GND directly or via external resistor. With MODE pin on 3.3V/5V the window watchdog is switched off.

4. Operational Modes

The MLX8003x/5x provides four main operating modes "Standby", "Normal", "Silent" and "Sleep". The main modes are fixed states defined by basic actions (VS start, EN or wake-up).

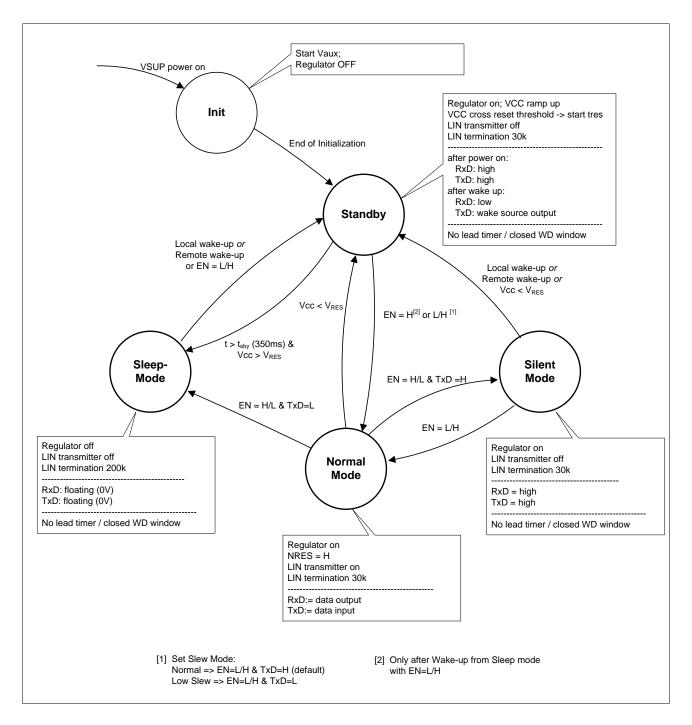


Figure 5: MLX8005x3x state diagram of modes of operation

4.1. Modes Overview

Mode	vcc	TxD	RxD	LIN	remarks
Standby	3.3V/5V	high	high	recessive	entered after power on or wake up
Normal	3.3V/5V	input for transmit data stream	output for LIN data stream	follows TxD	[1]
Silent	3.3V/5V	high	high	recessive	high = 3.3V/5V
Sleep	0	floating	floating	recessive	remote wake up to enter Standby Mode, EN = H to go to Normal Mode

Table 7: MLX80050/30 Operation Modes

[1] Normal mode will be entered form Standby Mode by a low -> high transition on pin EN and from Sleep Mode by EN = H after startup of the regulator. When recessive level (high) on pin TxD is present the transmit path will be enabled

Mode	VCC	TxD	RxD	LIN	INH	Watchdog	remarks
Standby	3.3V/5V	High/ active low ^[1]	high/ active low ^[2]	recessive	ON	ON	entered after power on or wake up
Normal	3.3V/5V	input for transmit data stream	output for LIN data stream	follows TxD	ON	ON	[3] [4] [5]
Silent	3.3V/5V	high	high	recessive	OFF	OFF	
Sleep	0	floating	floating	recessive	OFF	OFF	Local or remote wake up to enter Standby Mode, EN = H to go to Normal Mode

Table 8: MLX80051/31 Operation Modes

- [1] Indicates the wake up flag in case of local wake up
- [2] After power on RxD is going high via pull-up to Vcc. If any wake up(local or remote) occurs it will be indicated by active low
- [3] Active low interrupt at pin RxD will be removed when entering normal mode
- [4] Wake up source flag at pin TxD will be removed when entering normal mode
- [5] Normal mode will be entered from Standby Mode by a low -> high transition on pin EN and from Sleep Mode by EN = H after startup of the regulator. When recessive level (high) on pin TxD is present the transmit path will be enabled

LIN System Basis ICs

Datasheet

4.2. Initialisation and Standby mode

When the battery supply voltage VS exceeds the specified threshold V_{SUVR_OFF} , the MLX8003x/5x automatically enters the Standby Mode. Following internal procedure is running:

First:

- Start of internal supply Vaux and POR of Vaux
- > Start of internal RC oscillator

Second and parallel after POR:

> Start of voltage regulator

The output voltage V_{CC} ramps up to nominal value. The pin RxD is floating and the integrated slave pull up resistor with decoupling diode pulls the pin LIN. The transmitter as well as the receiver is disabled.

If there occurs no mode change to Normal Mode via an EN LOW to HIGH transition within the time stated (typically 350ms), the IC enters the most power saving Sleep Mode.

Furthermore the standby mode will be entered after a valid local or remote wake up event, when the MLX8003x/5x is in Sleep or Silent mode. The entering of the standby mode after wake up will be indicated by an active LOW interrupt on pin RxD.

4.3. Normal Mode

This mode is the base mode. The bus transceiver is able to send with a max baud rate of 20kbit/s.

The whole MLX8003x/5x is active. The incoming bus traffic is detected by the receiver and transferred via the RxD output pin to the microcontroller.

Exit the Normal Mode with one of the following conditions:

- 1. High-to-low edge on EN pin with TxD = H -> switch to Silent Mode
- 2. High-to-low edge on EN pin with TxD = L -> switch to Sleep Mode
- 3. Undervoltage monitor on VCC detects a low voltage reset condition (VCC < V_{RES}) -> switch back to stand-by mode.

Low Slew Mode

The first rising edge on EN after power-on defines the slew rate of the device. With TxD = High at this point works the MLX8003x/5x with normal slew rate (default state). TxD = Low activates the Low Slew Mode, as long as VS > V_{SUVR_OFF} . In this mode the slew rate is switched from the normal value of typ. 1.6V/ μ s to a low value of typ. 0.8V/ μ s. This mode is optimized to send with a maximum baud rate of 10.4kbit/s (acc. to SAE J2602). Because of this reduction of the slew rate the EME behaviour is improved especially in the frequency range of 100 kHz to 10MHz.

4.4. Silent Mode

The Silent Mode is a special mode for application with active Sleep Mode on LIN, but the connected MCU still needs to be supplied with VCC.

With a falling edge on EN input in combination with TxD=high switches the MLX8003x/5x from Normal Mode to the Silent Mode with reduced internal current consumption.

In Silent Mode the voltage regulator is on with a 2% tolerance. The transmitter is disabled and the pin RxD is disconnected from the receive path and is floating. The slave termination resistor (LIN pull up resistor with decoupling diode between pins LIN and VS) is disconnected; only a weak current source is applied to the LIN bus. Value is typical -75uA, limits -20...-100uA.

Exit the silent mode with one of the following conditions:

- 1. Low-to-high edge on the EN pin -> switch back to normal mode
- 2. Remote wake up (all versions) or local wake up request (MLX80031/51 only) -> switch to standby mode
- 3. Undervoltage monitor on VCC detects a low voltage reset condition (VCC < V_{RES}) -> switch back to stand-by mode.

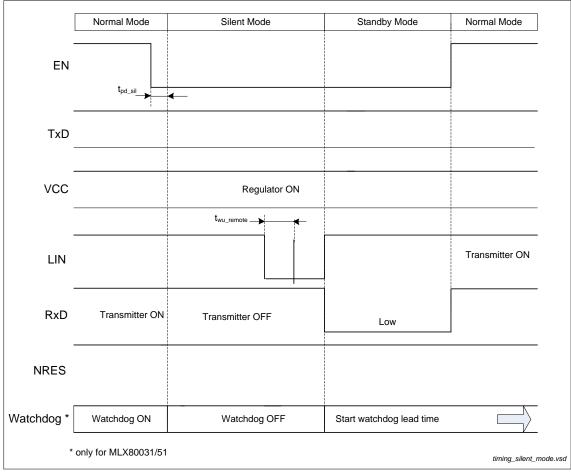


Figure 6: LIN wake-up from Silent Mode

Figure 7 Local Wake-up from Silent Mode via WAKE

4.5. Sleep Mode

The most power saving mode of the MLX8003x/5x is the Sleep Mode. The MLX8003x/5x offers two procedures to enter the sleep mode:

- The mode is selected from normal mode with a falling edge on EN in combination with TxD = L.
- If the MLX8003x/5x is in Standby Mode after power-on or wake-up, a sleep counter is started and switches the transceiver into Sleep Mode after the specified time (typ. 350ms) even when the microcontroller of the ECU will not confirm the normal operation by setting the EN pin to logic HIGH. This new feature allows faulty blocked LIN nodes to reach always the most power saving mode.

Being in Sleep Mode the voltage regulator switched off in order to minimize the current consumption of the complete LIN node. The transmitter is disabled and the pin RxD is disconnected from the receive path and is low (follows VCC). The slave termination resistor (LIN pull up resistor with decoupling diode between pins LIN and VS) is disconnected, only a weak current source is applied to the LIN bus (see chapter 8 fail-safe features) Exit the Sleep Mode with the following condition:

- 1. Remote (all versions) or local wake up request (MLX80031/51 only) -> Switch to Standby Mode
- 2. EN = L/H -> Switch to Standby Mode

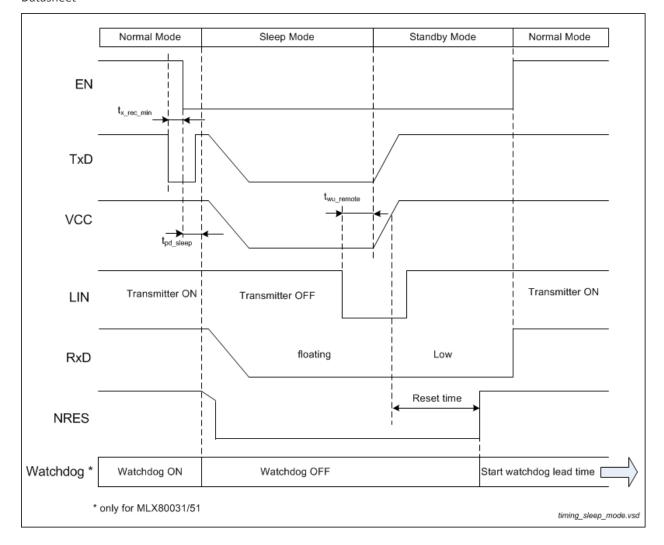


Figure 8: Remote wake-up from Sleep Mode

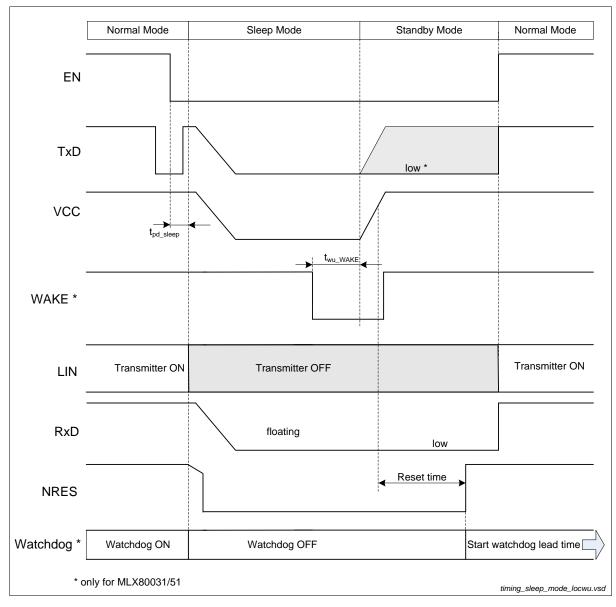


Figure 9: Local wake-up from Sleep Mode

4.6. Init-State

This is an intermediate state, which will pass through after switch on of VS or after undervoltage detection VS with VS $< V_{SUVR_ON}$. The internal supply voltage Vaux ramp up and the initial readout procedure of zenerzap storage are started. At the end of this phase the VCC voltage definition and the definition of MLX8003x5x version is established. This Init-State changes to Standby Mode with the start of VCC regulator.

LIN System Basis ICs
Datasheet

5. Wake Up Procedures

The MLX80030/50 versions offer only remote wake-up:

After a falling edge on the LIN bus followed by a dominant voltage level for longer than the specified value (t_{wu_remote}) and a rising edge on pin LIN will cause a remote wake up. The device switches to Standby Mode and the wake-up request is indicated by an active LOW on pin RxD.

The MLX80031/51 versions offer three wake-up procedures:

- In applications with continuously powered ECU a wake up via mode transition to normal mode is possible (see chapter 4.3 Normal Mode).
- Remote wake-up via LIN bus traffic
 After a falling edge on the LIN bus followed by a dominant voltage level for longer than the specified value(t_{wu remote}) and a rising edge on pin LIN will cause a remote wake up.
- Local wake-up via a falling edge on pin WAKE
 A falling edge on the pin WAKE and a dominant voltage level for longer than the specified time (t_{wu_WAKE}) will
 cause a local wake-up. The current for an external switch has to be provided by an external pull up resistor
 R_{WK}. For a reverse current limitation in case of a closed external switch and a negative ground shift or an ECU
 loss of ground a protection resistor R_{WK_prot} between pin WAKE and the switch is recommended.
- Local wake-up via a rising edge on pin KL15
 A positive edge on the pin KL15 followed by a high voltage level for a time period t_{wu_KL15} > 250μs results in a local wake-up request. The MLX80031/51 switches to the Standby Mode. The long debouncing time on KL15 suppresses unintentional transients. A high level on KL15 has no influence of switching between modes with EN input. Before a new local wake-up request via KL15 can be started, KL15 have to be switched to low level for a time > 250μs.

5.1. Wake Up Source Recognition in MLX80031/51

The device can distinguish between a local wake-up event (pin WAKE or pin KL15) and a remote wake-up event. The wake-up source flag is set after a local wake-up event and is indicated by an active LOW on pin TxD.

The wake-up flag can be read if an external pull up resistor towards the microcontroller supply voltage has been added and the MLX80031/51 is still in standby mode:

- LOW level indicates a local wake-up event
- HIGH level indicates a remote wake up event

The wake-up request is indicated by an active LOW on pin RxD and can be used for an interrupt.

When the microcontroller confirms a normal mode operation by setting the pin EN to HIGH, both the wake-up request on pin RxD as well as the wake-up source flag on pin TxD are reset immediately.

6. Functionality

6.1. RESET behaviour of MLX8003x/5x

The MLX8003x/5x contains a reset unit which controls the initialization and generation of the reset signal. The *NRES* pin flags the reset state of the MLX8003x/5x. The POR timer will be started if V_S is switched on and $V_{CC} > V_{RES}$ threshold. After the time t_{Res} the *NRES* output is switched from low to high.

The reset unit combines a VCC low voltage detection unit with fixed reset timer. This output is switched from low to high if V_S is switched on and after the time t_{Res} is $V_{CC} > V_{RES}$.

A drop of the V_{CC} voltage will be detected by the low voltage reset unit which generates a reset signal. The MLX8003x/5x will be reinitialized if the V_{CC} voltage rises above the low voltage limit.

If the voltage V_{CC} drops below V_{RES} then the *NRES* output is switched from high to low after the time t_{rr} . This filters short breaks of the V_{CC} voltage and avoids uncontrolled reset generation.

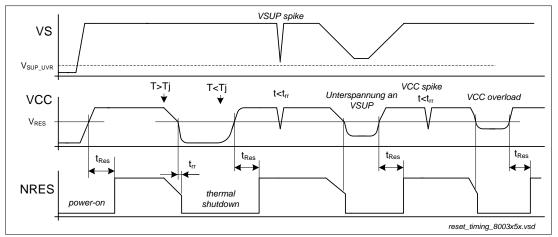


Figure 10: VCC reset behavior

The MLX80031/51 version combines the reset behaviour described above with a window-watchdog unit. The NRES pin outputs the reset state as well as the watchdog condition. The POR timer will be started if V_{SUP} is switched on and $V_{\text{CC}} > \text{POR}$ threshold. After the time t_{Res} the RESET output is switched from low to high. The watchdog is disabled during this POR procedure. After the POR delay, the NRES output is switched from low to high and the watchdog starts. In normal mode the NRES pin flags the status of the window watchdog.

6.2. Thermal Shutdown

If the junction temperature T_J is higher than T_{JSHD} , the MLX8003x/5x switches from any mode into Standby Mode. During TSD all functions are switched-off. The transceiver and the voltage regulator are completely disabled; no wake-up functionality is available.

If T_J falls below the thermal recovery temperature T_{JREC} , MLX8003x/5x resumes operation starting from Standby Mode. If EN=H at recovery, chip switches to NORMAL after VCC>VRES and tres. SBY-timeout timer is disabled during TSD.

6.3. VS under voltage reset

The under voltage detection unit prevents an undefined behaviour of the MLX8003x/5x under low voltage condition (VS < V_{SUVR_ON}). If VS drops below V_{SUVR_ON}, the under voltage detection becomes active and the IC will be switched from every state to Init-State followed by Standby Mode with the same behaviour like after VS power-on. With the following increase of VS above V_{SUVR_OFF} the MLX8003x5x remains in Standby Mode and the voltage regulator starts with the initialization sequence (Vcc available). If EN=H at power-up, the chip switches to NORMAL after VCC>VRES and tres.

LIN System Basis ICs

Datasheet

Remark: In case Vs drops below 5V but still remains above V_{SUVR_ON} , Vcc follows Vs. Vcc is switched off during Vs Undervoltage reset.

6.4. LIN-Transceiver

The MLX8003x/5x has an integrated bi-directional bus interface device for data transfer between LIN bus and the LIN protocol controller.

The transceiver consists of a driver with slew rate control, wave shaping and current limitation and a receiver with high voltage comparator followed by a debouncing unit.

Transmit Mode

During transmission the data at the pin TxD will be transferred to the LIN driver to generate a bus signal. To minimize the electromagnetic emission of the bus line, the LIN driver has an integrated slew rate control and wave shaping unit. Transmitting will be interrupted in the following cases:

- Sleep Mode
- Silent Mode
- Thermal Shutdown active
- Power on Reset

The recessive LIN bus level is generated from the integrated 30k pull up resistor in serial with an active diode This diode prevents the reverse current of V_{LIN} during differential voltage between VS and LIN ($V_{LIN} > V_S$).

No additional termination resistor is necessary to use the MLX8003x/5x in LIN slave nodes. If this ICs are used for LIN master nodes it is necessary that the LIN pin is terminated via an external $1k\Omega$ resistor in series with a diode to VBAT.

Receive Mode

The data signals from the LIN pin will be transferred continuously to the pin RxD. Short spikes on the bus signal are suppressed by the implemented debouncing circuit.

Slew Modes and Data rates

The MLX8003x/5x consists a *constant slew rate* transceiver which means that the bus driver works with a mode depended slew rate. In normal mode the slew rate is typical 1.6 V/ μ s (max. baud rate 20kbit/s) and in low slew mode typical 0.8 V/ μ s. The lower slew rate in low slew mode associated with a baud rate of 10.4kbit/s improves the EME behaviour

The LIN transceiver of MLX8003x/5x is compatible to the physical layer specification according to LIN 2.x specification for data rates up to 20kbit/s and the SAE specification J2602 for data rates up to 10.4kbit/s.

The constant slew rate principle is very robust against voltage drops and can operate with RC- oscillator systems with a clock tolerance up to ±2% between 2 nodes.

Low Slew Mode

In this mode the slew rate is switched from the normal value of typical $1.6V/\mu s$ to a low value of typical $0.8V/\mu s$. This mode is optimized to send with a maximum baud rate of 10.4kbit/s (acc. to SAE J2602). Because of this reduction of the slew rate the EME behaviour is improved especially in the frequency range of 100 kHz to 10MHz.

6.5. Voltage Regulator

The MLX8003x/5x has an integrated low drop linear regulator with a p-channel-MOSFET as driving transistor. This regulator outputs a voltage of 3.3V/5V $\pm 2\%$ and a current of ≤ 70 mA within an input voltage range of $6V \leq V_{SUP} \leq 18V$. The current limitation unit limits the output current for short circuits or overload to 130mA respectively drop-down of the V_{CC} voltage.

7. Window-Watchdog (only MLX80031/51)

The integrated window watchdog unit observes the correct function of the connected Microcontroller. The required timing can be programmed with an external resistor connected to the pin RB_{WD} . This resistor defines together with an internal capacitor the watchdog oscillator frequency. The watchdog is re-triggered by the Microcontroller via the NWDI input. The watchdog status is represented by the NRES pin.

Negative edges on NWDI reset the watchdog timer. If no pulse is received at NWDI, the MLX80051/31 generates low pulses on the NRES output with a pulse width of t_{WDres} and a period of t_{WDres} .

7.1. MLX80031/51 Watchdog Behaviour

After power-on and elapsed reset time t_{res} , the window watchdog starts operation with a rising edge on pin NRES. This start is independent from Standby or Normal Mode.

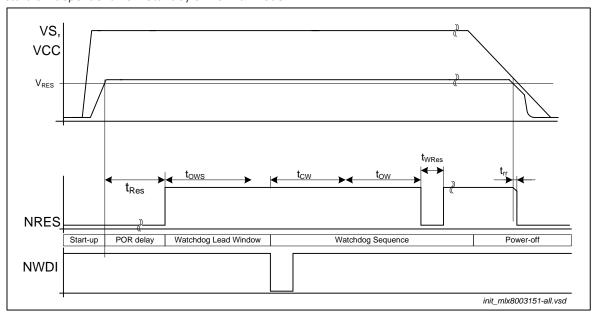


Figure 11: MLX80031/51 Watchdog behavior

After t_{res} the window watchdog unit starts with the Lead Time State. In this state the watchdog clock periods ($1/f_{wdosc}$) are counted 7895(=nlead) times. A falling edge on NWDI pin within this lead time stops the lead counter and activates the Closed Window State with ncw=1053. Thereafter follows the Open Window State with counter start value of now=1105. In case the lead counter elapses, the watchdog enters the Reset State and starts the reset timer with time tres.

Close Window State and Open Window State are the normal states of the window watchdog. At each of these states runs a counter with the watchdog clock signal. The CWT counter runs always to the end. The watchdog does not trigger when the NWDI trigger signal arrives within the Open Window State. A NWDI trigger pulse outside the Open Window State generates a reset condition and the NRES output switches to low for the time t_{WDres} (see Figure 12).

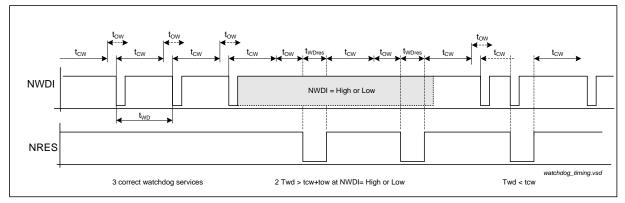


Figure 12: Watchdog timing

7.2. All watchdog start-up scenarios

7.2.1. After power-on and initialization

Watchdog starts after VCC ramp up and elapsed time of reset timer (typ. 4ms) with Lead Time State. MLX80031/51 is in Standby or Normal Mode.

7.2.2. Wake up indicated transition to Standby Mode from Sleep or Silent Mode

Watchdog starts immediately with activation of Standby Mode (SBY_MODE = 1). Waking up from Sleep Mode the VCC regulator ramps up and the reset timer starts. The reset timer has in this case no influence on the watchdog start.

7.2.3. Undervoltage reset on VCC on Normal Mode or Silent Mode

MLX80031/51 goes to Standby Mode. Running watchdog process is stopped and cleared. With active undervoltage reset the signal the output pin NRES goes to low. Leaving undervoltage reset starts the reset timer (4ms) and thereafter starts a new watchdog cycle.

7.2.4. EN indicated transition from Silent Mode to Normal Mode

Mode control changes from Silent Mode to Normal Mode. Watchdog starts immediately with activation of Normal Mode in Closed Window State.

7.3. Calculation of Watchdog Period

The RC-oscillator of MLX80031/51 which generates the responsible timing of the watchdog has a tolerance of $\pm 15\%$. This has the consequence that also the watchdog window times t_{CW} and t_{OW} variants with this tolerance.

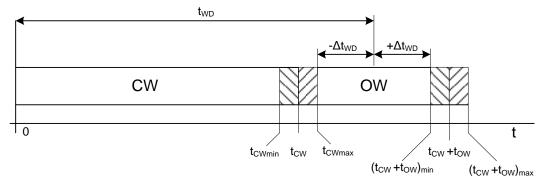


Figure 13: Watchdog open and close window tolerances

The ideal watchdog period can be calculated with:

$$t_{WD_{-id}} = t_{CW} + \frac{1}{2} * t_{OW}$$

The average value t_{WD} of the real usable watchdog trigger time under consideration of the oscillator tolerance is:

$$t_{WD} = (t_{CW \min} + t_{OW \min} + t_{CW \max})/2$$
 [EQ1]

The allowed tolerance Δt_{WD} is:

$$\Delta t w_D = (t_{CW \min} + t_{OW \min} - t_{CW \max})/2$$
 [EQ2]

With the definition of t_{CW} = ncw * (1± TOL) * t_{WDOSC} and t_{OW} = now * (1± TOL) * t_{WDOSC} from [EQ1] t_{WD} can be calculated with:

$$twD = twDosc(2 \cdot ncw + now \cdot (1 - TOL))/2$$
 [EQ3]

and with [EQ2]:

$$\Delta twD = twDOSC(now \cdot (1 - TOL) - 2 \cdot TOL \cdot ncw)/2$$
 [EQ4]

The variation Δt_{WD} will be normalized to the mean value t_{WD} and both counter values set in a relationship of a=now/ncw, then follows for the relative deviation:

$$t_{WDTOL} = \frac{a \cdot (1 - TOL) - 2 \cdot TOL}{2 + a \cdot (1 - TOL)}$$
 [EQ5]

The watchdog trigger time as well as the tolerance depends only on the oscillator frequency respectively the period t_{WDOSC} , if there are fixed values for both counters (ncw and now) and oscillator tolerance.

Implemented in MLX80031/51 is a precision RC oscillator with a tolerance of TOL = $\pm 15\%$. Combined with the relation of counter values a=1.04 reached them a tolerance of trigger time of $\pm 20\%$.

LIN System Basis ICs

Datasheet

Symbol	Parameter	Value
TOL	Tolerance WD oscillator	±15%
ncw	Close window counter	1053
now	Open window counter	1105
t _{WDTOL}	Tolerance WD-trigger time	±20%

Table 9: Parameters of Window Watchdog

With the predefined counter values (ncw and now) and the oscillator tolerance TOL are the trigger time of watchdog and them tolerance only be calculated by the selection of oscillator frequency, or their period t_{WDOSC}.

Fort the used precision RC-oscillator the oscillator period is shown as a linear function of the external resistor RB_{WD}.

$$tWDosc \ [\mu s] = 0.37505 * RBWD \ [k\Omega] + 0.547$$
 [EQ6]

The trigger period can be calculated with the help of EQ3 together with Table 9 - Parameter of Window Watchdog

$$tWD [ms] = 0.571061 * RBWD [k\Omega] + 0.832879$$
 [EQ7]

Or convert to RB_{WD}:

$$RBWD [k\Omega] = 1.75113 * twd [ms] - 1.45847$$
 [EQ8]

Some typical samples of different RD_{WD} values and the corresponding watchdog times for 35°C:

RB_{WD} [k Ω]	t _{wDOSC} [μs]	Close Window t _{cw} [ms]	Open Window t _{ow} [ms]	Trigger Period t _{WD} [ms]
20	8.06	8.47	8.89	12.25
30	11.79	12.42	13.04	17.96
40	15.54	16.37	17.18	23.68
50	19.30	20.32	21.33	29.39
60	23.05	24.27	25.47	35.10

Table 10: Window Watchdog Timing Selection.

LIN System Basis ICs

Datasheet

8. Fail-safe features

Loss of battery

If the ECU is disconnected from the battery, the LIN bus pin is in high impedance state. There is no impact to the bus traffic and to the ECU itself. Reverse current is limited to $< 20 \mu A$

Loss of Ground

In case of an interrupted ECU ground connection there is no influence to the bus line. The current from the ECU to the LIN bus is limited by the weak pull up resistor of the pin LIN. The slave termination resistor is disconnected in order to fulfil the SAE J2602 requirements for the loss of ground current ($<100\mu$ A @12V).

Short circuit to battery

The transmitter output current is limited to the specified value in case of short circuit to battery in order to prevent high current densities and thermal hot spots in the LIN driver.

Short circuit to ground

If the LIN bus wiring is shorted to negative shifted ground levels, there is no current flow from the ECU ground to the bus and no distortion of the bus traffic occurs.

If the controller detects a short circuit of the LIN bus to ground the transceiver can be set into sleep mode. Additionally the internal slave termination resistor is switched off and only a weak pull up termination is applied to the LIN bus (typ. 50μ A). If the failure disappears, the bus level will become recessive again and will wake up the system even if no local wake up occurs or is possible.

Thermal overload

All MLX8003x/5x versions are protected against thermal overloads. If the chip temperature exceeds the specified value, the transmitter is disabled until thermal recovery and the following recessive to dominant transition on pin TxD. The receiver is still working while thermal shutdown.

Undervoltage lock out

If the battery supply voltage is missing or decreases below the specified value (VS_UV), the transmitter is disabled to prevent undefined bus traffic. While in sleep mode, the MLX8003x/5x enters the Standby Mode if Vs drops below the internal power on reset threshold.

Open Circuit protection

- The pin TxD provides a pull up resistor to VCC. The transmitter cannot be enabled.
- The pin EN provides a pull down resistor to prevent undefined normal mode transitions.
- The pin NWDI provides a pull up resistor to VCC. The window watchdog generates NRES pulse.
- The pin MODE provides a pull down resistor to GND. No influence on window watchdog.
- If the battery supply voltage is disconnected, the pin RxD is floating.
- The pin WAKE provides a weak pull up current towards supply voltage Vs to prevent local wake-up requests.
- The pin KL15 provides a weak pull down current towards GND to prevent local wake-up requests.

Short circuit RxD, NRES against GND or VCC

Both outputs are short circuit proof to VCC and ground.

9. Application Hints

9.1. Safe Operating Area

The linear regulator of the MLX8003x/5x operates with input voltages up to 27 V and can output a current of 70 mA. The maximum power dissipation limits the maximum output current at high input voltages and high ambient temperatures. The output current of 70 mA at an ambient temperature of $T_A = 125$ °C is only possible with small voltage differences between V_S and V_{CC} .

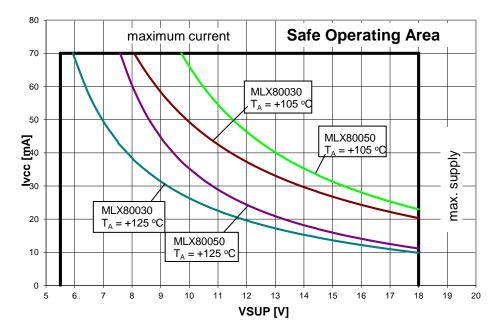


Figure 14: Safe operating area for MLX80030/50 in SOIC-8 for Vsup up to 18V

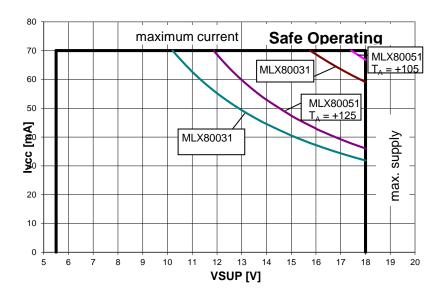


Figure 15: Safe operating area for MLX80031/51 in QFN20 for Vsup up to 18V

9.2. Application Circuitry

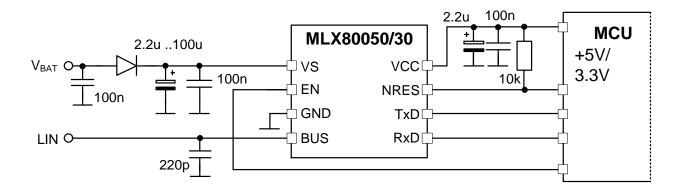


Figure 16: Application circuit with MLX80050 or MLX80030 (slave node)

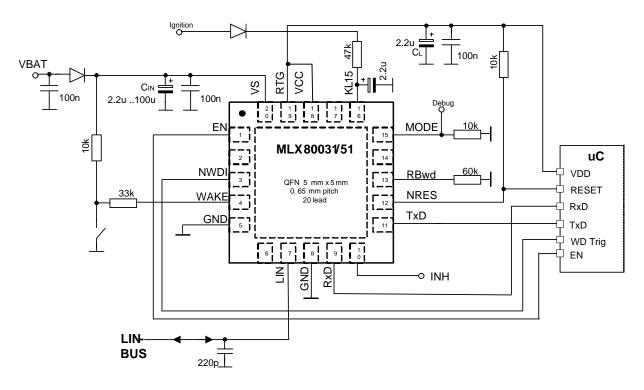


Figure 17: Application circuit with MLX80031 or MLX80051 (slave node)

To minimize the influence of EMI on the bus line an 220pF capacitor should be connected directly to the LIN pin (see Figure 17). This EMI-Filter assures that the RF injection into the IC from the LIN bus line has no effect or will be limited. It is also possible to use LC- or RC-filters. The dimensions of C-L or R-L depend on the corner frequency, the maximum LIN bus capacitance (10nF) and the compliance with the DC- and AC LIN bus parameters.

10. ESD and EMC

10.1. Recommendations for Actuator products

In order to minimize EMC influences, the PCB has to be designed according to EMC guidelines. Actuators products are ESD sensitive devices and have to be handled according to the rules in IEC61340-5-2.

Actuators products will apply the requirements in the application according to the specification, to ISO7637-2, -3 and ISO16750-2.

Prototype samples of actuators products will be evaluated according AEC-Q100-002. The result will be published after qualification. After ESD stress single parameters may be shifted out of their limit, but IC function will still be correctly.

10.1.1. Automotive Qualification Test Pulses

That means that automotive test pulses are applied to the module in the application environment and not to the single IC. Therefore attention must be taken, that only protected pins (protection by means of the IC itself or by means of external components) are wired to a module connector. In the recommended application diagrams, the reverse polarity diode together with the capacitors on supply pins, the protection resistors in several lines and the load dump protected IC itself will protect the module against the below listed automotive test pulses. The exact value of the capacitors for the application has to be figured out during design-in of the product according to the automotive requirements.

For the LIN pin the specification "LIN Physical Layer Spec 2.1 (Nov. 24, 2006)" is valid. Supply Pin VS is protected via the reverse polarity diode and the supply capacitors. No damage will occur for defined test pulses. A deviation of characteristics is allowed during pulse 1 and 2; but the module will recover to the normal function after the pulse without any additional action. During test pulse 3a, 3b, 5 the module will work within characteristic limits.

10.1.2. Test Pulses On supply Lines

Parameter	Symbol	Min	Max	Dim	Coupling	test condition, functional status	
Transient test pulses in accordance to ISO7637-2 (supply lines) & , VS=13.5V, TA=(23 \pm 5)°C & (Document: "Hardware Requirements for LIN, CAN and FlexRay Interfaces in Automotive Applications"; BMW, Daimler, Porsche, VW; 2009-12-02)							
Test pulse #1	vpulse1	-100		V	Direct	5000 pulses, functional state C	
Test pulse #2a	vpulse2a		75	V	Direct	5000 pulses, functional state A	
Test pulse #3a	vpulse3a	-150		V	Direct	1h,functional state A	
Test pulse #3b	vpulse3b		100	V	Direct	1h,functional state A	
Load dump test pulse in	accordance to ISO167	50-2 (supply	y lines), VS	=13.0V, T	$A = (23 \pm 5)^{\circ}C$		
Test pulse #5b	vpulse5b	65 (+13V (VS))	87 (+13V (VS))	V	Direct	1 pulse clamped to 27V (+13V (VS)), (32V (+13V (VS))for applications for north America), functional state C	

Table 11: Test pulses Supply Line

LIN System Basis ICsDatasheet

10.1.3. Test pulses on Pin LIN

Parameter	Symbol	Min	Max	Dim	Coupling	test condition, functional status	
Transient test pulses in accordance to ISO7637-3, VS=13.5V, TA= $(23\pm5)^{\circ}$ C & (Document: "Hardware Requirements for LIN, CAN and FlexRay Interfaces in Automotive Applications"; Audi, BMW, Daimler, Porsche, VW; 2009-12-02)							
Test pulse 'DCC slow –'	Vpulse_ slow+	-100		V	Direct capacitive coupled:	1000 pulses, functional state D	
Test pulse 'DCC slow +'	Vpulse_ slow-		75	V	Direct capacitive coupled:	1000 pulses, functional state D	
Test pulse 'DCC fast a'	Vpulse_ fast_a	-150		V	Direct capacitive coupled: 1nF	10 min, functional state D	
Test pulse 'DCC fast b'	Vpulse_ fast_b		100	V	Direct capacitive coupled: 1nF	10 min, functional state D	

Table 12: Test pulses LIN

10.1.4. Test pulses on signal lines

Parameter	Symbol	Min	Max	Dim	Coupling	test condition, functional status	
Transient test pulses in accordance to ISO7637-3 (signal lines). VS=13.5V, TA=(23 \pm 5)°C							
Test pulse 'DCC slow –'	Vpulse_ slow+	-30	-8	V	Direct capacitive coupled: 100nF	1000 pulses, functional state C	
Test pulse 'DCC slow +'	Vpulse_ slow-	+8	+30	V	Direct capacitive coupled: 100nF	1000 pulses, functional state A	
Test pulse 'DCC fast a'	Vpulse_ fast_a	-60	-10	V	Direct capacitive coupled: 100pF	10 min, functional state A	
Test pulse 'DCC fast b'	Vpulse_ fast_b	10	40	V	Direct capacitive coupled: 100pF	10 min, functional state A	

Table 13: Test pulses signal lines

Description of functional state

- A: All functions of the device are performed as designed during and after the disturbance occurs.
- B: All functions of the device are performed as designed during the disturbance occurs. One or more functions can violate the specified tolerances. All functions return automatically within their normal limits after the disturbances is removed..
- C: A function of a device does not perform as designed during the disturbance occurs but returns automatically to the normal operation after the disturbances is removed.
- D: A function of a device does not perform as designed during the disturbance occurs and does not return automatically to the normal operation after the disturbances is removed. The device needs to be reset by a simple operation/action to return to the specified limits/function.
- E: One or more functions of a device do not perform as designed during and after the disturbance occurs and does not return automatically to the normal operation after the disturbances is removed. After a reset of the device, it does not return to the specified limits/function. The device needs to be repaired or replaced.

10.1.5. EMV Test pulse definition

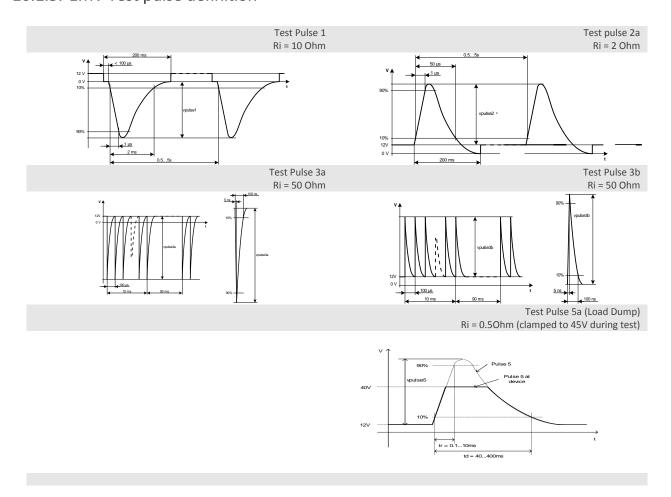


Table 14: Test pulses shapes ISO7637-2

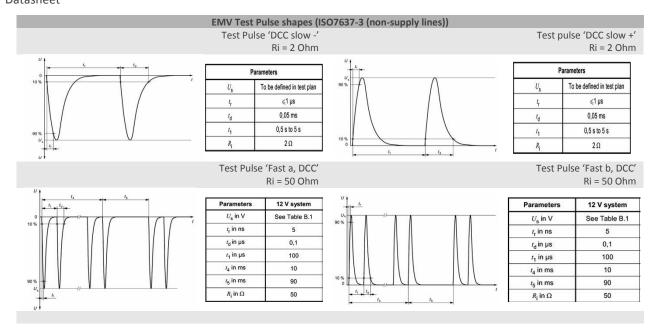
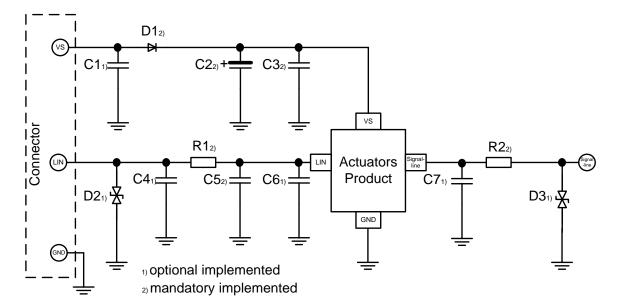



Table 15: Test pulses shapes ISO7637-3

10.2. Typical Application Circuitry

In order to minimize EMC influences, the external application circuitry shall be designed as followed:

Melexis INSPIRED ENGINEERING

10.2.1. External Circuitry on Supply Lines

In order to minimize EMC influences, the external application circuitry shall be designed as followed:

Name	Mounting	Min	Recommended	Max	Dim	Comment
C1	recommended	-	100	-	nF	Ceramic SMD: 10%, 0805, ≥50V; close to the connector
D1	mandatory					Inverse-polarity protection diode
C2	mandatory	1	22	100	μF	Tantal SMD: 10%, 7343, 35V
C3	mandatory	-	100	-	nF	Ceramic SMD: 10%, 0805, ≥50V; close to the pin

10.2.2. External Circuitry on LIN Lines

In order to minimize EMC influences, the external application circuitry shall be designed as followed:

Name	Mounting	Min	Recommended	Max	Dim	Comment
D2	no	-	PESD1LIN	-		ESD protection Diode: SOD323 close to the connector; optional part
C4	no	-	-	-	pF	Ceramic SMD: 10%, 0805, ≥50V; $C_{Slave} \le C_{D2} + C_4 + C_5 + C_6 + C_{IC}$ $C_{Slave} \le 250pF$; optional part
R1	mandatory	-	0	-	Ω	Serial resistor: 0805; or optional Ferrite
C5	mandatory	-	220	-	pF	Ceramic SMD: 10%, 0805, ≥50V; $C_{Slave} \le C_{D2} + C_4 + C_5 + C_6 + C_{IC}$ $C_{Slave} \le 250pF$
C6	no	-	-	-	pF	Ceramic SMD: 10%, 0805, \geq 50V; $C_{Slave} \leq C_{D2} + C_4 + C_5 + C_6 + C_{IC}$ $C_{Slave} \leq 250 pF$; optional part

10.2.3. External Circuitry on Signal Lines

In order to minimize EMC influences, the external application circuitry shall be designed as followed:

Name	Mounting	Min	Recommended	Max	Dim	Comment
C7	no	0.1	1	100	nF	Ceramic SMD: 10%, 0805, ≥50V; optional part
R2	mandatory	0	560	1000	Ω	Serial resistor: 0805; or optional Ferrite
D3	no	-	PESD1LIN	-		ESD protection Diode: SOD323 close to the connector; optional part

11. Mechanical Specification

11.1. SOIC8 package

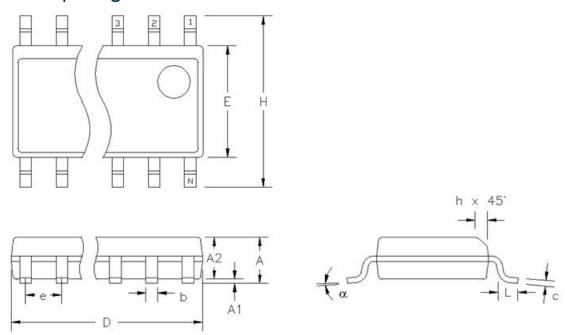


Figure 18: SOIC8 Drawing

Small Outline Integrated Circuit (SOIC), SOIC8, 150mil

N		Α	A1	A2	D	Е	Н	L	b	С	е	h	α	
8	min	1.52	0.10	1.37	4.80	3.81	5.80	0.41	0.35	0.19	1.27	0.25	0°	[1]
	max	1.73	0.25	1.57	4.98	3.99	6.20	1.27	0.49	0.25	BSC	0.50	8°	[2]

Table 16: SOIC8 dimensions

11.2. QFN20 5x5 package

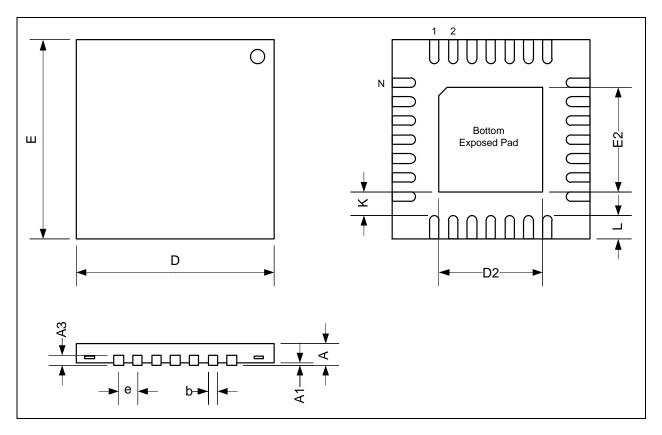


Figure 19: QFN20 Drawing

Symbol	Α	A1	A 3	b	D	D2	Е	E2	е	K	L	N [3]	ND [4]	NE [4]	
min	0.80	0	0.20	0.25	E 00	3.00	F 00	3.00	0.65	0.20	0.45	20	_	_	[1] [2]
max	1.00	0.05	0.20	0.35	5.00	3.25	5.00	3.25	0.65	0.20	0.65	20	5	5	

Table 17: QFN20 Package Dimensions

- [1] Dimensions and tolerances conform to ASME Y14.5M-1994
- [2] All dimensions are in Millimeters. All angels are in degrees
- [3] N is the total number of terminals
- [4] ND and NE refer to the number of terminals on each D and E side respectively

12. Revision History

Version	Changes	Remark	Date
001	First Release	1 st Release	April 2012
002	 For TSD added: "If EN=H at recovery, chip switches to NORMAL after VCC>VRES and tres" and "SBY-timeout timer is disabled during TSD" For TSD removed explicit values and kept parameter name only. For Vs_uvr added: "If EN=H at power-up, chip switches to NOR-MAL after VCC>VRES and tres" Changed state diagram: sleep mode can be left with EN = H (was a L-H transition in A version of the device), refers to Errata 80050AA-07. 		June 2012
003	 ESD robustness level adapted to Conformance Test Report Static Characteristics adapted to CPK-Values Block Diagram updated Corrected short description of product 		Dec 2012
004	 Removed 06.05, 09.05, 13.05 Changed 05.02 to 200mV (5V) and 100mV (3.3V) Changed 06.03 and 13.03 to 700mV Changed 09.03 to 600mV Added MODE pin to parameter list Changed 15.05 to LL = 2.7V and UL to 3.3V Changed 14.01 to 0.6V at 2mA Changed 08.03 to LL = 30 Changed 02.00 to LL = 400 and UL to 1500 Changed Tjshd to 155/170/190°C Changed 12.04 and 12.05 UL to 20uA Changed 03.05 to relevance "C" (only for characterization) Added 17.06 Watchdog safety oscillator Changed 3.01 for 80030/31 to UL = 3.201 and UL = 3.399 		Mar 2013
005	Corrected value "e" of QFN package data to "0.65"		Apr 2013
006	 Changed 15.01 Changed 1.03 LL to 40mV Changed 3.09 LL to -135mA and UL to -75mA Changed ESD capability of LIN pin to +/-6kV 		July 2013
007	 Changed operating voltage to max. 27V Changed table 2, nominal operating voltage, max to 27V Update 3.09: split temperature ranges Changed 12.03 to min: -400μA Changed 12.06 to min: -10μA, max: 50μA Changed 6.04 to typ: 125 kΩ, max: 250 kΩ Changed 12.01 to 80μA 		Feb 2014
008	 Added condition for thermal resistance Updated chapter 4.1, tables 7 and 8 for TxD and RxD values depending on the mode and EN = H transition from Sleep Mode to Normal Mode 		April 2014

LIN System Basis ICs

	 Changed operating voltage to 27V max in application hints 9.1 Re-phrased information to EMC compliance in 9.2.2 LIN: Changed parameter 12.10 and added parameter 12.12 to Lin spec 2.x and compatible to SAE J2602, split parameter 12.07 into dominant and recessive 	
009	Updated product codes to "wettable flanks"	Nov 2014
010	 Silent Mode for Silicon Version B not supported Silicon Version C added, support of silent mode 	Feb 2015
011	 Silicon Version B removed Changed 1.01, 1.02 VS under voltage reset Changed 2.01 supply current sleep mode Changed 2.02 supply current silent mode Addition of 18.11 Wake up time vs. EN Update state diagram (Fig 5) Update of paragraph ESD and EMC 	Jun 2016
012	 Update of disclaimer Update of paragraph 6.2 Thermal shutdown Update of paragraph 7.3 Calculation of Watchdog Period Update of paragraph 8 Fail-safe features Changed R_{BWD} max to 60kΩ and updated all references to it Changed product order code from -000 to - 100 Updated SOIC8 drawing and dimensions table (Table 16) Updated Figure 5 - Operational modes Updated EQ6, EQ7, EQ8 on page 34 Added Parameter TXD hold time for mode change in AC parameter table 	Aug 2019
013	Updated product order codes to latest IC version	Nov 2019

13. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20 Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

EN60749-15 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

EIA/JEDEC JESD22-B102 and EN60749-21 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis recommends reviewing on our web site the General Guidelines soldering recommendation (http://www.melexis.com/Quality_soldering.aspx) as well as trim&form recommendations (http://www.melexis.com/Assets/Trim-and-form-recommendations-5565.aspx).

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

LIN System Basis ICs
Datasheet

14. Disclaimer

The information furnished by Melexis herein is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product as described herein, (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The information contained herein is provided "as is" and Melexis reserves the right to change specifications and/or any other information contained herein at any time and without notice. Therefore, before placing orders and/or prior to designing this product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. This document supersedes and replaces all prior information regarding the product(s) as described herein and/or previous versions of this document.

Users or any third party must further determine the suitability of the Melexis' product(s) described herein for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The information contained herein is proprietary and/or confidential information of Melexis. The information contained herein or any use thereof does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

This document as well as the product(s) described herein may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities.

The product(s) as described herein is/are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the product(s) described herein are not designed, authorized or warranted to be suitable in applications requiring extended temperature range, unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis.

The product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions.

Melexis NV \odot - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified

LIN System Basis ICsDatasheet

15. Contact

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +32 13 67 04 95
	Email: sales_europe@melexis.com
Americas	Telephone: +1 603 223 2362
	Email : sales_usa@melexis.com
Asia	Email: sales_asia@melexis.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Melexis:

MLX80030KDC-BAA-000-TU MLX80030KDC-BAA-000-SP MLX80051KLQ-BAA-000-SP MLX80031KLQ-BAA-000-RE MLX80031KLQ-BAA-000-TU MLX80031KLQ-BAA-000-RE MLX80050KDC-BAA-000-RE MLX80050KDC-BAA-000-RE MLX80050KDC-BAA-000-RE MLX80050KDC-BAA-000-RE MLX80050KDC-BAA-000-RE MLX80050KDC-CAA-000-RE MLX80050KDC-CAA-000-RE MLX80051KLW-CAA-000-RE MLX80051KLW-CAA-000-RE MLX80051KLW-CAA-000-RE MLX80051KLW-CAA-000-RE MLX80031KLW-BAA-000-RE MLX80030KDC-CAA-000-TU MLX80051KLW-BAA-000-TU MLX80030KDC-CAA-000-RE MLX80051KLW-BAA-000-RE MLX80051KLW-BAA-000-RE MLX80051KLW-BAA-000-RE MLX80051KLW-BAA-000-RE MLX80051KLW-BAA-000-RE MLX80051KLW-BAA-000-SP MLX80031KLW-BAA-000-SP MLX80031KLW-BAA-000-SP MLX80031KLW-BAA-000-RE MLX80051KLW-BAA-000-RE MLX80051KLW-BAA-000-RE MLX80051KLW-CAA-100-RE MLX80051KLW-CAA-100-RE