
2

MAXQ Family User’s Guide

SECTION 1: Overview .1-1

SECTION 2: Architecture .2-1

SECTION 3: Programming .3-1

SECTION 4: System Register Descriptions .4-1

SECTION 5: Peripheral Register Modules .5-1

SECTION 6: General-Purpose I/O Module .6-1

SECTION 7: Timer/Counter Timer .7-1

SECTION 8: Timer/Counter 1 Module .8-1

SECTION 9: Timer/Counter 2 Module .9-1

SECTION 10: Serial I/O Module .10-1

SECTION 11: Serial Peripheral Interface (SPI Module) .11-1

SECTION 12: Hardware Multiplier Mode .12-1

SECTION 13: 1-Wire Bus Master .13-1

SECTION 14: Real-Time Clock Module .14-1

SECTION 15: Test Access Port (TAP) .15-1

SECTION 16: In-Circuit Debug Mode .16-1

SECTION 17: In-System Programming (JTAG) .17-1

SECTION 18: MAXQ Family Instruction Set Summary .18-1

REVISION HISTORY .Rev-1

TABLE OF CONTENTS

Maxim Integrated

1-1

MAXQ Family User’s Guide

SECTION 1: OVERVIEW

This section contains the following information:

1.1 Instruction Set .1-2

1.2 Harvard Memory Architecture .1-2

1.3 Register Set .1-2

1.4 MAXQ10 and MAXQ20 Microcontrollers .1-3

Maxim Integrated

1-2

MAXQ Family User’s Guide

SECTION 1: OVERVIEW
The MAXQ® family of 16-bit reduced instruction set computing (RISC) microcontrollers is targeted toward low-cost, low-power, embed-
ded-application designs. The flexible, modular architecture design used in these microcontrollers allows development of targeted
designs for specific applications with minimal effort.

Microcontrollers in the MAXQ family provide many different combinations of program memory, data memory, and peripherals while sup-
porting a common feature set. This shared functionality provides maximum reusability for hardware and software systems developed
using these microcontrollers.

1.1 Instruction Set
All MAXQ microcontrollers share a common instruction set, with all instructions a fixed 16 bits in length. A register-based, transport-
triggered architecture allows all instructions to be coded as simple transfer operations. All instructions reduce to either writing an imme-
diate value to a destination register or memory location or moving data between registers and/or memory locations.

This simple top-level instruction decoding allows all instructions to be executed in a single cycle. Since all CPU operations are per-
formed on registers only, any new functionality can be added by simply adding new register modules. The simple instruction set also
provides maximum flexibility for code optimization by a compiler.

1.2 Harvard Memory Architecture
Program memory, data memory, and register space on MAXQ microcontrollers are separate from one another, and are each accessed
by a separate bus. This type of memory architecture (known as a Harvard architecture) has some advantages.

First, the word lengths can be different for different types of memory. Program memory must be 16 bits wide to accommodate the
instruction word size, but system and peripheral registers can be 8 bits wide or 16 bits wide as needed. Since data memory is not
required to store program code, its width may also vary and could conceivably be targeted for a specific application.

Also, since data memory is accessed by the CPU only through appropriate registers, it is possible for register modules to access mem-
ory entirely independent from the main processor, providing the framework for direct memory-access operations. It is also possible to
have more than one type of data memory, each accessed through a different register set.

1.3 Register Set
Since all functions in the MAXQ family are accessed through registers, common functionality is provided through a common register
set. Many of these registers provide the equivalent of higher level op codes by directly accessing the arithmetic logic unit (ALU), the
loop counter registers, and the data pointer registers. Others, such as the interrupt registers, provide common control and configura-
tion functions that are equivalent across all MAXQ microcontrollers.

The common register set, also known as the System Registers, includes the following:

• ALU access and control registers, including working accumulator registers and the processor status flags

• Two Data Pointers and a Frame Pointer for data memory access

• Auto-decrementing Loop Counters for fast, compact looping

• Instruction Pointer and other branching control access points

• Stack Pointer and an access point to the 16-bit-wide dedicated hardware stack

• Interrupt vector, identification, and masking registers

Peripherals and other features that can vary among MAXQ microcontroller devices are accessed through Peripheral registers. These
registers, grouped into register modules, provide such additional functionality as:

• Universal Asynchronous Receiver/Transmitter (UART) Serial Ports

• High-Speed Timers and Counters

• Serial Peripheral Interface (SPI™) ports

• Hardware Multiplier

MAXQ is a registered trademark of Maxim Integrated Products, Inc.
SPI is a trademark of Motorola, Inc.

Maxim Integrated

1-3

MAXQ Family User’s Guide

• Real-Time Clock

• 1-Wire® Bus Master

• General-Purpose Digital I/O Ports

1.4 MAXQ10 and MAXQ20 Microcontrollers
This user’s guide covers both the 8-bit MAXQ10 and 16-bit MAXQ20 microcontrollers. The primary difference between the MAXQ10
and MAXQ20 implementations is the width of the internal data bus and ALU. The MAXQ10 design implements an 8-bit internal data
bus and ALU, while the MAXQ20 design implements a 16-bit internal data bus and ALU. This difference is most evident when com-
paring the instruction set, and more specifically, those operations that involve the ALU and accumulators. The registers on the MAXQ10
and MAXQ20 can be either 8 bits or 16 bits wide.

1-Wire is a registered trademark of Dallas Semiconductor Corp.

Maxim Integrated

2-1

MAXQ Family User’s Guide

SECTION 2: ARCHITECTURE

This section contains the following information:

2.1 Instruction Decoding .2-4

2.2 Register Space .2-5

2.3 Memory Organization .2-6

2.3.1 Program Memory .2-6

2.3.2 Utility ROM .2-6

2.3.3 Data Memory .2-6

2.3.4 Stack Memory .2-7

2.4 Pseudo-Von Neumann Memory Mapping .2-7

2.5 Pseudo-Von Neumann Memory Access .2-9

2.6 Data Alignment .2-10

2.6.1 Memory Management Unit .2-10

2.7 Clock Generation .2-13

2.7.1 Internal Ring Oscillator .2-14

2.7.2 External Clock (Crystal/Resonator) .2-14

2.7.3 External Clock (Direct Input) .2-14

2.7.4 External RC .2-15

2.7.5 Internal System Clock Generation .2-15

2.8 Interrupts .2-16

2.8.1 Servicing Interrupts .2-16

2.8.2 Interrupt System Operation .2-16

2.8.3 Synchronous vs. Asynchronous Interrupt Sources .2-17

2.8.4 Interrupt Prioritization by Software .2-18

2.8.5 Interrupt Exception Window .2-18

2.9 Operating Modes .2-18

2.9.1 Reset Mode .2-18

2.9.1.1 Power-On/Brownout Reset .2-18

2.9.1.2 External Reset .2-19

2.9.1.3 Watchdog Timer Reset .2-19

2.9.1.4 Internal System Reset .2-19

Maxim Integrated

2.9.2 Power Management Mode .2-19

2.9.2.1 Switchback .2-20

2.9.3 Stop Mode .2-20

2-2

MAXQ Family User’s Guide

LIST OF FIGURES

LIST OF TABLES

Figure 2-1. MAXQ Transport-Triggered Architecture .2-3

Figure 2-2. Instruction Word Format .2-4

Figure 2-3. Pseudo Von Neumann Memory Map (MAXQ10 Default) .2-8

Figure 2-4. Pseudo Von Neumann Memory Map (MAXQ20 Default) .2-9

Figure 2-5. CDA Functions (Word Access Mode) .2-11

Figure 2-6. CDA Functions (Byte Access Mode) .2-12

Figure 2-7. MAXQ Clock Sources .2-13

Figure 2-8. On-Chip Crystal Oscillator .2-15

Figure 2-9. RC Relaxation Oscillator .2-15

Figure 2-10. MAXQ Interrupt Source Hierarchy Example .2-17

Table 2-1. Register-to-Register Transfer Operations .2-5

Table 2-2. System Clock Rate Control Settings .2-15

Maxim Integrated

2-3

MAXQ Family User’s Guide

SECTION 2: ARCHITECTURE
The MAXQ architecture is designed to be modular and expandable. Top-level instruction decoding is extremely simple and based on
transfers to and from registers. The registers are organized into functional modules, which are in turn divided into the System Register
and Peripheral Register groups. Figure 2-1 illustrates the modular architecture and the basic transport possibilities.

SYSTEM MODULES/�
REGISTERS�

�

PERIPHERAL MODULES/REGISTERS�
�

DATA
MEMORY

dst

MAXQ PRODUCT SPECIFIC
MODULES

(MULTIPLY ACCUMULATE UNIT,
ADC, DAC, PWM, ETC.)

STACK
MEMORY

CKCN

WDCN

IC

ADDRESS
GENERATION

IP

SP

IC

LOOP COUNTERS

LC[η]

IIR

IMR

INTERRUPT
LOGIC

CLOCK CONTROL,
WATCHDOG TIMER

AND POWER MONITOR

BOOLEAN
VARIABLE

MANIPULATION

ACCUMULATORS
(16)

AP

APC

PSF

INSTRUCTION
DECODE

(SRC, DST TRANSPORT
DETERMINATION)

MUX

DATA POINTERS

DP[0], DP[1]
FP =

(BP + OFFS)

DPC

SC

MEMORY MANAGEMENT
UNIT (MMU)

PROGRAM
MEMORY

src

dst src

GENERAL-
PURPOSE

I/O

TIMERS/
COUNTERS

UART
AND SPI

Figure 2-1. MAXQ Transport-Triggered Architecture

Maxim Integrated

2-4

MAXQ Family User’s Guide

Memory access from the MAXQ is based on a Harvard architecture with separate address spaces for program and data memory. The
simple instruction set and transport-triggered architecture allow the MAXQ to run in a nonpipelined execution mode where each instruc-
tion can be fetched from memory, decoded, and executed in a single clock cycle. Data memory is accessed through one of three data
pointer registers. Two of these data pointers, DP[0] and DP[1], are stand-alone 16-bit pointers. The third data pointer, FP, is composed
of a 16-bit base pointer (BP) and an 8-bit offset register (OFFS). All three pointers support post-increment/decrement functionality for
read operations and pre-increment/decrement for write operations. For the Frame Pointer (FP=BP[Offs]), the increment/decrement
operation is executed on the OFFS register and does not affect the base pointer (BP). Stack functionality is provided by dedicated
memory with a 16-bit width and a typical depth of 8 (although this varies dependent upon the MAXQ product). An on-chip memory
management unit (MMU) is accessible through system registers to allow logical remapping of physical program and data spaces, and
thus facilitates in-system programming and fast access to data tables, arrays, and constants physically located in program memory.

2.1 Instruction Decoding
Every MAXQ instruction is encoded as a single 16-bit word according to the format in Figure 2-2.

Bit 15 (f) indicates the format for the source field of the instruction as follows:

• If f equals 0, the instruction is an immediate source instruction, and the source field represents an immediate 8-bit value.

• If f equals 1, the instruction is a register source instruction, and the source field represents the register that the source value will be
read from.

Bits 0 to 7 (ssssssss) represent the source for the transfer. Depending on the value of the format field, this can either be an immediate
value or a source register. If this field represents a register, the lower four bits contain the module specifier and the upper four bits con-
tain the register index in that module.

Bits 8 to 14 (ddddddd) represent the destination for the transfer. This value always represents a destination register, with the lower four
bits containing the module specifier and the upper three bits containing the register sub-index within that module.

Since the source field is 8 bits wide and 4 bits are required to specify the module, any one of 16 registers in that module may be spec-
ified as a source. However, the destination field has one less bit, which means that only eight registers in a module can be specified
as a destination in a single-cycle instruction.

While the asymmetry between source and destination fields of the op code may initially be considered a limitation, this space can be
used effectively. Firstly, since read-only registers will never be specified as destinations, they can be placed in the second eight loca-
tions in a module to give single-cycle read access. Secondly, there are often critical control or configuration bits associated with sys-
tem and certain peripheral modules where limited write access is beneficial (e.g., watchdog-timer enable and reset bits). By placing
such bits in one of the upper 24 registers of a module, this write protection is added in a way that is virtually transparent to the assem-
bly source code. Anytime that it is necessary to directly select one of the upper 24 registers as a destination, the prefix register PFX is
used to supply the extra destination bits. This prefix register write is inserted automatically by the assembler and requires one addi-
tional execution cycle.

The MAXQ architecture is transport-triggered. This means that writing to or reading from certain register locations will also cause side
effects to occur. These side effects form the basis for the higher level op codes defined by the assembler, such as ADDC, OR, JUMP,
and so on. While these op codes are actually implemented as MOVE instructions between certain register locations, the encoding is
handled by the assembler and need not be a concern to the programmer. The registers defined in the System Register and Peripheral
Register maps operate as described in the documentation; the unused "empty" locations are the ones used for these special cases.

The MAXQ instruction set is designed to be highly orthogonal. All arithmetic and logical operations that use two registers can use any
register along with the accumulator. Data can be transferred between any two registers in a single instruction.

Figure 2-2. Instruction Word Format

FORMAT DESTINATION SOURCE
f d d d d d d d s s s s s s s s

Maxim Integrated

2-5

2.2 Register Space
The MAXQ architecture provides a total of 16 register modules. Each of these modules contains 32 registers. The first eight registers
in each module may be read from or written to in a single cycle; the second eight registers may be read from in a single cycle and writ-
ten to in two cycles (by using the prefix register PFX); the last sixteen registers may be read or written in two cycles (always requiring
use of the prefix register PFX).

Registers may be either 8 or 16 bits in length. Within a register, any number of bits can be implemented; bits not implemented are fixed
at zero. Data transfers between registers of different sizes are handled as shown in Table 2-1.

• If the source and destination registers are both 8 bits wide, data is transferred bit to bit accordingly.

• If the source register is 8 bits wide and the destination register is 16 bits wide, the data from the source register is transferred into
the lower 8 bits of the destination register. The upper 8 bits of the destination register are set to the current value of the prefix regis-
ter; this value is normally zero, but it can be set to a different value by the previous instruction if needed. The prefix register reverts
back to zero after one cycle, so this must be done by the instruction immediately before the one that will be using the value.

• If the source register is 16 bits wide and the destination register is 8 bits wide, the lower 8 bits of the source are transferred to the
destination register.

• If both registers are 16 bits wide, data is copied bit to bit.

Table 2-1. Register-to-Register Transfer Operations

The above rules apply to all data movements between defined registers. Data transfer to/from undefined register locations has the fol-
lowing behavior:

• If the destination is an undefined register, the MOVE is a dummy operation but may trigger an underlying operation according to the
source register (e.g., @DP[n]--).

• If the destination is a defined register and the source is undefined, the source data for the transfer will depend upon the source module
width. If the source is from a module containing 8-bit or 8-bit and 16-bit source registers, the source data will be equal to the prefix data
concatenated with 00h. If the source is from a module containing only 16-bit source registers, 0000h source data is used for the transfer.

The 16 available register modules are broken up into two different groups. The low six modules (specifiers 0h through 5h) are known
as the Peripheral Register modules, while the high 10 modules (specifiers 6h to Fh) are known as the System Register modules. These
groupings are descriptive only, as there is no difference between accessing the two register groups from a programming perspective.

The System Registers define basic functionality that remains the same across all products based on the MAXQ architecture. This
includes all register locations that are used to implement higher level op codes as well as the following common system features.

• ALU (MAXQ10: 8 bit; MAXQ20: 16 bit) and associated status flags (zero, equals, carry, sign, overflow)

• Eight working accumulator registers (MAXQ10: 8 bit width; MAXQ20: 16 bit width), along with associated control registers

• Instruction pointer

• Registers for interrupt control, handling, and identification

• Auto-decrementing Loop Counters for fast, compact looping

• Two Data Pointer registers and a Frame Pointer for data memory access

The Peripheral Registers define additional functionality that may be included by different products based on the MAXQ architecture. This
functionality is broken up into discrete modules so that only the features that are required for a given product need to be included. Since
the Peripheral Registers add functionality outside of the common MAXQ system architecture, they are not used to implement op codes.

DESTINATION SET TO VALUESOURCE REGISTER SIZE
(BITS)

DESTINATION REGISTER
SIZE (BITS) PREFIX SET?

HIGH 8 BITS LOW 8 BITS
8 8 — Source [7:0]
8 16 No 00h Source [7:0]
8 16 Yes Prefix [7:0] Source [7:0]

16 8 — Source [7:0]
16 16 No Source [15:8] Source [7:0]

MAXQ Family User’s Guide

Maxim Integrated

2-6

MAXQ Family User’s Guide

2.3 Memory Organization
Beyond the internal register space, memory on the MAXQ microcontroller is organized according to a Harvard architecture, with a sep-
arate address space and bus for program memory and data memory. Stack memory is also separate and is accessed through a ded-
icated register set.

To provide additional memory map flexibility, an MMU allows data memory space to be mapped into a predefined program memory
segment, thus affording the possibility of code execution from data memory. Additionally, program memory space can be made acces-
sible as data space, allowing access to constant data stored in program memory.

2.3.1 Program Memory
Program memory begins at address x0000h and is contiguous through the internal program memory. The actual size of the on-chip
program memory available for user application is product dependent. Given a 16-bit program address bus, the maximum program
space is 64kWords. Since the codewords are 16 bits, the program memory is therefore a 64k x 16 linear space.

Program memory is accessed directly by the program fetching unit and is addressed by the Instruction Pointer register. From an imple-
mentation perspective, system interrupts and branching instructions simply change the contents of the Instruction Pointer and force
the op code fetch from a new program location. The Instruction Pointer is direct read/write accessible by the user software; write access
to the Instruction Pointer will force program flow to the new address on the next cycle following the write. The content of the Instruction
Pointer will be incremented by 1 automatically after each fetch operation. The Instruction Pointer defaults to 8000h, which is the start-
ing address of the utility ROM. The default IP setting of 8000h is assigned to allow initial in-system programming to be accomplished
with utility ROM code assistance. The utility ROM code interrogates a specific register bit in order to decide whether to execute in-sys-
tem programming or jump immediately to user code starting at 0000h. The user code reset vector should always be stored in the low-
est bytes of the program memory.

The program memory is normally implemented using nonvolatile memory, e.g., ROM, EEPROM, or Flash. ROM memory technology
requires program code to be masked into the ROM during chip fabrication; no write access to program memory is available. EEPROM
and Flash provide in-system programming capability but both technologies require that the memory targeted for the write operation be
unprogrammed (erased). The utility ROM provides routines to carry out the necessary operations (erase, write, verify) on these non-
volatile memories.

2.3.2 Utility ROM
A utility ROM is normally placed in the upper 32kWord program memory space starting at address 8000h. This utility ROM potentially
provides the following system utility functions:

• Reset vector

• Bootstrap function for system initialization

• In-application programming

• In-circuit debug

Following each reset, the processor automatically starts execution at address 8000h in the utility ROM, allowing ROM code to perform
any necessary system support functions. Next, the System Programming Enable (SPE) bit is examined to determine whether system
programming should commence or whether that code should be bypassed, instead forcing execution to vector to the start of user pro-
gram code. When the SPE bit is set to logic 1, the processor will execute the prescribed Bootstrap Loader mode program that resides
in utility ROM. The SPE bit defaults to 0. To enter the Bootstrap Loader mode, the SPE bit can be set to 1 during reset via the JTAG
interface. When in-system programming is complete, the Bootstrap Loader can clear the SPE bit and reset the device such that the in-
system programming routine is subsequently bypassed.

2.3.3 Data Memory
On-chip data memory begins at address x0000h and is contiguous through the internal data memory. The actual size of the on-chip
data memory available for the user application is product dependent. Data memory is accessed via indirect register addressing
through a Data Pointer (@DP[n]) or Frame Pointer (@BP[Offs]). The Data Pointer is used as one of the operands in a MOVE instruction.
If the Data Pointer is used as source, the core performs a Load operation that reads data from the data memory location addressed
by the Data Pointer. If the Data Pointer is used as destination, the core executes a Store operation that writes data to the data memo-
ry location addressed by the Data Pointer. The Data Pointer can be directly accessed by the user software.

The core incorporates two 16-bit Data Pointers (DP[0] and DP[1]) to support data memory accessing. All Data Pointers support indi-
rect addressing mode and indirect addressing with auto-increment or auto-decrement. Data Pointers DP[0] and DP[1] can be used as

Maxim Integrated

2-7

post increment/decrement source pointers by a MOVE instruction or pre increment/decrement destination pointers by a MOVE instruc-
tion. Using Data Pointer indirectly with "++" will automatically increase the content of the active Data Pointer by 1 immediately follow-
ing the execution of read data transfer (@DP[n]++) or immediately preceding the execution of a write operation (@++DP[n]). Using
Data Pointer indirectly with "--" will decrease the content of the active Data Pointer by 1 immediately following the execution of read
data transfer (@DP[n]--) or immediately preceding the execution of a write operation (@--DP[n]).

The Frame Pointer (BP[Offs]) is formed by 16-bit unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer Offset Register
(Offs). Frame Pointer can be used as a post increment/decrement source pointer by a MOVE instruction or as a pre increment/decrement
destination pointer. Using Frame Pointer indirectly with "++" (@BP[++Offs] for a write or @BP[Offs++] for a read) will automatically increase
the content of the Frame Pointer Offset by 1 immediately before or after the execution of data transfer depending upon whether it is used
as a destination or source pointer respectively. Using Frame Pointer indirectly with "--" (@BP[--Offs] for a write or @BP[Offs--] for a read)
will decrease the content of the Frame Pointer Offset by 1 immediately before/after execution of data transfer depending upon whether it
is used as a destination or source pointer respectively. Note that the increment/decrement function affects the content of the Offs register
only, while the contents of the BP register remain unaffected by the borrow/carry out from the Offs register.

A data memory cycle contains only one system clock period to support fast internal execution. This allows read or write operations on
SRAM to be completed in one clock cycle. Data memory mapping and access control are handled by the MMU. Read/write access to
the data memory can be in word or in byte.

2.3.4 Stack Memory
A 16-bit wide on-chip stack is provided by the MAXQ for storage of program return addresses and general-purpose use. The stack is
used automatically by the processor when the CALL, RET, and RETI instructions are executed and when an interrupt is serviced; it can
also be used explicitly to store and retrieve data by using the @SP- - source, @++SP destination, or the PUSH, POP, and POPI instruc-
tions. The POPI instruction acts identically to the POP instruction except that it additionally clears the INS bit.

The width of the stack is 16 bits to accommodate the instruction pointer size. The stack depth may vary between product implemen-
tations. As the stack pointer register SP is used to hold the index of the top of the stack, the maximum size of the stack allowed for a
MAXQ product is defined by the number of bits defined in the SP register (e.g., 3 bits for stack depth of 8, 4 bits for stack depth of 16).

On reset, the stack pointer SP initializes to the top of the stack (e.g. 07h for an 8-word stack, 0Fh for a 16-word stack). The CALL, PUSH,
and interrupt vectoring operations increment SP and then store a value at @SP. The RET, RETI, POP, and POPI operations retrieve the
value at @SP and then decrement SP.

As with the other RAM-based modules, the stack memory is initialized to indeterminate values upon reset or power-up. Stack memory
is dedicated for stack operations only and cannot be accessed through program or data address spaces.

2.4 Pseudo-Von Neumann Memory Mapping
The MAXQ supports a pseudo-Von Neumann memory structure that can merge program and data into a linear memory map. This is
accomplished by mapping the data memory into the program space or mapping program memory segment into the data space.
Program memory from x0000h to x7FFFh is the normal user code segment, followed by the utility ROM segment. The uppermost part
of the 64kWord memory is the logical area for data memory when accessed as a code segment.

The program memory is logically divided into four program pages:

• P0 contains the lower 16kWords,

• P1 contains the second 16kWords,

• P2 contains the third 16kWords, and

• P3 contains the fourth 16kWords.

By default, P2 and P3 are not accessible for program execution until they are explicitly activated by the user software. The Upper
Program Access (UPA) bit must be set to logic 1 to activate P2 and P3. Once UPA is set, P2 and P3 will occupy the upper half of the
64kWord program space. In this configuration (UPA = 1), the utility ROM cannot be accessed at program memory and the physical
data memory cannot be accessed logically in program space.

The logical mapping of physical program memory page(s) into data space depends upon two factors: physical memory currently in
use for program execution; and word/byte data memory access selection. If execution is from the utility ROM, physical program mem-
ory page(s) can logically be mapped to the upper half of data memory space. If logical data memory is used for execution, physical
program memory page(s) can logically be mapped to the lower half of data memory space. If byte access mode is selected, only one

MAXQ Family User’s Guide

Maxim Integrated

2-8

MAXQ Family User’s Guide

page (16kWords) may be logically mapped, as just defined, to either the upper or lower half of data memory. If word access mode is
selected, two pages (32kWords total) may be logically mapped to data memory. To avoid memory overlapping in the byte access
mode, the physical data memory should be confined to the address range x0000h to x3FFFh in word mode. The selection of physical
memory page or pages to be logically mapped to data space is determined by the Code Access Bits (CDA1:0):

Figure 2-3 and Figure 2-4 summarize the default memory maps for this memory structure. The primary difference lies in the reset default
settings for the data pointer Word/Byte Mode Select (WBSn) bits. The WBSn bits of the MAXQ10 default to byte access mode (WBSn
= 0), while the MAXQ20 WBSn bits default to word access mode (WBSn = 1).

CDA1:0 SELECTED PAGE IN BYTE MODE SELECTED PAGE IN
WORD MODE

00 P0 P0 and P1
01 P1 P0 and P1
10 P2 P2 and P3
11 P3 P2 and P3

PHYSICAL PROGRAM�
(P0)

UTILITY ROM

PHYSICAL DATA

x0000

x8000

xA000

xFFFF

x0000

x8000

xFFFF

DATA MEMORYPROGRAM MEMORY

15 0 07

LOGICAL SPACE

LOGICAL SPACE

MAXQ10 MEMORY MAP (DEFAULT CONDITION)

PHYSICAL PROGRAM�
(P1)

Figure 2-3. Pseudo Von Neumann Memory Map (MAXQ10 Default)

Maxim Integrated

2-9

2.5 Pseudo-Von Neumann Memory Access
The pseudo-Von Neumann memory mapping is straightforward if there is no memory overlapping among the program, utility ROM, and
data memory segments. However, for applications requiring large-size program memory, the paging scheme can be used to selectively
activate those overlapped memory segments. The UPA bit can be used to activate the upper half of the physical program code (P2 and
P3) for program execution. When accessing the program memory as data, the CDA bits can be used to select one of the four program
pages as needed. Full data memory access to any of the four physical program memory pages is based on the assumption that the max-
imum physical data memory is in the range of 16k x 16. The other restriction for accessing the pseudo-Von Neumann map is that when
program execution is in a particular memory segment, the same memory segment cannot be simultaneously be accessed as data.

When executing from the lower 32k program space (P0 and P1):

• The upper half of the code segment (P2 and P3) is accessible as program if the UPA bit is set to 1.

• The physical data memory is available for accessing as a code segment with offset at xA000h if the UPA bit is 0.

• Load and Store operations addressed to physical data memory are executed as normal.

• The utility ROM can be read as data, starting at x8000h of the data space.

When executing from the utility ROM (only allowable when UPA = 0):

• The lower 32k program space (P0 and P1) functions as normal program memory.

• The upper half of the code segment (P2 and P3) is not accessible as program (since UPA = 0).

• The physical data memory is available for accessing as a code segment with offset at xA000h.

• Load and Store operations addressed to physical data memory are executed as normal.

• One page (byte access mode) or two pages (word access mode) can be accessed as data with offset at x8000h as determined by
the CDA1:0 bits.

Physical Program
(P0)

PHYSICAL DATA

x0000

x8000

x4000

DATA MEMORY

015

LOGICAL SPACE

MAXQ20 MEMORY MAP (DEFAULT CONDITION, UPA = 0)

PHYSICAL DATA

x0000

x8000

xFFFF

x0000

x4000

x8000

DATA MEMORYPROGRAM MEMORY

15 0 015

LOGICAL SPACE

LOGICAL SPACE

MAXQ20 MEMORY MAP (UPA = 1, CDA IS DON’T CARE)

LOGICAL UTILITY ROM

P2

P3

PHYSICAL PROGRAM�
(P3)

PHYSICAL PROGRAM�
(P2)

PHYSICAL PROGRAM�
(P1)

PHYSICAL PROGRAM�
(P0)

xFFFFxFFFF

PHYSICAL PROGRAM�
(P0)

UTILITY ROM

x0000

x8000

xA000

xFFFF

PROGRAM MEMORY

15 0

LOGICAL SPACE

PHYSICAL PROGRAM�
(P1)

Figure 2-4. Pseudo Von Neumann Memory Map (MAXQ20 Default)

MAXQ Family User’s Guide

Maxim Integrated

2-10

MAXQ Family User’s Guide

When executing from the data memory (only allowable when UPA = 0):

• Program flows freely between the lower 32k user code (P0 and P1) and the utility ROM segment.

• The upper half of the code segment (P2 and P3) is not accessible as program (since UPA = 0).

• The utility ROM can be accessed as data with offset at x8000h.

• One page (byte access mode) or two pages (word access mode) can be accessed as data with offset at x0000h as determined by
the CDA1:0 bits.

2.6 Data Alignment
To support merged program and data memory operation while maintaining efficiency on memory space usage, the data memory must
be able to support both byte-wide and word-wide accessing. Data is aligned in data memory as word, but the effective data address is
resolved to bytes. This data alignment allows direct program fetching in its native word size while maintaining accessibility at the byte
level. It is important to realize that this accessibility requires strict word alignment. All executable words must align to an even address
in byte mode. Care must be taken when updating the code segment in the unified data memory space as misalignment of words will
likely result in loss of program execution control. Worst yet, this situation may not be detected if the watchdog timer is also disabled.

Data memory is organized as two byte-wide memory banks with common word address decode but two 8-bit data buses. The data
memory will always be read as a complete word, independent of operation, whether program fetch or data access. The program
decoder always uses the full 16-bit word, whereas the data access can utilize a word or an individual byte.

In byte mode, data pointer hardware reads out the word containing the selected byte using the effective data word address pointer
(the least significant bit of the byte data pointer is not initially used). Then, the least significant data pointer bit functions as the byte
select that is used to place the target byte to the data path. For write access, data pointer hardware addresses a particular word using
the effective data word address while the least significant bit selects the corresponding data bank for write, leaving the contents of the
another memory bank unaffected.

2.6.1 Memory Management Unit
Memory allocation and accessing control for program and data memory can be managed by the memory management unit (MMU). A
single memory management unit option is discussed in this User Guide, however the memory management unit implementation for any
given product depends upon the type and amount of memory addressable by the device. Users should consult the individual product
data sheet(s) and/or user’s guide supplement(s) for detailed information.

Although supporting less than the maximum addressable program and data memory segments, the MMU implementation presented
provides a high degree of programming and access control flexibility. It supports the following:

• User program memory up to 32k x 16 (up to 64k x 16 with inclusion of UPA bit).

• Utility ROM up to 8k x 16.

• Data memory SRAM up to 16k x 16.

• In-system and in-application programming of embedded EEPROM, Flash, or SRAM memories.

• Access to any of the three memory areas (SRAM, code memory, utility ROM) using the data memory pointers.

• Execution from any of the three memory areas (SRAM, code memory, factory written and tested utility-ROM routines).

Given these capabilities, the following rules apply to the memory map:

• A particular memory segment cannot be simultaneously accessed as both program and data.

• The offset address is xA000h when logically mapping data memory into the program space.

• The offset for logically mapping the utility ROM into the data memory space is x8000h.

• Program memory:

- The lower half of the program memory (P0 and P1) is always accessible, starting at x0000h.

- The upper half of the program memory (P2 and P3) must be activated by setting the UPA bit to 1 when accessing for code
execution, starting at x8000h.

- Setting the UPA bit to 1 disallows access to the utility ROM and logical data memory as program.

Maxim Integrated

2-11

Figure 2-5. CDA Functions (Word Access Mode)

PHYSICAL DATA

x0000

x8000

x4000

DATA MEMORY
015

CDA1 = 0

CDA1 = 1

MAXQ20 MEMORY MAP (UPA = 0, EXECUTING FROM UTILITY ROM)

x0000

x8000

DATA MEMORYPROGRAM MEMORY

015

LOGICAL SPACE

MAXQ20 MEMORY MAP (UPA = 0, EXECUTING FROM LOGICAL DATA MEMORY)

LOGICAL UTILITY ROM

P2

P3

xFFFF

PHYSICAL PROGRAM�
(P0)

UTILITY ROM

x0000

x8000

xA000

xFFFF

PROGRAM MEMORY

15 0

LOGICAL SPACE

PHYSICAL PROGRAM�
(P1)

LOGICAL DATA

CDA1 = 1

P2

P3

PHYSICAL PROGRAM�
(P0)

UTILITY ROM

CDA1 = 0x0000

x8000

xA000

xFFFF
15 0

LOGICAL SPACE

LOGICAL DATA MEMORY

PHYSICAL PROGRAM�
(P1)

MAXQ Family User’s Guide

Maxim Integrated

2-12

MAXQ Family User’s Guide

Figure 2-6. CDA Functions (Byte Access Mode)

UTILITY ROM

PHYSICAL DATA

x0000

x8000

xA000

xFFFF

x0000

x8000

xFFFF

DATA MEMORYPROGRAM MEMORY

15 0 07

CDA0 = 1

CDA0 = 0

EXECUTING FROM UTILITY ROM (UPA = 0, ONLY P1, P2 PRESENT)

PHYSICAL PROGRAM�
(P0)

UTILITY ROM

x0000

x8000

xA000

xFFFF

x0000

x8000

xFFFF

DATA MEMORYPROGRAM MEMORY

15 0 07

CDA0 = 0

CDA0 = 1

EXECUTING FROM LOGICAL DATA MEMORY (UPA = 0, ONLY P1, P2 PRESENT)

PHYSICAL PROGRAM�
(P1)

LOGICAL SPACE

LOGICAL SPACE

LOGICAL DATA
MEMORY

LOGICAL DATA
MEMORY

LOGICAL SPACE

PHYSICAL PROGRAM�
(P1)

PHYSICAL PROGRAM�
(P0)

Maxim Integrated

2-13

- Physical program memory pages (P0, P1, P2, P3) are logically mapped into data space based upon the memory segment
currently being used for execution, selection of byte/word access mode, and CDA1:0 bit settings (described under Pseudo Von
Neumann Memory Map and Pseudo Von Neumann Memory Access.)

• Data memory

- Access can be either word or byte.

- All 16 data pointer address bits are significant in either access mode (word or byte.)

2.7 Clock Generation
All functional modules in the MAXQ are synchronized to a single system clock. The internal clock circuitry generates the system clock
from one of four possible sources:

• Internal ring oscillator

• Internal oscillator, using an external crystal or resonator

• Internal relaxation oscillator, using an external RC

• External clock signal

MAXQ

GL
IT

CH
-F

RE
E

M
UXGL

IT
CH

-F
RE

E
M

UX

DI
V

1
DI

V
2

DI
V

4
DI

V
8

PM
M

CLOCK�
DIVIDER

SELECTOR
DEFAULT

RING SELECT

WATCHDOG�
TIMER

RESET DOG
RWT

RESET

POWER-ON�
RESET

STOP

XT/RC

STOP

POWER-ON�
RESET

SWB
INTERRUPT/SERIAL PORT
RESET

STOP

RGSL

XDOG DONE

RGMD

WATCHDOG RESET

CLOCK�
GENERATION

SYSTEM CLOCK

ENABLE

WATCHDOG INTERRUPT

RC
OSCILLATOR

ENABLE

RING OSC

ENABLE

HF�
CRYSTAL

ENABLE

XDOG�
STARTUP�

TIMER

OSC IN

RESET

XDOG DONERC IN

Figure 2-7. MAXQ Clock Sources

MAXQ Family User’s Guide

Maxim Integrated

2-14

MAXQ Family User’s Guide

The external clock and crystal are mutually exclusive since they are input via the same clock pin. The basic clock source selection is
made through two bits: RGSL and XT/RC. The RGSL bit controls selection of the internal ring oscillator for system clock generation. When
RGSL = 1, the internal ring oscillator is used for system clock generation. The RGSL bit is read/write accessible at any time and defaults
to logic 0 on power-on reset only, allowing the internal ring oscillator to be used for system clock generation until the crystal warmup
completes or until user code selects the XTAL1 pin configuration corresponding to an external RC (XT/RC =0). The XT/RC bit is writable
only when the internal ring oscillator is explicitly selected for system clock generation (RGSL=1). The user code then must disable the
internal ring oscillator (RGSL = 0) for the XT/RC elected clock source to take effect. Since RGSL and XT/RC reside in the same register,
an external clock source selection can be made in the same instruction as the ring oscillator is disabled. Once the ring oscillator is dis-
abled, RGSL = 0, the RGMD bit can be used to assess when the switchover to the source defined by XT/RC has occurred. The exter-
nal RC clock selection (XT/RC =0) requires a 4-cycle count before it can be used, while the external crystal/resonator or external clock
selection (XT/RC = 1) requires a 65,536-cycle count before it can be used. Requiring some type of warmup period for both external clock
possibilities (crystal or RC) also serves as protection against an errant change of the XT/RC bit that produces a mismatch of XTAL1,
XTAL2 pin function and external clock circuitry.

Each time code execution must start or restart (as may be the case when exiting stop mode) using the external clock source, the fol-
lowing sequence occurs:

• Reset the crystal warmup counter, and

• Allow the required warmup delay:

- 65,536 external clock cycles if XT/RC = 1 and exiting from stop mode

- four external clock cycles if XT/RC = 0

• During the warmup sequence, code execution may commence from the internal ring oscillator provided that one is present in the
given MAXQ device. The user code may detect when the automatic switchover from the internal ring oscillator to the selected XT/RC
source occurs by polling the RGMD status bit. If the RGSL bit is returned to logic 1 state (internal ring selection) while a warmup is
in progress, the crystal amplifier or RC oscillator shuts down and the warmup process terminates.

2.7.1 Internal Ring Oscillator
The MAXQ microcontroller can source its main clock directly from an internal ring oscillator. The ring frequency varies over process,
temperature, and supply voltage. For synchronization and timing purposes, the ring oscillator resets anytime it is selected for use as
the primary system clock. The ring oscillator clock is divided down according to the PMME, CD1:0 bit selections just the same as the
external non-ring clock possibilities. There is a four-cycle warmup delay associated with the internal ring oscillator when the system is
going through a power-on reset or returning from the Stop mode.

2.7.2 External Clock (Crystal/Resonator)
An external quartz crystal or a ceramic resonator can be connected from XTAL1 to XTAL2 as the device determining the frequency, as
illustrated in Figure 2-8. The fundamental mode of the crystal operates as inductive reactance in parallel resonance with external
capacitance to the crystal.

Crystal specifications, operating temperature, operating voltage, and parasitic capacitance must be considered when designing the
internal oscillator. To further reduce the effects of external noise, a guard ring can be placed around the oscillator circuitry.

Pins XTAL1 and XTAL2 are protected by clamping devices against on-chip electrostatic discharge. These clamping devices are diodes
parasitic to the feedback resistor Rf in the inverter circuit of the oscillator. The inverter circuit is presented as a NAND gate, which can
disable clock generation in STOP mode or if the internal ring oscillator is explicitly selected for use (i.e., RGSL = 1).

Noise at XTAL1 and XTAL2 can adversely affect on-chip clock timing. It is good design practice to place the crystal and capacitors near
the oscillator circuitry and connect to XTAL1, XTAL2, and ground with direct shot trace. The typical values of external capacitors vary
with the type of crystal used and should be initially selected based on the load capacitance as suggested by the crystal manufacturer.

For cost-sensitive applications, a ceramic resonator can be used instead of a crystal. Using the ceramic resonator may require a dif-
ferent circuit configuration and capacitance value.

2.7.3 External Clock (Direct Input)
The MAXQ CPU can also obtain the system clock signal directly from an external clock source. In this configuration, the clock gener-
ation circuitry is driven directly by an external clock.

To operate the core from an external clock, connect the clock source to the XTAL1 pin and leave the XTAL2 pin floating. The clock
source should be driven through a CMOS driver. If the clock driver is a TTL gate, its output must be connected to VCC through a pullup

Maxim Integrated

2-15

resistor to ensure a satisfactory logic level for active clock pulses. To minimize system noise on the clock circuitry, the external clock
source must meet the maximum rise and fall times and the minimum high and low times specified for the clock source. The external
noise can affect clock generation circuit if these parameters do not meet the specification.

2.7.4 External RC
For timing-insensitive applications, the external RC option offers additional cost savings. The RC oscillator frequency is a function of
the supply voltage, external resistor (Rext) and capacitor (Cext) values and tolerances, and the operating temperature. In addition to
this, the oscillator frequency varies from unit to unit due to normal process parameter variation. Figure 2-9 shows how the external RC
combination is connected to the MAXQ microcontroller.

2.7.5 Internal System Clock Generation
The internal system clock is derived from the currently selected oscillator input.

By default, one system clock cycle is generated per oscillator cycle, but the number of oscillator cycles per system clock can also be
increased by setting the Power Management Mode Enable (PMME) bit and the Clock Divide Control (CD[1:0]) register bits per Table 2-2.

Table 2-2. System Clock Rate Control Settings

PMME CD[1:0] CYCLES PER CLOCK
0 00 1 (default)
0 01 2
0 10 4
0 11 8
1 xx 256

Figure 2-9. RC Relaxation Oscillator

MAXQ

CLOCK�
CIRCUITRY

STOP OR �
RGSL

VCC

VCC

XTAL1

XTAL2

INTERNAL CIRCUIT

REXT

CEXT

MAXQ Family User’s Guide

Figure 2-8. On-Chip Crystal Oscillator

MAXQ

CLOCK�
CIRCUITRY

STOP OR
RGSL

VCC

XTAL1

XTAL2

C1 C2

INTERNAL CIRCUIT

RF

Maxim Integrated

2-16

MAXQ Family User’s Guide

2.8 Interrupts
The MAXQ provides a single, programmable interrupt vector (IV) that can be used to handle internal and external interrupts. Interrupts
can be generated from system level sources (e.g., watchdog timer) or by sources associated with the peripheral modules included in
the specific MAXQ microcontroller. Only one interrupt can be handled at a time, and all interrupts naturally have the same priority. A
programmable interrupt mask register allows software-controlled prioritization and nesting of high-priority interrupts.

2.8.1 Servicing Interrupts
For the MAXQ to service an interrupt, interrupts must be enabled globally, modularly, and locally. The Interrupt Global Enable (IGE) bit
located in the Interrupt Control (IC) register acts as a global interrupt mask. This bit defaults to 0, and it must be set to 1 before any
interrupt takes place.

The local interrupt-enable bit for a particular source is in one of the peripheral registers associated with that peripheral module, or in a
system register for any system interrupt source. Between the global and local enables are intermediate per-module and system interrupt
mask bits. These mask bits reside in the Interrupt Mask system register. By implementing intermediate per-module masking capability
in a single register, interrupt sources spanning multiple modules can be selectively enabled/disabled in a single instruction. This pro-
motes a simple, fast, and user-definable interrupt prioritization scheme. The interrupt source-enable hierarchy is illustrated in Figure 2-10.

When an interrupt condition occurs, its individual flag is set, even if the interrupt source is disabled at the local, module, or global level.
Interrupt flags must be cleared within the user interrupt routine to avoid repeated interrupts from the same source.

Since all interrupts vector to the address contained in the Interrupt Vector (IV) register, the Interrupt Identification Register (IIR) may be
used by the interrupt service routine to determine the module source of an interrupt. The IIR contains a bit flag for each peripheral mod-
ule and one flag associated with all system interrupts; if the bit for a module is set, then an interrupt is pending that was initiated by
that module. If a module is capable of generating interrupts for different reasons, then peripheral register bits inside the module pro-
vide a means to differentiate among interrupt sources.

The Interrupt Vector (IV) register provides the location of the interrupt service routine. It may be set to any location within program mem-
ory. The IV register defaults to 0000h on reset or power-up, so if it is not changed to a different address, the user program must deter-
mine whether a jump to 0000h came from a reset or interrupt source.

2.8.2 Interrupt System Operation
The interrupt handler hardware responds to any interrupt event when it is enabled. An interrupt event occurs when an interrupt flag is
set. All interrupt requests are sampled at the rising edge of the clock and can be serviced by the processor one clock cycle later,
assuming the request does not hit the interrupt exception window. The one-cycle stall between detection and acknowledgement/ser-
vicing is due to the fact that the current instruction may also be accessing the stack. For this reason, the CPU must allow the current
instruction to complete before pushing the stack and vectoring to IV. If an interrupt exception window is generated by the currently exe-
cuting instruction, the following instruction must be executed, so the interrupt service routine will be delayed an additional cycle.

Interrupt operation in the MAXQ CPU is essentially a state machine generated long CALL instruction. When the interrupt handler ser-
vices an interrupt, it temporarily takes control of the CPU to perform the following sequence of actions:

1) The next instruction fetch from program memory is cancelled.

2) The return address is pushed on to the stack.

3) The INS bit is set to 1 to prevent recursive interrupt calls.

4) The instruction pointer is set to the location of the interrupt service routine (contained in the Interrupt Vector register).

5) The CPU begins executing the interrupt service routine.

Once the interrupt service routine completes, it should use the RETI instruction to return to the main program. Execution of RETI
involves the following sequence of actions:

1) The return address is popped off the stack.

2) The INS bit is cleared to 0 to re-enable interrupt handling.

3) The instruction pointer is set to the return address that was popped off the stack.

4) The CPU continues execution of the main program.

Pending interrupt requests will not interrupt an RETI instruction; a new interrupt will be serviced after first being acknowledged in the
execution cycle which follows the RETI instruction and then after the standard one stall cycle of interrupt latency. This means there will
be at least two cycles between back-to-back interrupts.

Maxim Integrated

2-17

2.8.3 Synchronous vs. Asynchronous Interrupt Sources
Interrupt sources can be classified as either asynchronous or synchronous. All internal interrupts are synchronous interrupts. An internal
interrupt is directly routed to the interrupt handler that can be recognized in one cycle. All external interrupts are asynchronous interrupts
by nature. When the device is not in Stop Mode, asynchronous interrupt sources are passed through a 3-clock sampling/glitch filter cir-
cuit before being routed to the interrupt handler. The sampling/glitch filter circuit is running on the undivided source clock (i.e., before
PMME, CD1:0-controlled clock divide) such that the number of system clocks required to recognize an asynchronous interrupt request
depends upon the system clock divide ratio:

• if the system clock divide ratio is 1, the interrupt request is recognized after 3 system clock;

SYSTEM MODULES

WATCHDOG

EWDI�
(LOCAL ENABLE)

TIMER/COUNTER MODULE

TF0

TF1
EXF1

SPIC

MODF

ET0, ET1�
(LOCAL ENABLES)

IMx�
(MODULE ENABLE)

GPI/O MODULE

INT0

EX0-EX5�
(LOCAL ENABLES)

IT0

INT1

INT2

INT3

IT1

INT4

INT5

IMx�
(MODULE ENABLE)

IMS�
(SYSTEM ENABLE)

SERIAL I/O MODULE

RI
TI

ESI, ESPII�
(LOCAL ENABLES)

IMx�
(MODULE ENABLE)

ROVR
WCOL

IGE�
(GLOBAL ENABLE)

NOTE: ONLY A FEW OF THE MANY POSSIBLE MAXQ PERIPHERAL MODULES ARE SHOWN IN THIS INTERRUPT
 HIERARCHY FIGURE. PLEASE REFERENCE THE CORRESPONDING DATA SHEET FOR INTERRUPT FLAG
 AND ENABLE BITS SPECIFIC TO A GIVEN DEVICE.

INS�
(INTERRUPT IN SERVICE)

INTERRUPT�
VECTOR

ƒ

ƒ

ƒ

ƒ

Figure 2-10. MAXQ Interrupt Source Hierarchy Example

MAXQ Family User’s Guide

Maxim Integrated

2-18

MAXQ Family User’s Guide

• if the system clock divide ratio is 2, the interrupt request is recognized after 2 system clock;

• if the system clock divide ratio is 4 or greater, the interrupt request is recognized after 1 system clock;

An interrupt request with a pulse width less than three undivided clock cycles is not recognized. Note that the granularity of interrupt
source is at module level. Synchronous interrupts and sampled asynchronous interrupts assigned to the same module product a sin-
gle interrupt to the interrupt handler.

External interrupts, when enabled, can be used as switchback sources from power management mode. There is no latency associat-
ed with the switchback because the circuit is being clocked by an undivided clock source versus the divide-by-256 system clock. For
the same reason, there is no latency for other switchback sources that do not qualify as interrupt sources.

2.8.4 Interrupt Prioritization by Software
All interrupt sources of the MAXQ microcontroller naturally have the same priority. However, when CPU operation vectors to the pro-
grammed Interrupt Vector address, the order in which potential interrupt sources are interrogated is left entirely up to the user, as this
often depends upon the system design and application requirements. The Interrupt Mask system register provides the ability to know-
ingly block interrupts from modules considered to be of lesser priority and manually re-enable the interrupt servicing by the CPU (by set-
ting INS = 0). Using this procedure, a given interrupt service routine can continue executing, only to be interrupted by higher priority
interrupts. An example demonstrating this software prioritization is provided in the Handling Interrupts section of Section 3: Programming.

2.8.5 Interrupt Exception Window
An interrupt exception window is a noninterruptable execution cycle. During this cycle, the interrupt handler does not respond to any inter-
rupt requests. All interrupts that would normally be serviced during an interrupt exception window are delayed until the next execution cycle.

Interrupt exception windows are used when two or more instructions must be executed consecutively without any delays in between.
Currently, there is a single condition in the MAXQ microcontroller that causes an interrupt exception window: activation of the prefix
(PFX) register.

When the prefix register is activated by writing a value to it, it retains that value only for the next clock cycle. For the prefix value to be
used properly by the next instruction, the instruction that sets the prefix value and the instruction that uses it must always be execut-
ed back to back. Therefore, writing to the PFX register causes an interrupt exception window on the next cycle. If an interrupt occurs
during an interrupt exception window, an additional latency of one cycle in the interrupt handling will be caused as the interrupt will
not be serviced until the next cycle.

2.9 Operating Modes
In addition to the standard program execution mode, there are three other operating modes for the MAXQ. During Reset Mode, the
processor is temporarily halted by an external or internal reset source. During Power Management Mode, the processor executes
instructions at a reduced clock rate to decrease power consumption. Stop Mode halts execution and all internal clocks to save power
until an external stimulus indicates that processing should be resumed.

2.9.1 Reset Mode
When the MAXQ microcontroller is in Reset Mode, no instruction execution or other system or peripheral operations occur, and all
input/output pins return to default states. Once the condition that caused the reset (whether internal or external) is removed, the proces-
sor begins executing code at address 8000h.

There are four different sources that can cause the MAXQ to enter Reset Mode:

• Power-On/Brownout Reset

• External Reset

• Watchdog Timer Reset

• Internal System Reset

2.9.1.1 Power-On/Brownout Reset
An on-chip power-on reset (POR) circuit is provided to ensure proper initialization on internal device states. The power-on reset circuit
provides a minimum power-on-reset delay sufficient to accomplish this initialization. For fast VDD supply rise times, the MAXQ device
will, at a minimum, be held in reset for the power-on reset delay when initially powered up. For slow VDD supply rise times, the MAXQ
device will be held in reset until VDD is above the power-on-reset voltage threshold. The minimum POR delay and POR voltage thresh-
old can differ depending upon MAXQ device. Refer to the device data sheet(s) for specifics.

Maxim Integrated

2-19

Certain MAXQ devices may also incorporate brownout detection capability. For these devices, an on-chip precision reference and
comparator monitor the supply voltage VDD to ensure that it is within acceptable limits. If VDD is below the power-fail level, the power
monitor initiates a reset condition. This can occur either when the MAXQ is first powered up when the VDD supply is above the POR
voltage threshold, or when VDD drops out of tolerance from an acceptable level.

In either case, the reset condition is maintained until VDD rises above the reset level VRST. Once VDD > VRST, execution may resume
following any necessary clock warmup delay.

When the processor exits from the power-on/brownout reset state, the POR bit in the Watchdog Control Register (WDCN) is set to 1
and can only be cleared by software. The user software can examine the POR bit following a reset to determine whether the reset was
caused by a power-on reset or by another source.

2.9.1.2 External Reset
During normal operation, the MAXQ device is placed into external reset mode by holding the RST pin at logic 0 for at least four clock
cycles. If MAXQ device is in the low-power Stop mode (i.e., system clock is not active), the RST pin becomes an asynchronous source,
forcing the reset state immediately after being taken to logic 0. Once the MAXQ enters Reset mode, it remains in reset as long as the
RST pin is held at logic 0. After the RST pin returns to logic 1, the processor exits the reset state within four clock cycles and begins
program execution at address 8000h.

For many MAXQ devices, the RST pin is an output as well as an input. If a reset condition is caused by another source (such as a
brownout reset, watchdog, or internal reset), an output reset pulse is generated at the RST pin for as long as the MAXQ remains in
reset. If the RST pin is connected to an RC reset circuit or a similar circuit, it may not be able to drive the output reset signal. However,
if this occurs it does not affect the internal reset condition.

2.9.1.3 Watchdog Timer Reset
The watchdog timer is a programmable hardware timer that can be set to reset the processor in the case of a software lockup or other
unrecoverable error. Once the watchdog is enabled in this manner, the processor must reset the watchdog timer periodically to avoid
a reset. If the processor does not reset the watchdog timer before it elapses, the watchdog will initiate a reset state.

If the watchdog resets the processor, it remains in reset, and holds the RST pin low, for four clock cycles. Once the reset condition is
removed, the processor will begin executing program code at address 8000h. When a reset occurs due to a watchdog timeout, the
Watchdog Timer Reset flag in the WDCN register is set to 1 and can only be cleared by software. User software can examine this bit
following a reset to determine if that reset was caused by a watchdog timeout.

2.9.1.4 Internal System Reset
MAXQ devices may incorporate functions that logically warrant the ability to generate an internal system reset. This reset generation
capability is assessed by MAXQ function based upon its expected use. In-system programming is a prime example of functionality that
benefits by having the ability to reset the device. The exact in-system programming protocol is somewhat device and interface spe-
cific, however, it is expected that, upon completion of in-system programming, many users want the ability to reset the system. This
internal (software-triggered) reset generation capability is possible following in-system programming.

2.9.2 Power Management Mode
There are two major sources of power dissipation in CMOS circuitry. The first is static dissipation caused by continuous leakage cur-
rent. The second is dynamic dissipation caused by transient switching current required to charge and discharge load capacitors, as
well as short circuit current produced by momentary connections between VDD and ground during gate switching.

Usually, it is the dynamic switching power dissipation that dominates the total power consumption, and this power dissipation (PD) for
a CMOS circuit can be calculated in terms of load capacitance (CL), power-supply voltage (VDD) and operating frequency (f) as:

PD = CL x VDD2 x f

Capacitance and supply voltage are technology dependent and relatively fixed. However, the operating frequency determines the clock
rate, and the required clock rate may be different from application to application depending on the amount of processing power required.

If an external crystal or oscillator is being used, the operating frequency can be adjusted by changing external components. However,
it may be the case that a single application may require maximum processing power at some times and very little at others. Power
Management mode allows an application to reduce its clock frequency, and therefore its power consumption, under software control.

Power Management Mode is invoked by setting the PMME bit to 1. Once this bit has been set, one system clock cycle will occur every
256 oscillator cycles. All operations continue as normal in this mode, but at the reduced clock rate. Power Management Mode can be
deactivated by clearing the PMME bit to 0; the PMME bit will also be cleared automatically to 0 by any reset condition.

MAXQ Family User’s Guide

Maxim Integrated

2-20

MAXQ Family User’s Guide

The PMME bit may not be set to 1 if any potential switchback source is active. Attempts to set the PMME bit under these conditions
result in a no-op.

2.9.2.1 Switchback
When Power Management Mode is active, the MAXQ operates at a reduced clock rate. Although execution continues as normal,
peripherals that base their timing on the system clock such as the UART module and the SPI module may be unable to operate nor-
mally or at a high enough speed for proper application response. Additionally, interrupt latency is greatly increased.

The Switchback feature is used to allow a processor running under Power Management Mode to switch back to normal mode quickly
under certain conditions that require rapid response. Switchback is enabled by setting the SWB bit to 1. If Switchback is enabled, a
processor running under Power Management Mode automatically clears the PMME bit to 0 and returns to normal mode when any of
the following conditions occur:

• An external interrupt condition occurs on an INTx pin and the corresponding external interrupt is enabled.

• An active-low transition occurs on the UART serial receive-input line (modes 1, 2, and 3) and data reception is enabled.

• The SBUF register is written to send an outgoing byte through the UART and transmission is enabled.

• The SPIB register is written in master mode (STBY = 1) to send an outgoing character through the SPI module and transmission is enabled.

• The SPI module’s SSEL signal is asserted in slave mode.

• Time-of-Day and Subsecond interval alarms from the RTC when enabled.

• Active debug mode is entered either by break point match or issuance of the 'Debug' command from background mode.

2.9.3 Stop Mode
When the MAXQ is in Stop Mode, the CPU system clock is stopped, and all processing activity is halted. All on-chip peripherals requir-
ing the system clock are also stopped. Power consumption in Stop Mode is at the lowest possible level and is basically limited to sta-
tic leakage current.

Stop Mode is entered by setting the STOP bit to 1. The processor enters Stop Mode immediately once the instruction that sets the STOP
bit is executed. The MAXQ exits Stop Mode when any of the following conditions occur:

• An external interrupt condition occurs on one of the INTx pins and the corresponding external interrupt is enabled. After the inter-
rupt returns, execution resumes after the stop point.

• An external reset signal is applied to the RST pin. After the reset signal is removed, execution resumes at 8000h as it would after any
reset state.

In some MAXQ devices, the brownout voltage detection circuitry can be disabled during Stop Mode, so a power-fail condition does
not cause a reset as it would under normal conditions. Once the processor exits Stop Mode, it resumes execution as follows:

• If the RGSL bit is set to 0, the clock source selected by the XT/RC bit is enabled so that it may warm up/stabilize. During the warmup
period, the internal ring oscillator may be used for execution. The clock source switches from the ring oscillator to the XT/RC source
automatically once the warmup completes. The RGMD bit can be read by the processor to determine when the switch from the ring
oscillator to the XT/RC source has occurred.

• If the RGSL bit is set to 1, the internal ring oscillator will be used to resume execution and the XT/RC selected clock source will remain
disabled.

Maxim Integrated

3-1

MAXQ Family User’s Guide

SECTION 3: PROGRAMMING

This section contains the following information:

3.1 Addressing Modes .3-3

3.2 Prefixing Operations .3-3

3.3 Reading and Writing Registers .3-4

3.3.1 Loading an 8-Bit Register With an Immediate Value .3-4

3.3.2 Loading a 16-Bit Register With a 16-Bit Immediate Value .3-4

3.3.3 Moving Values Between Registers of the Same Size .3-4

3.3.4 Moving Values Between Registers of Different Sizes .3-4

3.4 Reading and Writing Register Bits .3-6

3.5 Using the Arithmetic and Logic Unit .3-6

3.5.1 Selecting the Active Accumulator .3-6

3.5.2 Enabling Auto-Increment and Auto-Decrement .3-6

3.5.3 ALU Operations Using the Active Accumulator and a Source 3-8

3.5.4 ALU Operations Using Only the Active Accumulator .3-9

3.5.5 ALU Bit Operations Using Only the Active Accumulator .3-9

3.5.6 MAXQ10 Example: Adding Two 4-Byte Numbers Using Auto-Increment 3-9

3.5.7 MAXQ20 Example: Adding Two 4-Byte Numbers Using Auto-Increment 3-10

3.6 Processor Status Flag Operations .3-10

3.6.1 Sign Flag .3-10

3.6.2 Zero Flag .3-10

3.6.3 Equals Flag .3-10

3.6.4 Carry Flag .3-10

3.6.5 Overflow Flag .3-11

3.7 Controlling Program Flow .3-11

3.7.1 Obtaining the Next Execution Address .3-11

3.7.2 Unconditional Jumps .3-12

3.7.3 Conditional Jumps .3-12

3.7.4 Calling Subroutines .3-12

3.7.5 Looping Operations .3-12

3.7.6 Conditional Returns .3-13

Maxim Integrated

3.8 Handling Interrupts .3-13

3.8.1 Conditional Return from Interrupt .3-14

3.9 Accessing the Stack .3-15

3.10 Accessing Data Memory .3-15

3.11 Using the Watchdog Timer .3-17

3-2

MAXQ Family User’s Guide

LIST OF FIGURES

LIST OF TABLES

Figure 3-1. Watchdog Timer Block Diagram .3-18

Table 3-1. Accumulator Pointer Control Register Settings .3-7

Table 3-2. Watchdog Timer Register Control Bits .3-17

Table 3-3. Watchdog Timeout Period Selection .3-19

Table 3-4. System Register Map .3-19

Table 3-5. System Register Bit Map .3-20

Table 3-6. System Register Bit Reset Values .3-21

Maxim Integrated

3-3

MAXQ Family User’s Guide

SECTION 3: PROGRAMMING
The following section provides a programming overview of the MAXQ. For full details on the instruction set, as well as System Register
and Peripheral Register detailed bit descriptions, see the appropriate sections in this user’s guide.

3.1 Addressing Modes
The instruction set for the MAXQ provides three different addressing modes: direct, indirect, and immediate.

The direct addressing mode can be used to specify either source or destination registers, such as:

move A[0], A[1] ; copy accumulator 1 to accumulator 0
push A[0] ; push accumulator 0 on the stack
add A[1] ; add accumulator 1 to the active accumulator

Direct addressing is also used to specify addressable bits within registers.

move C, Acc.0 ; copy bit zero of the active accumulator
; to the carry flag

move PO0.3, #1 ; set bit three of port 0 Output register

Indirect addressing, in which a register contains a source or destination address, is used only in a few cases.

move @DP[0], A[0] ; copy accumulator 0 to the data memory
; location pointed to by data pointer 0

move A[0], @SP-- ; where @SP-- is used to pop the data pointed to
; by the stack pointer register

Immediate addressing is used to provide values to be directly loaded into registers or used as operands.

move A[0], #10h ; set accumulator 1 to 10h/16d

3.2 Prefixing Operations
All instructions on the MAXQ are 16 bits long and execute in a single cycle. However, some operations require more data than can be
specified in a single cycle or require that high-order register-index bits be set to achieve the desired transfer. In these cases, the pre-
fix register module PFX is loaded with temporary data and/or required register index bits to be used by the following instruction. The
PFX module only holds loaded data for a single cycle before it clears to zero.

Instruction prefixing is required for the following operations, which effectively makes them two-cycle operations:

• When providing a 16-bit immediate value for an operation (e.g., loading a 16-bit register, ALU operation, supplying an absolute pro-
gram branch destination), the PFX module must be loaded in the previous cycle with the high byte of the 16-bit immediate value
unless that high byte is zero. One exception to this rule is when supplying an absolute branch destination to 00xxh. In this case,
PFX still must be written with 00h. Otherwise, the branch instruction would be considered a relative one instead of the desired
absolute branch.

• When selecting registers with indexes greater than 07h within a module as destinations for a transfer or registers with indexes
greater than 0Fh within a module as sources, the PFX[n] register must be loaded in the previous cycle. This can be combined with
the previous item.

Generally, prefixing operations can be inserted automatically by the assembler as needed, so that (for example)

move DP[0], #1234h
actually assembles as

move PFX[0], #12h
move DP[0], #34h

However, the operation

move DP[0], #0055h
does not require a prefixing operation even though the register DP[0] is 16-bit. This is because the prefix value defaults to zero, so the line

move PFX[0], #00h
is not required.

Maxim Integrated

3-4

MAXQ Family User’s Guide

3.3 Reading and Writing Registers
All functions in the MAXQ are accessed through registers, either directly or indirectly. This section discusses loading registers with
immediate values and transferring values between registers of the same size and different sizes.

3.3.1 Loading an 8-Bit Register With an Immediate Value
Any writeable 8-bit register with a sub-index from 0h to 7h within its module can be loaded with an immediate value in a single cycle
using the MOVE instruction.

move AP, #05h ; load accumulator pointer register with 5 hex
Writeable 8-bit registers with sub-indexes 8h and higher can be loaded with an immediate value using MOVE as well, but an additional
cycle is required to set the prefix value for the destination.

move WDCN, #33h ; assembles to: move PFX[2], #00h
; move (WDCN-80h), #33h

3.3.2 Loading a 16-Bit Register With a 16-Bit Immediate Value
Any writeable 16-bit register with a sub-index from 0h to 07h can be loaded with an immediate value in a single cycle if the high byte
of that immediate value is zero.

move LC[0], #0010h ; prefix defaults to zero for high byte
If the high byte of that immediate value is not zero or if the 16-bit destination sub-index is greater than 7h, an extra cycle is required to
load the prefix value for the high byte and/or the high-order register index bits.

; high byte <> #00h
move LC[0], #0110h ; assembles to: move PFX[0], #01h

; move LC[0], #10h
; destination sub-index > 7h

move A[8], #0034h ; assembles to: move PFX[2], #00h
; move (A[8]-80h), #34h

3.3.3 Moving Values Between Registers of the Same Size
Moving data between same-size registers can be done in a single-cycle MOVE if the destination register’s index is from 0h to 7h and
the source register index is between 0h and Fh.

move A[0], A[8] ; copy accumulator 8 to accumulator 0
move LC[0], LC[1] ; copy loop counter 1 to loop counter 0

If the destination register’s index is greater than 7h or if the source register index is greater than Fh, prefixing is required.

move A[15], A[0] ; assembles to: move PFX[2], #00h
; move (A[15]-80h), A[0]

3.3.4 Moving Values Between Registers of Different Sizes
Before covering some transfer scenarios that might arise, a special register must be introduced that will be used in many of these
cases. The 16-bit General Register (GR) is expressly provided for performing byte singulation of 16-bit words. The high and low bytes
of GR are individually accessible in the GRH and GRL registers respectively. A read-only GRS register makes a byte-swapped version
of GR accessible and the GRXL register provides a sign-extended version of GRL.

8-bit destination ← low byte (16-bit source)

The simplest transfer possibility would be loading an 8-bit register with the low byte of a 16-bit register. This transfer does not require
use of GR and requires a prefix only if the destination or source register are outside of the single cycle write or read regions, 0–7h and
0–Fh, respectively.

move OFFS, LC[0] ; copy the low byte of LC[0] to the OFFS register
move IMR, @DP[1] ; copy the low byte @DP[1] to the IMR register
move WDCN, LC[0] ; assembles to: move PFX[2], #00h

; move (WDCON-80h), LC[0]

Maxim Integrated

3-5

8-bit destination ← high byte (16-bit source)

If, however, we needed to load an 8-bit register with the high byte of a 16-bit source, it would be best to use the GR register. Transferring
the 16-bit source to the GR register adds a single cycle.

move GR, LC[0] ; move LC[0] to the GR register
move IC, GRH ; copy the high byte into the IC register

16-bit destination ← concatenation (8-bit source, 8-bit source)

Two 8-bit source registers can be concatenated and stored into a 16-bit destination by using the prefix register to hold the high-order
byte for the concatenated transfer. An additional cycle may be required if either source byte register index is greater than 0Fh or the
16-bit destination is greater than 07h.

move PFX[0], IC ; load high order source byte IC into PFX
move @++SP, AP ; store @DP[0] the concatenation of IC:AP

; 16-bit destination sub-index: dst=08h
; 8-bit source sub-indexes:
; high=10h, low=11h

move PFX[1], #00h ;
move PFX[3], high ; PFX=00:high
move dst, low ; dst=high:low

Low (16-bit destination) ← 8-bit source

To modify only the low byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such that the high
byte can be singulated and the low byte written exclusively. An additional cycle is required if the destination index is greater than 0Fh.

move GR, DP[0] ; move DP[0] to the GR register
move PFX[0], GRH ; get the high byte of DP[0] via GRH
move DP[0], #20h ; store the new DP[0] value

; 16-bit destination sub-index: dst=10h
; 8-bit source sub-index: src=11h

move PFX[1], #00h ;
move GR, dst ; read dst word to the GR register
move PFX[5], GRH ; get the high byte of dst via GRH
move dst, src ; store the new dst value

High (16-bit destination) ← 8-bit source

To modify only the high byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such that the low
byte can be singulated and the high byte can be written exclusively. Additional cycles are required if the destination index is greater
than 0Fh or if the source index is greater than 0Fh.

move GR, DP[0] ; move DP[0] to the GR register
move PFX[0], #20h ; get the high byte of DP[0] via GRH
move DP[0], GRL ; store the new DP[0] value

; 16-bit destination sub-index: dst=10h
; 8-bit source sub-index: src=11h

move PFX[1], #00h ;
move GR, dst ; read dst word to the GR register
move PFX[1], #00h
move PFX[4], src ; get the new src byte
move dst, GRL ; store the new dst value

If the high byte needs to be cleared to 00h, the operation can be shortened by transferring only the GRL byte to the 16-bit destination
(example follows):

move GR, DP[0] ; move DP[0] to the GR register
move DP[0], GRL ; store the new DP[0] value, 00h used for high byte

MAXQ Family User’s Guide

Maxim Integrated

3-6

MAXQ Family User’s Guide

3.4 Reading and Writing Register Bits
The MOVE instruction can also be used to directly set or clear any one of the lowest 8 bits of a peripheral register in module 0h-5h or
a system register in module 8h. The set or clear operation will not affect the upper byte of a 16-bit register that is the target of the set
or clear operation. If a set or clear instruction is used on a destination register that does not support this type of operation, the regis-
ter high byte will be written with the prefix data and the low byte will be written with the bit mask (i.e. all 0’s with a single 1 for the set
bit operation or all ones with a single 0 for the clear bit operation).

Register bits can be set or cleared individually using the MOVE instruction as follows.

move IGE, #1 ; set IGE (Interrupt Global Enable) bit
move APC.6, #0 ; clear IDS bit (APC.6)

As with other instructions, prefixing is required to select destination registers beyond index 07h.

The MOVE instruction may also be used to transfer any one of the lowest 8 bits from a register source or any bit of the active accu-
mulator (Acc) to the Carry flag. There is no restriction on the source register module for the ‘MOVE C, src.bit’ instruction.

move C, IIR.3 ; copy IIR.3 to Carry
move C, Acc.7 ; copy Acc.7 to Carry

Prefixing is required to select source registers beyond index 15h.

3.5 Using the Arithmetic and Logic Unit
The MAXQ provides either an 8-bit (MAXQ10) or 16-bit (MAXQ20) ALU, which allows operations to be performed between the active
accumulator and any other register. The default ALU configuration provides eight accumulator registers that are also either 8-bit
(MAXQ10) or 16-bit (MAXQ20) wide, of which any one may be selected as the active accumulator. Many MAXQ devices will be
equipped with 16 working accumulators.

3.5.1 Selecting the Active Accumulator
Any of the 16 accumulator registers A[0] through A[15] may be selected as the active accumulator by setting the low four bits of the
Accumulator Pointer Register (AP) to the index of the accumulator register you want to select.

move AP, #01h ; select A[1] as the active accumulator
move AP, #0Fh ; select A[15] as the active accumulator

The current active accumulator can be accessed as the Acc register, which is also the register used as the implicit destination for all
arithmetic and logical operations.

move A[0], #55h ; set A[0] = 55 hex (MAXQ10)
; = 0055 hex (MAXQ20)

move AP, #00h ; select A[0] as active accumulator
move Acc, #55h ; set A[0] = 55 hex (MAXQ10)

; = 0055 hex (MAXQ20)

3.5.2 Enabling Auto-Increment and Auto-Decrement
The accumulator pointer AP can be set to automatically increment or decrement after each arithmetic or logical operation. This is use-
ful for operations involving a number of accumulator registers, such as adding or subtracting two multibyte integers.

If auto-increment/decrement is enabled, the AP register increments or decrements after any of the following operations:

• ADD src (Add source to active accumulator)

• ADDC src (Add source to active accumulator with carry)

• SUB src (Subtract source from active accumulator)

• SUBB src (Subtract source from active accumulator with borrow)

• AND src (Logical AND active accumulator with source)

• OR src (Logical OR active accumulator with source)

• XOR src (Logical XOR active accumulator with source)

• CPL (Bit-wise complement active accumulator)

• NEG (Negate active accumulator)

Maxim Integrated

3-7

• SLA (Arithmetic shift left on active accumulator)

• SLA2 (Arithmetic shift left active accumulator two bit positions)

• SLA4 (Arithmetic shift left active accumulator four bit positions)

• SRA (Arithmetic shift right on active accumulator)

• SRA2 (Arithmetic shift right active accumulator two bit positions)

• SRA4 (Arithmetic shift right active accumulator four bit positions)

• RL (Rotate active accumulator left)

• RLC (Rotate active accumulator left through Carry flag)

• RR (Rotate active accumulator right)

• RRC (Rotate active accumulator right through Carry flag)

• SR (Logical shift active accumulator right)

• MOVE Acc, src (Copy data from source to active accumulator)

• MOVE dst, Acc (Copy data from active accumulator to destination)

• MOVE Acc, Acc (Recirculation of active accumulator contents)

• XCHN (Exchange nibbles within each byte of active accumulator)

(MAXQ20 Only)

• XCH (Exchange active accumulator bytes)

The active accumulator may not be the source in any instruction where it is also the implicit destination.

There is an additional notation that can be used to refer to the active accumulator for the instruction "MOVE dst, Acc." If the instruction
is instead written as "MOVE dst, A[AP]," the source value is still the active accumulator, but no AP auto-increment or auto-decrement
function will take place, even if this function is enabled. Note that the active accumulator may not be the destination for the MOVE dst,
A[AP] instruction (i.e. MOVE Acc, A[AP] is prohibited).

So, the two instructions

move A[7], Acc
move A[7], A[AP]

are equivalent, except that the first instruction triggers auto-inc/dec (if it is enabled), while the second one will never do so.

The Accumulator Pointer Control Register (APC) controls the automatic-increment/decrement mode as well as selects the range of bits
(modulo) in the AP register that will be incremented or decremented. There are nine different unique settings for the APC register, as
listed in Table 3-1.

Table 3-1. Accumulator Pointer Control Register Settings

APC.2
(MOD2)

APC.1
(MOD1)

APC.0
(MOD0)

APC.6
(IDS) APC AUTO INCREMENT/DECREMENT SETTING

0 0 0 X 00h No auto-increment/decrement (default mode)
0 0 1 0 01h Increment bit 0 of AP (modulo 2)

0 0 1 1 41h Decrement bit 0 of AP (modulo 2)
0 1 0 0 02h Increment bits [1:0] of AP (modulo 4)

0 1 0 1 42h Decrement bits [1:0] of AP (modulo 4)
0 1 1 0 03h Increment bits [2:0] of AP (modulo 8)

0 1 1 1 43h Decrement bits [2:0] of AP (modulo 8)
1 0 0 0 04h Increment all 4 bits of AP (modulo 16)

1 0 0 1 44h Decrement all 4 bits of AP (modulo 16)

MAXQ Family User’s Guide

Maxim Integrated

3-8

MAXQ Family User’s Guide

For the modulo increment or decrement operation, the selected range of bits in AP are incremented or decremented. However, if these
bits roll over or under, they simply wrap around without affecting the remaining bits in the accumulator pointer. So, the operations can
be defined as follows:

• Increment modulo 2: AP = AP[3:1] + ((AP[0] + 1) mod 2)

• Decrement modulo 2: AP = AP[3:1] + ((AP[0] - 1) mod 2)

• Increment modulo 4: AP = AP[3:2] + ((AP[1:0] + 1) mod 4)

• Decrement modulo 4: AP = AP[3:2] + ((AP[1:0] - 1) mod 4)

• Increment modulo 8: AP = AP[3] + ((AP[2:0] + 1) mod 8)

• Decrement modulo 8: AP = AP[3] + ((AP[2:0] - 1) mod 8)

• Increment modulo 16: AP = (AP + 1) mod 16

• Decrement modulo 16: AP = (AP - 1) mod 16

For this example, assume that all 16 accumulator registers are initially set to zero.

move AP, #02h ; select A[2] as active accumulator
move APC, #02h ; auto-increment AP[1:0] modulo 4

; AP A[0]* A[1]* A[2]* A[3]*
; 02 0000 0000 0000 0000

add #01h ; 03 0000 0000 0001 0000
add #02h ; 00 0000 0000 0001 0002
add #03h ; 01 0003 0000 0001 0002
add #04h ; 02 0003 0004 0001 0002
add #05h ; 03 0003 0004 0006 0002

;
; *the upper #00h byte of each accumulator
; is only present on the MAXQ20 device

3.5.3 ALU Operations Using the Active Accumulator and a Source
The following arithmetic and logical operations can use any register or immediate value as a source. The active accumulator Acc is
always used as the second operand and the implicit destination. Also, Acc may not be used as the source for any of these operations.

add A[4] ; Acc = Acc + A[4]
addc #32h ; Acc = Acc + 32h + Carry (MAXQ10)

; Acc = Acc + 0032h + Carry (MAXQ20)
sub A[15] ; Acc = Acc – A[15]
subb A[1] ; Acc = Acc – A[1] - Carry
cmp #00h ; If (Acc == 00h), set Equals flag (MAXQ10)

; If (Acc == 0000h), set Equals flag (MAXQ20)
and A[0] ; Acc = Acc AND A[0]
or #55h ; Acc = Acc OR #55h (MAXQ10)

; Acc = Acc OR #0055h (MAXQ20)
xor A[1] ; Acc = Acc XOR A[1]

Maxim Integrated

3-9

3.5.4 ALU Operations Using Only the Active Accumulator
The following arithmetic and logical operations operate only on the active accumulator.

cpl ; Acc = NOT Acc
neg ; Acc = (NOT Acc) + 1
rl ; Rotate accumulator left (not using Carry)
rlc ; Rotate accumulator left through Carry
rr ; Rotate accumulator right (not using Carry)
rrc ; Rotate accumulator right through Carry
sla ; Shift accumulator left arithmetically once
sla2 ; Shift accumulator left arithmetically twice
sla4 ; Shift accumulator left arithmetically four times
sr ; Shift accumulator right, set Carry to Acc.0,

; set Acc.7 to zero (MAXQ10)
; set Acc.15 to zero (MAXQ20)

sra ; Shift accumulator right arithmetically once
sra2 ; Shift accumulator right arithmetically twice
sra4 ; Shift accumulator right arithmetically four times
xchn ; Swap low and high nibbles of each Acc byte
xch (MAXQ20 only) ; Swap low byte and high byte of Acc

3.5.5 ALU Bit Operations Using Only the Active Accumulator
The following operations operate on single bits of the current active accumulator in conjunction with the Carry flag. Any of these oper-
ations may use an Acc bit from 0 to 7 (for MAXQ10) or from 0 to 15 (for MAXQ20).

move C, Acc.0 ; copy bit 0 of accumulator to Carry
move Acc.5, C ; copy Carry to bit 5 of accumulator
and Acc.3 ; Acc.3 = Acc.3 AND Carry
or Acc.0 ; Acc.0 = Acc.0 OR Carry
xor Acc.1 ; Acc.1 = Acc.1 OR Carry

None of the above bit operations cause the auto-increment, auto-decrement, or modulo operations defined by the accumulator point-
er control (APC) register.

3.5.6 MAXQ10 Example: Adding Two 4-Byte Numbers Using Auto-Increment
move A[0], #78h ; First number – 12345678h
move A[1], #56h
move A[2], #34h
move A[3], #12h
move A[4], #0AAh ; Second number – 0AAAAAAAh
move A[5], #0AAh
move A[6], #0AAh
move A[7], #0Ah
move AP, #00h ; A[0] is active accumulator
move APC, #02h ; Increment low two bits mod 4
add A[4] ; A[0] = 78h + AAh = 22h + Carry
addc A[5] ; A[1] = 56h + AAh + 1 = 01h + Carry
addc A[6] ; A[2] = 34h + AAh + 1 = DFh
addc A[7] ; A[3] = 12h + 0Ah = 1Ch
; 12345678h + 0AAAAAAAh = 1CDF0122h

MAXQ Family User’s Guide

Maxim Integrated

3-10

MAXQ Family User’s Guide

3.5.7 MAXQ20 Example: Adding Two 4-Byte Numbers Using Auto-Increment
move A[0], #5678h ; First number – 12345678h
move A[1], #1234h
move A[2], #0AAAAh ; Second number – 0AAAAAAAh
move A[3], #0AAAh
move APC, #81h ; Active Acc = A[0], increment low bit = mod 2
add A[2] ; A[0] = 5678h + AAAAh = 0122h + Carry
addc A[3] ; A[1] = 1234h + AAAh + 1 = 1CDFh

; 12345678h + 0AAAAAAAh = 1CDF0122h

3.6 Processor Status Flag Operations
The Processor Status Flag (PSF) register contains five flags that are used to indicate and store the results of arithmetic and logical oper-
ations, four of which can also be used for conditional program branching.

3.6.1 Sign Flag
The Sign flag (PSF.6) reflects the current state of the high bit of the active accumulator (Acc.7 for the MAXQ10 or Acc.15 for the
MAXQ20). If signed arithmetic is being used, this flag indicates whether the value in the accumulator is positive or negative.

Since the Sign flag is a dynamic reflection of the high bit of the active accumulator, any instruction that changes the value in the active
accumulator can potentially change the value of the Sign flag. Also, any instruction that changes which accumulator is the active one
(including AP auto-increment/decrement) can also change the Sign flag.

The following operation uses the Sign flag:

• JUMP S, src (Jump if Sign flag is set)

3.6.2 Zero Flag
The Zero flag (PSF.7) is a dynamic flag that reflects the current state of the active accumulator Acc. If all bits in the active accumula-
tor are zero, the Zero flag equals 1. Otherwise, it equals 0.

Since the Zero flag is a dynamic reflection of (Acc = 0), any instruction that changes the value in the active accumulator can poten-
tially change the value of the Zero flag. Also, any instruction that changes which accumulator is the active one (including AP auto-incre-
ment/decrement) can also change the Zero flag.

The following operations use the Zero flag:

• JUMP Z, src (Jump if Zero flag is set)

• JUMP NZ, src (Jump if Zero flag is cleared)

3.6.3 Equals Flag
The Equals flag (PSF.0) is a static flag set by the CMP instruction. When the source given to the CMP instruction is equal to the active
accumulator, the Equals flag is set to 1. When the source is different from the active accumulator, the Equals flag is cleared to 0.

The following instructions use the value of the Equals flag. Please note that the ‘src’ for the JUMP E/NE instructions must be immediate.

• JUMP E, src (Jump if Equals flag is set)

• JUMP NE, src (Jump if Equals flag is cleared)

In addition to the CMP instruction, any instruction using PSF as the destination can alter the Equals flag.

3.6.4 Carry Flag
The Carry flag (PSF.1) is a static flag indicating that a carry or borrow bit resulted from the last ADD/ADDC or SUB/SUBB operation.
Unlike the other status flags, it can be set or cleared explicitly and is also used as a generic bit operand by many other instructions.

The following instructions can alter the Carry flag:

• ADD src (Add source to active accumulator)

• ADDC src (Add source and Carry to active accumulator)

• SUB src (Subtract source from active accumulator)

• SUBB src (Subtract source and Carry from active accumulator)

Maxim Integrated

3-11

• SLA, SLA2, SLA4 (Arithmetic shift left active accumulator)

• SRA, SRA2, SRA4 (Arithmetic shift right active accumulator)

• SR (Shift active accumulator right)

• RLC/RRC (Rotate active accumulator left / right through Carry)

• MOVE C, Acc. (Set Carry to selected active accumulator bit)

• MOVE C, #i (Explicitly set, i = 1, or clear, i = 0, the Carry flag)

• CPL C (Complement Carry)

• AND Acc.

• OR Acc.

• XOR Acc.

• MOVE C, src. (Copy bit addressable register bit to Carry)

• any instruction using PSF as the destination

The following instructions use the value of the Carry flag:

• ADDC src (Add source and Carry to active accumulator)

• SUBB src (Subtract source and Carry from active accumulator)

• RLC/RRC (Rotate active accumulator left/right through Carry)

• CPL C (Complement Carry)

• MOVE Acc., C (Set selected active accumulator bit to Carry)

• AND Acc. (Carry = Carry AND selected active accumulator bit)

• OR Acc. (Carry = Carry OR selected active accumulator bit)

• XOR Acc. (Carry = Carry XOR selected active accumulator bit)

• JUMP C, src (Jump if Carry flag is set)

• JUMP NC, src (Jump if Carry flag is cleared)

3.6.5 Overflow Flag
The Overflow flag (PSF.2) is a static flag indicating that the carry or borrow bit (Carry status Flag) resulting from the last ADD/ADDC or
SUB/SUBB operation but did not match the carry or borrow of the high order bit of the active accumulator. The overflow flag is useful
when performing signed arithmetic operations.

The following instructions can alter the Overflow flag:

• ADD src (Add source to active accumulator)

• ADDC src (Add source and Carry to active accumulator)

• SUB src (Subtract source from active accumulator)

• SUBB src (Subtract source and Carry from active accumulator)

3.7 Controlling Program Flow
The MAXQ provides several options to control program flow and branching. Jumps may be unconditional, conditional, relative, or
absolute. Subroutine calls store the return address on the hardware stack for later return. Built-in counters and address registers are
provided to control looping operations.

3.7.1 Obtaining the Next Execution Address
The address of the next instruction to be executed can be read at any time by reading the Instruction Pointer (IP) register. This can be
particularly useful for initializing loops. Note that the value returned is actually the address of the current instruction plus 1, so this will
be the address of the next instruction executed as long as the current instruction does not cause a jump.

MAXQ Family User’s Guide

Maxim Integrated

3-12

MAXQ Family User’s Guide

3.7.2 Unconditional Jumps
An unconditional jump can be relative (IP +127/-128 words) or absolute (to anywhere in program space). Relative jumps must use an
8-bit immediate operand, such as

Label1: ; must be within +127/-128 words of the JUMP
...
jump Label1

Absolute jumps can use a 16-bit immediate operand, a 16-bit register, or an 8-bit register.

jump LongJump ; assembles to: move PFX[0], #high(LongJump)
; jump #low(LongJump)

jump DP[0] ; absolute jump to the address in DP[0]
If an 8-bit register is used as the jump destination, the prefix value is used as the high byte of the address and the register is used as
the low byte.

3.7.3 Conditional Jumps
Conditional jumps transfer program execution based on the value of one of the status flags (C, E, Z, S). Except where noted for JUMP
E and JUMP NE, the absolute and relative operands allowed are the same as for the unconditional JUMP command.

jump c, Label1 ; jump to Label1 if Carry is set
jump nc, LongJump ; jump to LongJump if Carry is not set
jump z, LC[0] ; jump to 16-bit register destination if

; Zero is set
jump nz, Label1 ; jump to Label1 if Zero is not set (Acc<>0)
jump s, A[2] ; jump to A[2] if Sign flag is set
jump e, Label1 ; jump to Label1 if Equal is set
jump ne, Label1 ; jump to Label1 if Equal is cleared

JUMP E and JUMP NE may only use immediate destinations.

3.7.4 Calling Subroutines
The CALL instruction works the same as the unconditional JUMP, except that the next execution address is pushed on the stack before
transferring program execution to the branch address. The RET instruction is used to return from a normal call, and RETI is used to
return from an interrupt handler routine.

call Label1 ; if Label1 is relative,
; assembles to : call #immediate

call LongCall ; assembles to: move PFX[0], #high(LongCall)
; call #low(LongCall)

call LC[0] ; call to address in LC[0]
LongCall:

ret ; return from subroutine

3.7.5 Looping Operations
Looping over a section of code can be performed by using the conditional jump instructions. However, there is built-in functionality, in
the form of the ‘DJNZ LC[n], src’ instruction, to support faster, more compact looping code with separate loop counters. The 16-bit reg-
isters LC[0], and LC[1] are used to store these loop counts. The ‘DJNZ LC[n], src’ instruction automatically decrements the associat-
ed loop counter register and jumps to the loop address specified by src if the loop counter has not reached 0.

To initialize a loop, set the LC[n] register to the count you wish to use before entering the loop’s main body.

The desired loop address should be supplied in the src operand of the ‘DJNZ LC[n], src’ instruction. When the supplied loop address
is relative (+127/-128 words) to the DJNZ LC[n] instruction, as is typically the case, the assembler automatically calculates the relative
offset and inserts this immediate value in the object code.

move LC[1], #10h ; loop 16 times
LoopTop: ; loop addr relative to djnz LC[n],src instruction

call LoopSub
djnz LC[1], LoopTop ; decrement LC[1] and jump if nonzero

Maxim Integrated

3-13

When the supplied loop address is outside the relative jump range, the prefix register (PFX[0]) is used to supply the high byte of the
loop address as required.

move LC[1], #10h ; loop 16 times
LoopTop: ; loop addr not relative to djnz LC[n],src

call LoopSub
...
djnz LC[1], LoopTop ; decrement LC[1] and jump if nonzero

; assembles to: move PFX[0], #high(LoopTop)
; djnz LC[1], #low(LoopTop)

If loop execution speed is critical and a relative jump cannot be used, one might consider preloading an internal 16-bit register with
the src loop address for the ‘DJNZ LC[n], src’ loop. This ensures that the prefix register will not be needed to supply the loop address
and always yields the fastest execution of the DJNZ instruction.

move LC[0], #LoopTop ; using LC[0] as address holding register
; assembles to: move PFX[0], #high(LoopTop)
; move LC[0], #low(LoopTop)

move LC[1], #10h ; loop 16 times
...

LoopTop: ; loop address not relative to djnz LC[n],src
call LoopSub
...
djnz LC[1], LC[0] ; decrement LC[1] and jump if nonzero

If opting to preload the loop address to an internal 16-bit register, the most time and code efficient means is by performing the load in
the instruction just prior to the top of the loop:

move LC[1], #10h ; Set loop counter to 16
move LC[0], IP ; Set loop address to the next address

LoopTop: ; loop addr not relative to djnz LC[n],src
...

3.7.6 Conditional Returns
Similar to the conditional jumps, the MAXQ microcontroller also supports a set of conditional return operations. Based upon the value
of one of the status flags, the CPU can conditionally pop the stack and begin execution at the address popped from the stack. If the
condition is not true, the conditional return instruction does not pop the stack and does not change the instruction pointer. The follow-
ing conditional return operations are supported:

RET C ; if C=1, a RET is executed
RET NC ; if C=0, a RET is executed
RET Z ; if Z=1 (Acc=00h), a RET is executed
RET NZ ; if Z=0 (Acc<>00h), a RET is executed
RET S ; if S=1, a RET is executed

3.8 Handling Interrupts
Handling interrupts in the MAXQ is a three-part process. First, the location of the interrupt handling routine must be set by writing the
address to the 16-bit Interrupt Vector (IV) register. This register defaults to 0000h on reset, but this will usually not be the desired loca-
tion since this will often be the location of reset/power-up code.

move IV, IntHandler ; move PFX[0], #high(IntHandler)
; move IV, #low(IntHandler)
; PFX[0] write not needed if IntHandler addr=00xxh

Next, the interrupt must be enabled. For any interrupts to be handled, the IGE bit in the Interrupt and Control register (IC) must first be
set to 1. Next, the interrupt itself must be enabled at the module level and locally within the module itself. The module interrupt enable
is located in the Interrupt Mask register, while the location of the local interrupt enable will vary depending on the module in which the
interrupt source is located.

MAXQ Family User’s Guide

Maxim Integrated

3-14

MAXQ Family User’s Guide

Once the interrupt handler receives the interrupt, the Interrupt in Service (INS) bit will be set by hardware to block further interrupts,
and execution control is transferred to the interrupt service routine. Within the interrupt service routine, the source of the interrupt must
be determined. Since all interrupts go to the same interrupt service routine, the Interrupt Identification Register (IIR) must be examined
to determine which module initiated the interrupt. For example, the II0 (IIR.0) bit will be set if there is a pending interrupt from module
0. These bits cannot be cleared directly; instead, the appropriate bit flag in the module must be cleared once the interrupt is handled.

INS is set automatically on entry to the interrupt handler and cleared automatically on exit (RETI).

IntHandler:
push PSF ; save C since used in identification process
move C, IIR.X ; check highest priority flag in IIR
jump C, ISR_X ; if IIR.X is set, interrupt from module X
move C, IIR.Y ; check next highest priority int source
jump C, ISR_Y ; if IIR.Y is set, interrupt from module Y
...

ISR_X:
...
reti

To support high priority interrupts while servicing another interrupt source, the IMR register may be used to create a user-defined prior-
itization. The IMR mask register should not be utilized when the highest priority interrupt is being serviced because the highest priority
interrupt should never be interrupted. This is default condition when a hardware branch is made the Interrupt Vector address (INS is set
to 1 by hardware and all other interrupt sources are blocked). The code below demonstrates how to use IMR to allow other interrupts.

ISR_Z:
pop PSF ; restore PSF
push IMR ; save current interrupt mask
move IMR, #int_mask ; new mask to allow only higher priority ints
move INS, #0 ; re-enable interrupts
...
(interrupt servicing code)
...
pop IMR ; restore previous interrupt mask
ret ; back to code or lower priority interrupt

Please note that configuring a given IMR register mask bit to '0' only prevents interrupt conditions from the corresponding module or sys-
tem from generating an interrupt request. Configuring an IMR mask bit to '0' does not prevent the corresponding IIR system or module iden-
tification flag from being set. This means that when using the IMR mask register functionality to block interrupts, there may be cases when
both the mask (IMR.x) and identifier (IIR.x) bits should be considered when determining if the corresponding peripheral should be serviced.

3.8.1 Conditional Return from Interrupt
Similar to the conditional returns, the MAXQ microcontroller also supports a set of conditional return from interrupt operations. Based
upon the value of one of the status flags, the CPU can conditionally pop the stack, clear the INS bit to 0, and begin execution at the
address popped from the stack. If the condition is not true, the conditional return from interrupt instruction leaves the INS bit
unchanged, does not pop the stack and does not change the instruction pointer. The following conditional return from interrupt oper-
ations are supported:

RETI C ; if C=1, a RETI is executed
RETI NC ; if C=0, a RETI is executed
RETI Z ; if Z=1 (Acc=00h), a RETI is executed
RETI NZ ; if Z=0 (Acc<>00h), a RETI is executed
RETI S ; if S=1, a RETI is executed

Maxim Integrated

3-15

3.9 Accessing the Stack
The hardware stack is used automatically by the CALL, RET and RETI instructions, but it can also be used explicitly to store and retrieve
data. All values stored on the stack are 16 bits wide.

The PUSH instruction increments the stack pointer SP and then stores a value on the stack. When pushing a 16-bit value onto the stack,
the entire value is stored. However, when pushing an 8-bit value onto the stack, the high byte stored on the stack comes from the pre-
fix register. The @++SP stack access mnemonic is the associated destination specifier that generates this push behavior, thus the fol-
lowing two instruction sequences are equivalent:

move PFX[0], IC
push PSF ; stored on stack: IC:PSF

move PFX[0], IC
move @++SP, PSF ; stored on stack: IC:PSF

The POP instruction removes a value from the stack and then decrements the stack pointer. The @SP-- stack access mnemonic is the
associated source specifier that generates this behavior, thus the following two instructions are equivalent:

pop PSF
move PSF, @SP--

The POPI instruction is equivalent to the POP instruction but additionally clears the INS bit to 0. Thus, the following two instructions
would be equivalent:

popi IP
reti

The @SP-- mnemonic can be used by the MAXQ microcontroller so that stack values may be used directly by ALU operations (e.g.
ADD src, XOR src, etc.) without requiring that the value be first popped into an intermediate register or accumulator.

add @SP-- ; sum the last three words pushed onto the stack
add @SP-- ; with Acc, disregarding overflow
add @SP--

The stack pointer SP can be set explicitly, however only those least significant bits needed to represent the stack depth for the asso-
ciated MAXQ device are used. For a MAXQ device that has a stack depth of 16 words, only the lowest four bits are used and setting
SP to 0Fh will return it to its reset state.

Since the stack is 16 bits wide, it is possible to store two 8-bit register values on it in a single location. This allows more efficient use
of the stack if it is being used to save and restore registers at the start and end of a subroutine.

SubOne:
move PFX[0], IC
push PSF ; store IC:PSF on the stack
...
pop GR ; 16-bit register
move IC, GRH ; IC was stored as high byte
move PSF, GRL ; PSF was stored as low byte
ret

3.10 Accessing Data Memory
Data memory is accessed through the data pointer registers DP[0] and DP[1] or the Frame Pointer BP[Offs]. Once one of these regis-
ters is set to a location in data memory, that location can be read or written as follows, using the mnemonic @DP[0], @DP[1] or
@BP[OFFS] as a source or destination.

move DP[0], #0000h ; set pointer to location 0000h
move A[0], @DP[0] ; read from data memory
move @DP[0], #55h ; write to data memory

Either of the data pointers may be post-incremented or post-decremented following any read or may be pre-incremented or pre-decre-
mented before any write access by using the following syntax.

move A[0], @DP[0]++ ; increment DP[0] after read
move @++DP[0], A[1] ; increment DP[0] before write
move A[5], @DP[1]-- ; decrement DP[1] after read
move @--DP[1], #00h ; decrement DP[1] before write

MAXQ Family User’s Guide

Maxim Integrated

3-16

MAXQ Family User’s Guide

The Frame Pointer (BP[OFFS]) is actually composed of a base pointer (BP) and an offset from the base pointer (OFFS). For the frame
pointer, the offset register (OFFS) is the target of any increment or decrement operation. The base pointer (BP) is unaffected by incre-
ment and decrement operations on the Frame Pointer. Similar to DP[n], the OFFS register may be pre-incremented/decremented when
writing to data memory and may be post-incremented/decremented when reading from data memory.

move A[0], @BP[OFFS--] ; decrement OFFS after read
move @BP[++OFFS], A[1] ; increment OFFS before write

All three data pointers support both byte and word access to data memory. Each data pointer has its own word/byte select (WBSn)
special-function register bit to control the access mode associated with the data pointer. These three register bits (WBS2, which con-
trols BP[Offs] access; WBS1, which controls DP[1] access; and WBS0, which controls DP[0] access) reside in the Data Pointer Control
(DPC) register. When a given WBSn control bit is configured to 1, the associated pointer is operated in the word access mode. When
the WBSn bit is configured to 0, the pointer is operated in the byte access mode. Word access mode allows addressing of 64kWords
of memory while byte access mode allows addressing of 64kBytes of memory.

Each data pointer (DP[n]) and Frame Pointer base (BP) register is actually implemented internally as a 17-bit register (e.g., 16:0). The Frame
Pointer offset register (OFFS) is implemented internally as a 9-bit register (e.g., 8:0). The WBSn bit for the respective pointer controls whether
the highest 16 bits (16:1) of the pointer are in use, as is the case for word mode (WBSn = 1) or whether the lowest 16 bits (15:0) are in use,
as will be the case for byte mode (WBSn = 0). The WBS2 bit also controls whether the high 8 bits (8:1) of the offset register are in use
(WBS2 = 1) or the low 8 bits (7:0) are used (WBS2 = 0). All data pointer register reads, writes, auto-increment/decrement operations occur
with respect to the current WBSn selection. Data pointer increment and decrement operations only affect those bits specific to the current
word or byte addressing mode (e.g., incrementing a byte mode data pointer from FFFFh does not carry into the internal high order bit that
is utilized only for word mode data pointer access). Switching from byte to word access mode or vice versa does not alter the data pointer
contents. Therefore, it is important to maintain the consistency of data pointer address value within the given access mode.

move DPC, #0 ; DP[0] in byte mode
move DP[0], #2345h ; DP[0]=2345h (byte mode)

; internal bits 15:0 loaded
move DPC, #4 ; DP[0] in word mode
move DP[0], #2345h ; DP[0]=2345h (word mode)

; internal bits 16:1 loaded
move DPC, #0 ; DP[0] in byte mode
move GR, DP[0] ; GR = 468Bh (looking at bits 15:0)

The three pointers share a single read/write port on the data memory and thus, the user must knowingly activate a desired pointer
before using it for data memory read operations. This can be done explicitly using the data pointer select bits (SDPS1:0; DPC.1:0), or
implicitly by writing to the DP[n], BP, or OFFS registers as shown below. Any indirect memory write operation using a data pointer will
set the SDPS bits, thus activating the write pointer as the active source pointer.

move DPC, #2 ; (explicit) selection of FP as the pointer
move DP[1], DP[1] ; (implicit) selection of DP[1]; set SDPS1:0=01b
move OFFS, src ; (implicit) selection of FP; set SDPS1=1
move @DP[0], src ; (implicit) selection of DP[0]; set SDPS1:0=00b

Once the pointer selection has been made, it will remain in effect until:
• the source data pointer select bits are changed via the explicit or implicit methods described above (i.e., another data pointer is

selected for use)
• the memory to which the active source data pointer is addressing is enabled for code fetching using the Instruction Pointer, or
• a memory write operation is performed using a data pointer other than the current active source pointer.

move DP[1], DP[1] ; select DP[1] as the active pointer
move dst, @DP[1] ; read from pointer
move @DP[1], src ; write using a data pointer

; DP[0] is needed
move DP[0], DP[0] ; select DP[0] as the active pointer

To simplify data pointer increment/decrement operations without disturbing register data, a virtual NUL destination has been assigned
to system module 6, sub-index 7 to serve as a bit bucket. Data pointer increment/decrement operations can be done as follows with-
out altering the contents of any other register:

move NUL, @DP[0]++ ; increment DP[0]
move NUL, @DP[0]-- ; decrement DP[0]

Maxim Integrated

3-17

The following data pointer related instructions are invalid:

move @++DP[0], @DP[0]++
move @++DP[1], @DP[1]++
move @BP[++Offs], @BP[Offs++]
move @--DP[0], @DP[0]--
move @--DP[1], @DP[1]--
move @BP[--Offs], @BP[Offs--]
move @++DP[0], @DP[0]--
move @++DP[1], @DP[1]--
move @BP[++Offs], @BP[Offs--]
move @--DP[0], @DP[0]++
move @--DP[1], @DP[1]++
move @BP[--Offs], @BP[Offs++]
move @DP[0], @DP[0]++
move @DP[1], @DP[1]++
move @BP[Offs], @BP[Offs++]
move @DP[0], @DP[0]--
move @DP[1], @DP[1]--
move @BP[Offs], @BP[Offs--]
move DP[0], @DP[0]++
move DP[0], @DP[0]--
move DP[1], @DP[1]++
move DP[1], @DP[1]--
move Offs, @BP[Offs--]
move Offs, @BP[Offs++]

3.11 Using the Watchdog Timer
The Watchdog Timer is a user-programmable clock counter that can serve as a time-base generator, an event timer, or a system super-
visor. As can be seen in the diagram below, the timer is driven by the main system clock and is supplied to a series of dividers. If the
watchdog interrupt and the watchdog reset are disabled (EWDI = 0 and EWT = 0), the watchdog timer and its input clock are disabled.
Whenever the watchdog timer is disabled, the watchdog interval timer (per WD1:0 bits) and 512 clock reset counter will be reset if either
the interrupt or reset function is enabled. When the watchdog timer is initially enabled, there will be a 1-clock to 3-clock cycle delay before
it starts. The divider output is selectable, and determines the interval between timeouts. When the timeout is reached, an interrupt flag is
set, and if enabled, an interrupt occurs. A watchdog-reset function is also provided in addition to the watchdog interrupt. The reset and
interrupt are completely discrete functions that can be acknowledged or ignored, together or separately for various applications.

Table 3-2. Watchdog Timer Register Control Bits

The Watchdog Timer Reset function works as follows. After initializing the correct timeout interval (discussed below), software can
enable, if desired, the reset function by setting the Enable Watchdog Timer Reset (EWT = WDCN.1) bit. Setting the EWT bit will
reset/restart the Watchdog timer if the Watchdog interrupt is not already enabled. At any time prior to reaching its user selected termi-
nal value, software can set the Reset Watchdog Timer (RWT = WDCN.0) bit. If the Watchdog Timer is reset (RWT bit written to a logic
1) before the timeout period expires, the timer will start over. Hardware will automatically clear RWT after software sets it.

BIT NAME DESCRIPTION REGISTER LOCATION BIT POSITION

EWDI Enable Watchdog Timer Interrupt WDCN.6
WD1, WD0 Watchdog Interval Control Bits WDCN.5,4

WDIF Watchdog Interrupt Flag WDCN.3
WTRF Watchdog Timer Reset Flag WDCN.2
EWT Enable Watchdog Timer Reset

WDCN (Fh, 8h)

WDCN.1
RWT Reset Watchdog Timer WDCN.0

MAXQ Family User’s Guide

Maxim Integrated

3-18

MAXQ Family User’s Guide

If the timeout is reached without RWT being set, hardware will generate a Watchdog interrupt if the interrupt source has been enabled.
If no further action is taken to prevent a Watchdog reset, in the 512 system clock cycles following the timeout, hardware has the abili-
ty to reset the CPU if EWT = 1. When the reset occurs, the Watchdog Timer Reset Flag (WTRF = WDCN.2) will automatically be set to
indicate the cause of the reset, however software must clear this bit manually.

The Watchdog Interrupt is also available for applications that do not need a true Watchdog Reset but simply a very long timer. The
interrupt is enabled using the Enable Watchdog Timer Interrupt (EWDI = WDCN.6) bit. When the timeout occurs, the Watchdog Timer
will set the WDIF bit (WDCN.3), and an interrupt will occur if the interrupt global enable (IGE = IC.0) and system interrupt mask (IMS
= IMR.7) are set and the interrupt in service (INS) bit is clear. Note that WDIF is set 512 clocks before a potential Watchdog Reset. The
Watchdog Interrupt Flag will indicate the source of the interrupt, and must be cleared by software.

Using the Watchdog Interrupt during software development can allow the user to select ideal watchdog reset locations. Code is first
developed without enabling the Watchdog Interrupt or Reset functions. Once the program is complete, the Watchdog Interrupt func-
tion is enabled to identify the required locations in code to set the RWT (WDCN.0) bit. Incrementally adding instructions to reset the
Watchdog Timer prior to each address location (identified by the Watchdog Interrupt) will allow the code to eventually run without
receiving a Watchdog Interrupt. At this point the Watchdog Timer Reset can be enabled without the potential of generating unwanted
resets. At the same time the Watchdog Interrupt may also be disabled. Proper use of the Watchdog Interrupt with the Watchdog Reset
allows interrupt software to survey the system for errant conditions.

When using the Watchdog Timer as a system monitor, the Watchdog Reset function should be used. If the Interrupt function were used,
the purpose of the watchdog would be defeated. For example, assume the system is executing errant code prior to the Watchdog
Interrupt. The interrupt would temporarily force the system back into control by vectoring the CPU to the interrupt service routine.
Restarting the Watchdog and exiting by an RETI or RET, would return the processor to the lost position prior to the interrupt. By using
the Watchdog Reset function, the processor is restarted from the beginning of the program, and therefore placed into a known state.

The Watchdog timeout selection is made using bits WD1 (WDCN.5) and WD0 (WDCN.4). The Watchdog has four timeout selections
based on the system clock frequency as shown in the figure. Since the timeout is a function of the system clock, the actual timeout
interval is dependent on both the crystal frequency and the system clock mode selection. Shown below is a summary of the selectable
Watchdog timeout intervals for the various system clock modes and WD1:0 control bit settings. The Watchdog Reset, if enabled, is
always scheduled to occur 512 system clocks following the timeout. Watchdog generated resets will last for 4 system clock cycles.

SYSTEM CLOCK
MODE

TIME-OUT
SELECTOR

WD1

XTAL2

XTAL1

WD0

DIVIDE BY
212

DIVIDE BY
23

212 215 218 221

DIVIDE BY
23

WDIF
(WDCN.3)

WTRF
(WDCN.2)

WATCHDOG
INTERRUPT

EWT (WDCN.1)
(ENABLE WATCHDOG TIMER RESET)

EWDI (WDCN.6)
(ENABLE WATCHDOG INTERRUPT)

512 SYSCLK
DELAY

DIVIDE BY
23

RWT (WDCN.0)
(RESET WATCHDOG)

TIME-OUT

RESETMAXQ

Figure 3-1. Watchdog Timer Block Diagram

Maxim Integrated

3-19

Table 3-3. Watchdog Timeout Period Selection
WATCHDOG TIMEOUT

(IN NUMBER OF OSCILLATOR CLOCKS)SYSTEM CLOCK MODE
SYSTEM CLOCK

SELECT BITS PMME,
CD1, CD0 WD1:0 = 00b WD1:0 = 01b WD1:0 = 10b WD1:0 = 11b

Divide by 1 (default) 000 212 215 218 221

Divide by 2 001 213 216 219 222

Divide by 4 010 214 217 220 223

Divide by 8 011 215 218 221 224

Power Management Mode
(Divide by 256)

1xx 220 223 226 229

Note: Registers in italics are read-only. Registers in bold are 16-bit (except A[n], Acc, A[AP] for MAXQ10). Registers with indexes 8h and higher can only be
accessed as destinations by using the prefix register. Similarly, registers with indexes 10h and higher can only be accessed as sources through the prefix regis-
ter. All undefined or unused indexes (indicated by an em-dash ‘—‘) are either used for op code implementation or reserved for future expansion, and should not
be accessed explicitly. Accessing these locations as registers can have deterministic effects, but the effects will probably not be the intended ones.

Table 3-4. System Register Map
MODULE SPECIFIER

6h 7h 8h 9h Ah Bh Ch Dh Eh Fh

0h — — AP A[0] Acc PFX[0] IP — — —

1h — — APC A[1] A[AP] PFX[1] — SP — —

2h — — — A[2] — PFX[2] — IV — —

3h — — — A[3] — PFX[3] — — OFFS DP[0]

4h — — PSF A[4] — PFX[4] — — DPC —

5h — — IC A[5] — PFX[5] — — GR —

6h — — IMR A[6] — PFX[6] — LC[0] GRL —

7h — — — A[7] — PFX[7] — LC[1] BP DP[1]

8h — — SC A[8] — — — — GRS —

9h — — — A[9] — — — — GRH —

Ah — — — A[10] — — — — GRXL —

Bh — — IIR A[11] — — — — FP —

Ch — — — A[12] — — — — — —

Dh — — — A[13] — — — — — —

Eh — — CKCN A[14] — — — — — —

Fh — — WDCN A[15] — — — — — —

10h — — — — — — — — — —

11h — — — — — — — — — —

12h — — — — — — — — — —

13h — — — — — — — — — —

14h — — — — — — — — — —

15h — — — — — — — — — —

16h — — — — — — — — — —

17h — — — — — — — — — —

18h — — — — — — — — — —

19h — — — — — — — — — —

1Ah — — — — — — — — — —

1Bh — — — — — — — — — —

1Ch — — — — — — — — — —

1Dh — — — — — — — — — —

1Eh — — — — — — — — — —

1Fh — — — — — — — — — —

R
E

G
IS

T
E

R
IN

D
E

X
W

IT
H

IN
M

O
D

U
L

E
MAXQ Family User’s Guide

Maxim Integrated

3-20

MAXQ Family User’s Guide

BIT POSITION
REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AP — — — — AP (4 bits)

APC CLR IDS — — — MOD2 MOD1 MOD0

PSF Z S — GPF1 GPF0 OV C E

IC — — CGDS — — — INS IGE

IMR IMS — IM5 IM4 IM3 IM2 IM1 IM0

SC TAP — CDA1 CDA0 UPA ROD PWL —

IIR IIS — II5 II4 II3 II2 II1 II0

CKCN XT/RC RGSL RGMD STOP SWB PMME CD1 CD0

WDCN POR EWDI WD1 WD0 WDIF WTRF EWT RWT

A[0] A[0] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[1] A[1] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[2] A[2] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[3] A[3] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[4] A[4] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[5] A[5] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[6] A[6] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[7] A[7] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[8] A[8] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[9] A[9] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[10] A[10] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[11] A[11] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[12] A[12] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[13] A[13] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[14] A[14] (MAXQ10: 8 bits; MAXQ20:16 bits)

A[15] A[15] (MAXQ10: 8 bits; MAXQ20:16 bits)

PFX[n] PFX[n] (16 bits)

IP IP (16 bits)

SP — — — — — — — — — — — — SP (4 bits)

IV IV (16 bits)

LC[0] LC[0] (16 bits)

LC[1] LC[1] (16 bits)

OFFS OFFS (8 bits)

DPC — — — — — — — — — — — WBS2 WBS1 WBS0 SDPS1 SDPS0

GR GR (16 bits)

GRL GRL (8 bits)

BP BP (16 bits)

GRS GRS (16 bits) = (GRL, GRH)

GRH GRH (8 bits)

GRXL GRXL (16 bits) = (GRL.7, 8bits): (GRL, 8bits)

FP FP = BP[Offs] (16 bits)

DP[0] DP[0] (16 bits)

DP[1] DP[1] (16 bits)

Table 3-5. System Register Bit Map

Maxim Integrated

3-21

Table 3-6. System Register Bit Reset Values

Note: Bits marked ‘s’ are static across some or all resets.

BIT POSITION
REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AP 0 0 0 0 0 0 0 0

APC 0 0 0 0 0 0 0 0

PSF 1 0 0 0 0 0 0 0

IC 0 0 0 0 0 0 0 0

IMR 0 0 0 0 0 0 0 0

SC 1 0 0 0 0 0 s 0

IIR 0 0 0 0 0 0 0 0

CKCN s s s 0 0 0 0 0

WDCN s s 0 0 0 s s 0

A[n]
MAXQ10

0 0 0 0 0 0 0 0

A[n]
MAXQ20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PFX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SP 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

IV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OFFS 0 0 0 0 0 0 0 0

DPC
MAXQ10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DPC
MAXQ20

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

GR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GRL 0 0 0 0 0 0 0 0

BP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GRS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GRH 0 0 0 0 0 0 0 0

GRXL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DP[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DP[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAXQ Family User’s Guide

Maxim Integrated

4-1

MAXQ Family User’s Guide

SECTION 4: SYSTEM REGISTER DESCRIPTIONS

This section contains the following information:

4.1 Accumulator Pointer Register (AP, 8h[0h]) .4-2

4.2 Accumulator Pointer Control Register (APC, 8h[1h]) .4-2

4.3 Processor Status Flags Register (PSF, 8h[4h]) .4-3

4.4 Interrupt and Control Register (IC, 8h[5h]) .4-3

4.5 Interrupt Mask Register (IMR, 8h[6h]) .4-3

4.6 System Control Register (SC, 8h[8h]) .4-4

4.7 Interrupt Identification Register (IIR, 8h[Bh]) .4-4

4.8 System Clock Control Register (CKCN, 8h[Eh]) .4-5

4.9 Watchdog Control Register (WDCN, 8h[Fh]) .4-6

4.10 (MAXQ10) Accumulator n Register (A[n], 9h[nh]) .4-7

4.11 (MAXQ20) Accumulator n Register (A[n], 9h[nh]) .4-7

4.12 Prefix Register (PFX[n], Bh[n]) .4-7

4.13 Instruction Pointer Register (IP, Ch[0h]) .4-7

4.14 Stack Pointer Register (SP, Dh[1h]) .4-8

4.15 Interrupt Vector Register (IV, Dh[2h]) .4-8

4.16 Loop Counter 0 Register (LC[0], Dh[6h]) .4-8

4.17 Loop Counter 1 Register (LC[1], Dh[7h]) .4-8

4.18 Frame Pointer Offset Register (OFFS, Eh[3h]) .4-8

4.19 Data Pointer Control Register (DPC, Eh[4h]) .4-9

4.20 General Register (GR, Eh[5h]) .4-9

4.21 General Register Low Byte (GRL, Eh[6h]) .4-9

4.22 Frame Pointer Base Register (BP, Eh[7h]) .4-9

4.23 General Register Byte-Swapped (GRS, Eh[8h]) .4-10

4.24 General Register High Byte (GRH, Eh[9h]) .4-10

4.25 General Register Sign Extended Low Byte (GRXL, Eh[Ah]) .4-10

4.26 Frame Pointer Register (FP, Eh[Bh]) .4-10

4.27 Data Pointer 0 Register (DP[0], Fh[3h]) .4-10

4.28 Data Pointer 1 Register (DP[1], Fh[7h]) .4-10

Maxim Integrated

4-2

MAXQ Family User’s Guide

SECTION 4: SYSTEM REGISTER DESCRIPTIONS
Those registers currently defined in the MAXQ System Register map are described in the following pages. The addresses for each reg-
ister are given in the format module[index], where module is the module specifier from 8h to Fh and index is the register sub-index
from 0h to Fh.

4.1 Accumulator Pointer Register (AP, 8h[0h])
The bit definitions are for 16 accumulators.
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

4.2 Accumulator Pointer Control Register (APC, 8h[1h])
The bit definitions are for 16 accumulators.
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT FUNCTION

AP.3 to AP.0

Active Accumulator Select. These bits select which of the 16 accumulator registers are used for arithmetic and logical operations.
If the APC register has been set to perform automatic increment/decrement of the active accumulator, this setting will be
automatically changed after each arithmetic or logical operation. If a ‘MOVE AP, Acc’ instruction is executed, any enabled AP
inc/dec/modulo control will take precedence over the transfer of Acc data into AP.

AP.7 to AP.4 Reserved. All reads return 0.

BIT FUNCTION

Accumulator Pointer Auto Increment/Decrement Modulus. If these bits are set to a nonzero value, the accumulator pointer (AP[3:0])
will be automatically incremented or decremented following each arithmetic or logical operation. The mode for the auto-increment/
decrement is determined as follows:

MOD[2:0] AUTO INCREMENT/DECREMENT MODE
000 No auto-increment/decrement (default)
001 Increment/decrement AP[0] modulo 2
010 Increment/decrement AP[1:0] modulo 4
011 Increment/decrement AP[2:0] modulo 8
100 Increment/decrement AP modulo 16

APC.2 to APC.0
(MOD2 to

MOD0)

101 to 111 Reserved (modulo 16 when set)
APC.5 to APC.3 Reserved. All reads return 0.

APC.6 (IDS)
Increment/Decrement Select. If this bit is set to 0, the accumulator pointer AP is incremented following each arithmetic or logical
operation according to MOD[2:0]. If this bit is set to 1, the accumulator pointer AP is decremented following each arithmetic or
logical operation according to MOD[2:0]. If MOD[2:0] is set to 000, the setting of this bit is ignored.

APC.7 (CLR)
AP Clear. Writing this bit to 1 clears the accumulator pointer AP to 0. Once set, this bit will automatically be reset to 0 by hardware.
If a ‘MOVE APC, Acc’ instruction is executed requesting that AP be set to 0 (i.e., CLR = 1), the AP clear function overrides any
enabled inc/dec/modulo control. All reads from this bit return 0.

Maxim Integrated

4-3

MAXQ Family User’s Guide

4.3 Processor Status Flags Register (PSF, 8h[4h])
The OV and S bit definitions are given for the MAXQ20 (16-bit accumulators and ALU).
Initialization: This register is cleared to 80h on all forms of reset.
Access: Bit 7 (Z), bit 6 (S), and bit 2 (OV) are read only. Bits 4 and 3 (GPF1,GPF0), bit 1 (C), and bit 0 (E) are unrestricted read/write.

4.4 Interrupt and Control Register (IC, 8h[5h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

4.5 Interrupt Mask Register (IMR, 8h[6h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted read/write access.

BIT FUNCTION

IC.0 (IGE) Interrupt Global Enable. If this bit is set to 1, interrupts are globally enabled, but still must be locally enabled to occur. If this bit is
set to 0, all interrupts are disabled.

IC.1 (INS)
Interrupt In Service. The INS is set by hardware automatically when an interrupt is acknowledged. No further interrupts occur as
long as the INS remains set. The interrupt service routine can clear the INS bit to allow interrupt nesting. Otherwise, the INS bit is
cleared by hardware upon execution of an RETI or POPI instruction.

IC.4 to IC.2 Reserved. All reads return 0.

IC.5 (CGDS) System Clock Gating Disable. If this bit is set to 0 (default mode), system clock gating circuitry is active. If this bit is set to 1, the
clock gating circuitry is disabled.

IC.7, IC.6 Reserved. All reads return 0.

BIT FUNCTION

The first six bits in this register are interrupt mask bits for modules 0 to 5, one bit per module. The eighth bit, IMS, serves as a
mask for any system module interrupt sources. Setting a mask bit allows the enabled interrupt sources for the associated module
or system (for the case of IMS) to generate interrupt requests. Clearing the mask bit effectively disables all interrupt sources
associated with that specific module or all system interrupt sources (for the case of IMS). The interrupt mask register is intended
to facilitate user-definable interrupt prioritization.

IMR.0 (IM0) Interrupt Mask for Register Module 0
IMR.1 (IM1) Interrupt Mask for Register Module 1
IMR.2 (IM2) Interrupt Mask for Register Module 2
IMR.3 (IM3) Interrupt Mask for Register Module 3
IMR.4 (IM4) Interrupt Mask for Register Module 4
IMR.5 (IM5) Interrupt Mask for Register Module 5

IMR.6 Reserved. Reads return 0.
IMR.7 (IMS) Interrupt Mask for System Modules

BIT FUNCTION

PSF.0 (E) Equals Flag. This bit flag is set to 1 whenever a compare operation (CMP) returns an equal result. If a CMP operation returns not
equal, this bit is cleared.

PSF.1 (C)
Carry Flag. This bit flag is set to 1 whenever an add or subtract operation (ADD, ADDC, SUB, SUBB) returns a carry or borrow.
This bit flag is cleared to 0 whenever an add or subtract operation does not return a carry or borrow. Many other instructions
potentially affect the carry bit. Reference the instruction set documentation for details.

PSF.2 (OV)
Overflow Flag. This flag is set to 1 if there is a carry out of bit 14 but not out of bit 15, or a carry out of bit 15 but not out of bit 14
from the last arithmetic operation, otherwise, the OV flag remains as 0. OV indicates a negative number resulted as the sum of
two positive operands, or a positive sum resulted from two negative operands.

PSF.3 (GPF0) General Purpose Flag 0
PSF.4 (GPF1) General Purpose Flag 1. These general-purpose flag bits are provided for user software control.

PSF.5 Reserved. All reads return 0.
PSF.6 (S) Sign Flag. This bit flag mirrors the current value of the high bit of the active accumulator (Acc.15).
PSF.7 (Z) Zero Flag. The value of this bit flag equals 1 whenever the active accumulator is equal to zero, and it equals 0 otherwise.

Maxim Integrated

4-4

MAXQ Family User’s Guide

4.6 System Control Register (SC, 8h[8h])
Initialization: This register is reset to 100000s0b on all reset. Bit 1 (PWL) is set to 1 on a power-on reset only.
Access: Unrestricted read/write access.

4.7 Interrupt Identification Register (IIR, 8h[Bh])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Read only.

BIT FUNCTION
SC.0 Reserved. All reads return 0.

SC.1 (PWL)
Password Lock. This bit defaults to 1 on a power-on reset. When this bit is 1, it requires a 32-byte password to be matched with
the password in the program space before allowing access to the password protected in-circuit debug or bootstrap loader
ROM routines. Clearing this bit to 0 disables the password protection for these ROM routines.

SC.2 (ROD)

ROM Operation Done. This bit is used to signify completion of a ROM operation sequence to the control units. This allows the
Debug engine to determine the status of a ROM sequence. Setting this bit to logic 1 causes an internal system reset if the JTAG
SPE bit is also set. Setting the ROD bit will clear the JTAG SPE bit if it is set and the ROD bit will be automatically cleared by
hardware once the control unit acknowledges the done indication.

SC.3 (UPA)

Upper Program Access. The physical program memory is logically divided into four pages; P0 and P1 occupy the lower
32kWords while P2 and P3 occupy the upper 32kWords. P0 and P1 are assigned to the lower half of the program space and are
always active. P2 and P3 must be explicitly activated in the upper half of the program space by setting the UPA bit to 1. When
UPA bit is cleared to 0, the upper program memory space is occupied by the Utility ROM and the logical data memory, which is
accessible as program memory. Note that the UPA is not implemented if the upper 32K of the program space is not used for the
user code.

Code Data Access Bits 1:0. The CDA bits are used to logically map physical program memory page to the data space for
read/write access:

CDA1:0 BYTE MODE ACTIVE PAGE WORD MODE ACTIVE PAGE
00 P0 P0 and P1
01 P1 P0 and P1
10 P2 P2 and P3
11 P3 P2 and P3

SC.5 and SC.4
(CDA1, CDA0)

The logical data memory addresses of the program pages depend on whether execution is from Utility ROM or logical data
memory. Note that CDA1 is not implemented if the upper 32k of the program space is not used for the user code. No CDA bits
are needed if only one page of program space is incorporated.

SC.6 Reserved. All reads return 0.

SC.7 (TAP) Test Access (JTAG) Port Enable. This bit controls whether the Test Access Port special-function pins are enabled. The TAP
defaults to being enabled. Clearing this bit to 0 disables the TAP special function pins.

BIT FUNCTION

The first six bits in this register indicate interrupts pending in modules 0 to 5, one bit per module. The eighth bit, IIS, indicates
a pending system interrupt, such as from the watchdog timer. The interrupt pending flags will be set only for enabled interrupt
sources waiting for service. The interrupt pending flag will be cleared when the pending interrupt sources within that module
are disabled or when the interrupt flags are cleared by software

IIR.0 (II0) Interrupt Identifier Flag for Register Module 0
IIR.1 (II1) Interrupt Identifier Flag for Register Module 1
IIR.2 (II2) Interrupt Identifier Flag for Register Module 2
IIR.3 (II3) Interrupt Identifier Flag for Register Module 3
IIR.4 (II4) Interrupt Identifier Flag for Register Module 4
IIR.5 (II5) Interrupt Identifier Flag for Register Module 5

IIR.6 Reserved. Reads return 0.
IIR.7 (IIS) Interrupt Identifier Flag for System Modules

Maxim Integrated

4-5

MAXQ Family User’s Guide

4.8 System Clock Control Register (CKCN, 8h[Eh])
Initialization: Bits 4:0 are cleared to zero on all forms of reset. See bit description for bits 7:5.
Access: Bit 5 (RGMD) is read-only. All other bits are unrestricted read/write, except for the locking mechanism on CD0 and CD1 as
described below.

BIT FUNCTION

Clock Divide Bit 0. Clock Divide Bit 1. If the PMME bit is cleared, the CD0 and CD1 bits control the number of oscillator clocks
required to generate one system clock as follows:

CD1 CD0 OSCILLATOR CLOCK CYCLES PER SYSTEM CLOCK CYCLE
0 0 1 (default)
0 1 2
1 0 4
1 1 8

CKCN.0 (CD0);
CKCN.1 (CD1)

If the PMME bit is set to 1, the values of CD0 and CD1 may not be altered and do not affect the system clock frequency.

CKCN.2 (PMME)

Power Management Mode Enable. If the PMME bit is cleared to 0, the values of CD0 and CD1 determine the number of
oscillator clock cycles per system clock cycle. If the PMME bit is set to 1, the values of CD0 and CD1 are ignored and the
system clock operates in a fixed mode of 1 cycle per 256 oscillator cycles (divide by 256). If the PMME bit is set to 1 and
Switchback mode has been enabled (SWB = 1), when a Switchback source (such as an enabled external interrupt) becomes
active, PMME will be cleared to 0 and cannot be set to 1 unless all Switchback sources are inactive.

CKCN.3 (SWB)

Switchback Enable. If the SWB bit is cleared to 0, Switchback mode is not active. If the SWB bit is set to 1, Switchback mode is
active. Switchback mode has no effect if Power Management Mode is not active (PMME = 0). If Power Management Mode is
active and Switchback mode is enabled, the PMME bit will be cleared to 0 when any of the following conditions occur.
 1) An external interrupt condition occurs on an INTx pin and the corresponding external interrupt is enabled.
 2) An active-low transition occurs on the UART serial receive-input line (modes 1, 2, and 3) and data reception is enabled.
 3) The SBUF register is written to send an outgoing byte through the UART and transmission is enabled
 4) The SPIB register is written in master mode (STBY = 1) to send an outgoing character through the SPI module and
 transmission is enabled.
 5) The SPI module’s SSEL signal is asserted in slave mode.
 6) Time-of-Day and Subsecond interval alarms from the RTC when enabled.
 7) Active debug mode is entered either by break point match or issuance of the 'Debug' command from background mode.
When any of these conditions cause Switchback to clear PMME to 0, the system clock rate will then be determined by the
settings of CD0 and CD1. After PMME is cleared to 0 by Switchback, it may not be set back to 1 as long as any of the above
conditions are true.

CKCN.4 (STOP) Stop Mode Select. Setting this bit to 1 causes the MAXQ to enter Stop Mode. This will not change the currently selected clock
divide ratio (CD0, CD1, PMME).

CKCN.5 (RGMD)

Ring Oscillator Mode. This read-only bit reflects the selection of clock source. RGMD = 1 indicates the ring oscillator is
providing the system clock. RGMD = 0 indicates that the clock source specified by the XT/RC bit is being used for system clock
generation. If the given MAXQ device does not include an internal ring oscillator from which it can run, this read-only bit will
track the value of CKCN.6.

CKCN.6 (RGSL)

Ring Oscillator Select. This bit selects the internal ring oscillator for system clock generation. When RGSL is set to 1, the internal
ring oscillator (following the PMME, CD1:0 selected divide ratio) is immediately sourced as the system clock and the internal
crystal amplifier is disabled (if allowed). When RGSL is cleared to 0, the internal ring oscillator (following the clock divide
selection) will continue to serve as the system clock until the warm-up counter associated with the XT/RC clock selection has
expired. At which point, that clock source (following the PMME, CD1:0 selected divide ratio) is sourced as the system clock.
The RGSL bit is cleared to 0 on power-on reset only and is unaffected by other resets. If the given MAXQ device does not
include an internal ring oscillator from which it can run, this bit can be used as a general-purpose read/write bit.

CKCN.7(XT/RC)

Crystal/RC Oscillator Select. This bit selects the non-ring oscillator mode that may be used for system clock generation. The XT/
RC bit can only be modified when RGSL = 1. The XT/ RC bit is set to 1 on power-on reset only and is unaffected by other resets.
XT/ RC = 0: external RC configuration
XT/ RC = 1: external crystal/clock configuration
If the given MAXQ device does not support both the crystal and RC options, this bit can be used as a general-purpose
read/write bit that is write protected when CKCN.6 is configured to 0.

Maxim Integrated

4-6

MAXQ Family User’s Guide

4.9 Watchdog Control Register (WDCN, 8h[Fh])
Initialization: Bits 5, 4, 3 and 0 are cleared to 0 on all forms of reset; for others, see individual bit descriptions.
Access: Unrestricted direct read/write access.

BIT FUNCTION

WDCN.0 (RWT)
Reset Watchdog Timer. Setting this bit to 1 resets the watchdog timer count. If watchdog interrupt and/or reset modes are
enabled, the software must set this bit to 1 before the watchdog timer elapses to prevent an interrupt or reset from occurring.
This bit always returns 0 when read.

WDCN.1 (EWT)

Enable Watchdog Timer Reset. If this bit is set to 1 when the watchdog timer elapses, the watchdog resets the processor 512
system clock cycles later unless action is taken to disable the reset event. Clearing this bit to 0 prevents a watchdog reset from
occurring but does not stop the watchdog timer or prevent watchdog interrupts from occurring if EWDI = 1. If EWT = 0 and EWDI
= 0, the watchdog timer will be stopped. If the watchdog timer is stopped (EWT = 0 and EWDI = 0), setting the EWT bit will reset
the watchdog interval and reset counter, and enable the watchdog timer. This bit is cleared on Power-on reset and is unaffected
by other forms of reset.

WDCN.2 (WTRF)

Watchdog Timer Reset Flag. This bit is set to 1 when the watchdog resets the processor. Software can check this bit following a
reset to determine if the watchdog was the source of the reset. Setting this bit to 1 in software will not cause a watchdog reset.
This bit is cleared by Power-on reset only and is unaffected by other forms of reset. It should also be cleared by software following
any reset so that the source of the next reset can be correctly determined by software. This bit is only set to 1 when a watchdog
reset actually occurs, so if EWT is cleared to 0 when the watchdog timer elapses, this bit will not be set.

WDCN.3 (WDIF)

Watchdog Interrupt Flag. This bit will be set to 1 when the watchdog timer interval has elapsed or can be set to 1 by user
software. When WDIF = 1, an interrupt request will occur if the watchdog interrupt has been enabled (EWDI = 1) and not
otherwise masked or prevented by an interrupt already in service (i.e., IGE = 1, IMS = 1, and INS = 0 must be true for the interrupt
to occur). This bit should be cleared by software before exiting the interrupt service routine to avoid repeated interrupts.
Furthermore, if the watchdog reset has been enabled (EWT = 1), a reset is scheduled to occur 512 system clock cycles following
setting of the WDIF bit.

Watchdog Timer Mode Select Bit 0; Watchdog Timer Mode Select Bit 1. These bits determine the watchdog interval or the length
of time between resetting of watchdog timer and the watchdog generated interrupt in terms of system clocks. Modifying the
watchdog interval via the WD1:0 bits will automatically reset the watchdog timer unless the 512 system clock reset counter is
already in progress, in which case, changing the WD1:0 bits will not effect the Watchdog timer or reset counter.

WD1 WD0 CLOCKS UNTIL INTERRUPT CLOCKS UNTIL RESET

0 0 212 212 + 512

0 1 215 215 + 512

1 0 218 218 + 512

WDCN.4 (WD0);
WDCN.5 (WD1)

1 1 221 221 + 512

WDCN.6 (EWDI)

Watchdog Interrupt Enable. If this bit is set to 1, an interrupt request can be generated when the WDIF bit is set to 1 by any
means. If this bit is cleared to 0, no interrupt will occur when WDIF is set to 1, however, it does not stop the watchdog timer or
prevent watchdog resets from occurring if EWT = 1. If EWT = 0 and EWDI = 0, the watchdog timer will be stopped. If the
watchdog timer is stopped (EWT = 0 and EWDI = 0), setting the EWDI bit will reset the watchdog interval and reset counter, and
enable the watchdog timer. This bit is cleared to 0 by power-on reset and is unaffected by other forms of reset.

WDCN.7 (POR)
Power-On Reset Flag. This bit is set to 1 whenever a power-on/brownout reset occurs. It is unaffected by other forms of reset. This
bit can be checked by software following a reset to determine if a power-on/brownout reset occurred. It should always be cleared
by software following a reset to ensure that the sources of following resets can be determined correctly.

Maxim Integrated

4-7

MAXQ Family User’s Guide

4.10 (MAXQ10) Accumulator n Register (A[n], 9h[nh])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

4.11 (MAXQ20) Accumulator n Register (A[n], 9h[nh])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

4.12 Prefix Register (PFX[n], Bh[n])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

4.13 Instruction Pointer Register (IP, Ch[0h])
Initialization: This register is cleared to 8000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT FUNCTION

A[n].7 to A[n].0 This register acts as the accumulator for all ALU arithmetic and logical operations when selected by the accumulator pointer
(AP). It can also be used as a general-purpose working register.

BIT FUNCTION

IP.15 to IP.0
This register contains the address of the next instruction to be executed and is automatically incremented by 1 after each program
fetch. Writing an address value to this register will cause program flow to jump to that address. Reading from this register will not
affect program flow.

BIT FUNCTION

A[n].15 to A[n].0 This register acts as the accumulator for all ALU arithmetic and logical operations when selected by the accumulator pointer
(AP). It can also be used as a general-purpose working register.

BIT FUNCTION

The Prefix register provides a means of supplying an additional 8 bits of high-order data for use by the succeeding
instruction as well as providing additional indexing capabilities. This register will only hold any data written to it for one
execution cycle, after which it will revert to 0000h. Although this is a 16-bit register, only the lower 8 bits are actually
used for prefixing purposes by the next instruction. Writing to or reading from any index in the Prefix module will select
the same 16-bit register. However, when the Prefix register is written, the index n used for the PFX[n] write also
determines the high-order bits for the register source and destination specified in the following instruction.

SOURCE, DESTINATION INDEX SELECTION
WRITE TO SOURCE REGISTER

RANGE DESTINATION REGISTER RANGE

PFX[0] 0h to Fh 0h to 7h
PFX[1] 10h to 1Fh 0h to 7h
PFX[2] 0h to Fh 8h to Fh
PFX[3] 10h to 1Fh 8h to Fh
PFX[4] 0h to Fh 10h to 17h
PFX[5] 10h to 1Fh 10h to 17h
PFX[6] 0h to Fh 18h to 1Fh
PFX[7] 10h to 1Fh 18h to 1Fh

PFX[n].15 to PFX[n].0

The index selection reverts to 0 (default mode allowing selection of registers 0h to 7h for destinations) after one cycle in
the same manner as the contents of the Prefix register.

Maxim Integrated

4-8

MAXQ Family User’s Guide

4.14 Stack Pointer Register (SP, Dh[1h])
Bits defined below for 16-word stack depth.
Initialization: This register is cleared to 000Fh on all forms of reset.
Access: Unrestricted direct read/write access.

4.15 Interrupt Vector Register (IV, Dh[2h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

4.16 Loop Counter 0 Register (LC[0], Dh[6h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

4.17 Loop Counter 1 Register (LC[1], Dh[7h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

4.18 Frame Pointer Offset Register (OFFS, Eh[3h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT FUNCTION

SP.3 to SP.0 These four bits indicate the current top of the hardware stack, from 0h to Fh. This pointer is incremented after a value is
pushed on the stack and decremented before a value is popped from the stack.

SP.15 to SP.4 Reserved; all reads return 0.

BIT FUNCTION

IV.15 – IV.0 This register contains the address of the interrupt service routine. The interrupt handler will generate a CALL to this address
whenever an interrupt is acknowledged.

BIT FUNCTION

LC[0].15 to LC[0].0 This register is used as the loop counter for the DJNZ LC[0], src operation. This operation decrements LC[0] by one and then
jumps to the address specified in the instruction by src.

BIT FUNCTION

LC[1].15 to LC[1].0 This register is used as the loop counter for the DJNZ LC[1], src operation. This operation decrements LC[1] by one and
then jumps to the address specified in the instruction by src.

BIT FUNCTION

OFFS.7 to OFFS.0

This 8-bit register provides the Frame Pointer (FP) offset from the base pointer (BP). The Frame Pointer is formed by
unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer Offset Register (Offs). The contents of this
register can be post-incremented or post-decremented when using the Frame Pointer for read operations and may be pre-
incremented or pre-decremented when using the Frame Pointer for write operations. A carry out or borrow resulting from an
increment/decrement operation has no effect on the Frame Pointer Base Register (BP).

Maxim Integrated

4-9

MAXQ Family User’s Guide

4.19 Data Pointer Control Register (DPC, Eh[4h])
Initialization: (MAXQ10) This register is cleared to 0000h on all forms of reset.
(MAXQ20) This register is cleared to 001Ch on all forms of reset.
Access: Unrestricted direct read/write access.

4.20 General Register (GR, Eh[5h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

4.21 General Register Low Byte (GRL, Eh[6h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

4.22 Frame Pointer Base Register (BP, Eh[7h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT FUNCTION

Source Data Pointer Select Bits 1:0. These bits select one of the three data pointers as the active source pointer for the load
operation. A new data pointer must be selected before being used to read data memory:

SDPS1 SDPS0 SOURCE POINTER SELECTION
0 0 DP[0]
0 1 DP[1]
1 0 FP (BP[Offs])
1 1 Reserved (select FP if set)

DPC.1 to DPC.0
(SDPS1, SDPS0)

These bits default to 00b but do not activate DP[0] as an active source pointer until the SDPS bits are explicitly cleared to 00b or
the DP[0] register is written by an instruction. Also, modifying the register contents of a data/frame pointer register (DP[0], DP[1],
BP or Offs) will change the setting of the SDPS bits to reflect the active source pointer selection.

DPC.2 (WBS0) Word/Byte Select 0. This bit selects access mode for DP[0]. When WBS0 is set to logic 1, the DP[0] is operated in word mode for
data memory access; when WBS0 is cleared to logic 0, DP[0] is operated in byte mode for data memory access.

DPC.3 (WBS1) Word/Byte Select 1. This bit selects access mode for DP[1]. When WBS1 is set to logic 1, the DP[1] is operated in word mode for
data memory access; when WBS1 is cleared to logic 0, DP[1] is operated in byte mode for data memory access.

DPC.4 (WBS2) Word/Byte Select 2. This bit selects access mode for BP[Offs]. When WBS2 is set to logic 1, the BP[Offs] is operated in word
mode for data memory access; when WBS2 is cleared to logic 0, BP[Offs] is operated in byte mode for data memory access.

DPC.15 to DPC.5 Reserved. Read returns 0.

BIT FUNCTION

GR.15 to GR.0 This register is intended primarily for supporting byte operations on 16-bit data. The 16-bit register is byte-readable, byte-writeable
through the corresponding GRL and GRH 8-bit registers and byte-swappable through the GRS 16-bit register.

BIT FUNCTION

GRL.7 to GRL.0 This register reflects the low byte of the GR register and is intended primarily for supporting byte operations on 16-bit data. Any
data written to the GRL register will also be stored in the low byte of the GR register.

BIT FUNCTION

BP.15 to BP.0
This register serves as the base pointer for the Frame Pointer (FP). The Frame Pointer is formed by unsigned addition of Frame
Pointer Base Register (BP) and Frame Pointer Offset Register (Offs). The content of this base pointer register is not affected by
increment/decrement operations performed on the offset (OFFS) register.

Maxim Integrated

4-10

MAXQ Family User’s Guide

4.23 General Register Byte-Swapped (GRS, Eh[8h])
Initialization: This register is cleared to 0000h on all forms of reset
Access: Unrestricted read-only access.

4.24 General Register High Byte (GRH, Eh[9h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

4.25 General Register Sign Extended Low Byte (GRXL, Eh[Ah])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read-only access.

4.26 Frame Pointer Register (FP, Eh[Bh])
Initialization: This register is cleared to 0000h on all forms of reset.
Access" Unrestricted direct read-only access.

4.27 Data Pointer 0 Register (DP[0], Fh[3h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

4.28 Data Pointer 1 Register (DP[1], Fh[7h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT FUNCTION

GRS.15 to GRS.0 This register is intended primarily for supporting byte operations on 16-bit data. This 16-bit read only register returns the byte-
swapped value for the data contained in the GR register.

BIT FUNCTION

GRH.7 to GRH.0 This register reflects the high byte of the GR register and is intended primarily for supporting byte operations on 16-bit data.
Any data written to the GRH register will also be stored in the high byte of the GR register.

BIT FUNCTION
GRXL.15 to GRXL.0 This register provides the sign extended low byte of GR as a 16-bit source.

BIT FUNCTION
FP.15 to FP.0 This register provides the current value of the frame pointer (BP[Offs]).

BIT FUNCTION

DP[0].15 to DP[0].0 This register is used as a pointer to access data memory. DP[0] can be automatically incremented or decremented following
each read operation or can be automatically incremented or decremented before each write operation.

BIT FUNCTION

DP[1].15 to DP[1].0 This register is used as a pointer to access data memory. DP[1] can be automatically incremented or decremented following
each read operation or can be automatically incremented or decremented before each write operation.

Maxim Integrated

5-1

MAXQ Family User’s Guide

SECTION 5: PERIPHERAL REGISTER MODULES

The MAXQ microcontroller uses Peripheral Registers to control and monitor peripheral modules. These registers reside in Modules 0h
through 5h, with sub-index values 0h to 1Fh. While the peripherals must reside in modules 0h through 5h, they are not necessarily tied
to specific index numbers inside this range and can be moved, removed, and/or duplicated for certain MAXQ-based products as
space permits. For this reason, each peripheral modules and its associated registers/bits are covered separately. Consult the individ-
ual device data sheet or user’s guide supplement for the exact peripheral register map.

Maxim Integrated

6-1

MAXQ Family User’s Guide

SECTION 6: GENERAL-PURPOSE I/O MODULE

This section contains the following information:

6.1 I/O Port: Type A .6-2

6.2 I/O Port: Type B .6-2

6.3 I/O Port: Type C .6-3

6.4 I/O Port: Type D .6-3

6.5 I/O Port Peripheral Registers .6-4

6.5.1 Port Output x Register (POx) .6-4

6.5.2 Port Input x Register (PIx) .6-4

6.5.3 Port Direction x Register (PDx) .6-4

6.5.4 (Type A) External Interrupt Enable Register (EIEx) .6-5

6.5.5 (Type A) External Interrupt Flag Register (EIFx) .6-6

6.5.6 (Type D) External Interrupt Enable Register (EIEx) .6-6

6.5.7 (Type D) External Interrupt Flag Register (EIFx) .6-7

6.5.8 (Type D) External Interrupt Edge Select Register (EIESx) .6-8

LIST OF FIGURES

LIST OF TABLES

Figure 6-1. Type A Port Pin Schematic .6-2

Figure 6-2. Type B Port Pin Schematic .6-2

Figure 6-3. Type C Port Pin Schematic .6-3

Figure 6-4. Type D Port Pin Schematic .6-3

Table 6-1. Weak Pullup Control .6-3

Maxim Integrated

6-2

MAXQ Family User’s Guide

SECTION 6: GENERAL-PURPOSE I/O MODULE
The General-Purpose I/O Module (GPIO) for the MAXQ supports multiple 8-bit port types, each having different I/O characteristics.
From a software perspective, each port appears as a group of Peripheral Registers with unique addresses. The exact quantity and
type of ports provided by the GPIO Module is product-dependent. Each of the four different types of I/O ports are described.

6.1 I/O Port: Type A
The Type A port can be used as a bidirectional I/O port. A port consists of eight general-purpose input/output pins and all the registers
needed to control and configure them. Each pin is independently controllable. Up to six pins of each type A port can be configured as
external interrupts. Each interrupt function is supported by its own interrupt flag, and each can be independently enabled.

6.2 I/O Port: Type B
The Type B port can also be used as a bidirectional I/O port. The Type B port consists of eight general-purpose input/output pins and
three registers needed to control and configure them. Each pin is independently controllable. Type B port pins are intended to support
secondary special functions. The special functions associated with these port pins are generally implemented in peripheral modules
to the MAXQ CPU, which can be enabled, controlled, and monitored using dedicated Peripheral Registers.

Enabling the special function automatically converts the pin to that function. The I/O drive characteristics for these pins are the same
no matter whether the pin is configured for general-purpose I/O or whether it is being used for the special function.

PIN.x

PD.x

SF ENABLE

PO.x

PI.x OR SF INPUT

SF OUTPUT

SF DIRECTION

FLAG
IT0/IT1

VddI/O PAD

M
UX

M
UX

DETECT�
CIRCUIT

INTERRUPT�
FLAG

MAXQ

Figure 6-1. Type A Port Pin Schematic

PIN.x

PD.x

SF ENABLE

PO.x

PI.x OR SF INPUT

SF OUTPUT

SF DIRECTION

VddI/O PAD

M
UX

M
UX

MAXQ

Figure 6-2. Type B Port Pin Schematic

Maxim Integrated

6.3 I/O Port: Type C
The Type C I/O port is nearly identical to the Type B I/O port, but with the addition of a selectable internal, weak, P-channel, pullup
device. The weak pullup device can be enabled by configuring the port pin as an input and setting the associated port output bit to
logic 1 (default reset state).

6-3

MAXQ Family User’s Guide

PD.x

SF ENABLE

PO.x

PI.x OR SF INPUT

SF OUTPUT

SF DIRECTION

Vdd

I/O PAD

M
UX

M
UX PIN.x

Vdd

WEAK

MAXQ

Figure 6-3. Type C Port Pin Schematic

PDX.x (PORT DIRECTION BIT) OR
 SF SELECT (SF I/O CONTROL)

POX.x (PORT OUTPUT
BIT) WEAK PULLUP

X 0 OFF
1 = output 1 OFF
0 = input 1 ON

Table 6-1. Weak Pullup Control

6.4 I/O Port: Type D
The Type D I/O port merges the Type C I/O port with the interrupt functionality of the Type A I/O port. Just like the Type C I/O port, the weak
pullup device can be enabled by configuring the port pin as an input and setting the associated port output bit to logic 1 (default reset state).

PD.x

SF ENABLE

PO.x

PI.x OR SF INPUT

SF OUTPUT

SF DIRECTION

Vdd

I/O PAD

M
UX

M
UX PIN.x

Vdd

WEAK

MAXQ

FLAG EIE.xDETECT�
CIRCUIT

INTERRUPT�
FLAG

Figure 6-4. Type D Port Pin Schematic

Maxim Integrated

6.5 I/O Port Peripheral Registers

6.5.1 Port Output x Register (POx)

Bits 7 to 0: Port Output x (POx) (POx.[7:0]). This register stores the data that is output on any of the pins of Port x that have been defined
as output pins. Changing the data direction of any pins for this port (through register PDx) will not affect the value in this register.

If Port x is a Type C or Type D port that supports the weak pullup input mode, the POx register bits control the weak pullup enables for
any port pins that have been configured as input pins.

6.5.2 Port Input x Register (PIx)

Bits 7 to 0: Port Input x (PIx) (PIx.[7:0]). The PIx register always reflects the logical state of its pins when read.

6.5.3 Port Direction x Register (PDx)

Bits 7 to 0: Port Direction x (PDx) (PDx.[7:0]). This register is used to determine the direction of the Port x function. The port pins are
independently controlled by their direction bit. When a bit is set to 1, its corresponding pin is used as an output, causing data in the
respective POx register bit to be driven on the pin.

For Type A and Type B ports, when a bit is cleared to 0, its corresponding pin becomes a tri-stated input, allowing and external signal
to drive the pin.

For Type C and Type D ports, when a bit is cleared to 0, its corresponding pin becomes an input that can be weakly pulled up (if the
respective PO bit = 1) or can be tri-stated (if the respective PO bit = 0).

6-4

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name POx.7 POx.6 POx.5 POx.4 POx.3 POx.2 POx.1 POx.0

Reset (Type A
or Type B) 0 0 0 0 0 0 0 0

Reset (Type C
or Type D) 1 1 1 1 1 1 1 1

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name PDx.7 PDx.6 PDx.5 PDx.4 PDx.3 PDx.2 PDx.1 PDx.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name PIx.7 PIx.6 PIx.5 PIx.4 PIx.3 PIx.2 PIx.1 PIx.0

Reset s s s s s s s s

Access r r r r r r r r

r = read, s = special

Maxim Integrated

6.5.4 (Type A) External Interrupt Enable Register (EIEx)

Bit 7: Interrupt 2-5 Edge Select (IT1). This bit selects the edge detection mode for external interrupts 2-5.

0 = INT2, INT3, INT4 and INT5 are positive-edge triggered

1 = INT2, INT3, INT4 and INT5 are negative-edge triggered

Bit 6: Interrupt 0, 1 Edge Select (IT0). This bit selects the edge detection mode for external interrupts 0 and 1.

0 = INT0 and INT1 are positive-edge triggered

1 = INT0 and INT1 are negative-edge triggered

Bit 5: Enable External Interrupt 5 (EX5)

0 = external interrupt 5 function disabled

1 = external interrupt 5 function enabled

Bit 4: Enable External Interrupt 4 (EX4)

0 = external interrupt 4 function disabled

1 = external interrupt 4 function enabled

Bit 3: Enable External Interrupt 3 (EX3)

0 = external interrupt 3 function disabled

1 = external interrupt 3 function enabled

Bit 2: Enable External Interrupt 2 (EX2)

0 = external interrupt 2 function disabled

1 = external interrupt 2 function enabled

Bit 1: Enable External Interrupt 1 (EX1)

0 = external interrupt 1 function disabled

1 = external interrupt 1 function enabled

Bit 0: Enable External Interrupt 0 (EX0)

0 = external interrupt 0 function disabled

1 = external interrupt 0 function enabled

6-5

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name IT1 IT0 EX5 EX4 EX3 EX2 EX1 EX0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

6.5.5 (Type A) External Interrupt Flag Register (EIFx)

Bits 7 and 6: Reserved

Bit 5: External Interrupt 5 Flag (IE5). This flag is set when a negative edge (IT1 = 1) or a positive edge (IT1 = 0) is detected on the
INT5 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 4: External Interrupt 4 Flag (IE4). This flag is set when a negative edge (IT1 = 1) or a positive edge (IT1 = 0) is detected on the
INT4 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 3: External Interrupt 3 Flag (IE3). This flag is set when a negative edge (IT1 = 1) or a positive edge (IT1 = 0) is detected on the
INT3 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 2: External Interrupt 2 Flag (IE2). This flag is set when a negative edge (IT1 = 1) or a positive edge (IT1 = 0) is detected on the
INT2 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 1: External Interrupt 1 Flag (IE1). This flag is set when a negative edge (IT0 = 1) or a positive edge (IT0 = 0) is detected on the
INT1 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 0: External Interrupt 0 Flag (IE0). This flag is set when a negative edge (IT0 = 1) or a positive edge (IT0 = 0) is detected on the
INT0 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

6.5.6 (Type D) External Interrupt Enable Register (EIEx)

Bit 7: Enable External Interrupt 7 (EX7)

0 = external interrupt 7 function disabled

1 = external interrupt 7 function enabled

Bit 6: Enable External Interrupt 6 (EX6)

0 = external interrupt 6 function disabled

1 = external interrupt 6 function enabled.

Bit 5: Enable External Interrupt 5 (EX5)

0 = external interrupt 5 function disabled

1 = external interrupt 5 function enabled

Bit 4: Enable External Interrupt 4 (EX4)

0 = external interrupt 4 function disabled

1 = external interrupt 4 function enabled

6-6

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name — — IE5 IE4 IE3 IE2 IE1 IE0

Reset 0 0 0 0 0 0 0 0

Access r r rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name EX7 EX6 EX5 EX4 EX3 EX2 EX1 EX0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

Bit 3: Enable External Interrupt 3 (EX3)

0 = external interrupt 3 function disabled

1 = external interrupt 3 function enabled

Bit 2: Enable External Interrupt 2 (EX2)

0 = external interrupt 2 function disabled

1 = external interrupt 2 function enabled

Bit 1: Enable External Interrupt 1 (EX1)

0 = external interrupt 1 function disabled

1 = external interrupt 1 function enabled

Bit 0: Enable External Interrupt 0 (EX0)

0 = external interrupt 0 function disabled

1 = external interrupt 0 function enabled

6.5.7 (Type D) External Interrupt Flag Register (EIFx)

Bit 7: External Interrupt 7 Flag (IE7). This flag is set when a negative edge (IT7 = 1) or a positive edge (IT7 = 0) is detected on the
INT7 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 6: External Interrupt 6 Flag (IE6). This flag is set when a negative edge (IT6 = 1) or a positive edge (IT6 = 0) is detected on the
INT6 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 5: External Interrupt 5 Flag (IE5). This flag will be set when a negative edge (IT5 = 1) or a positive edge (IT5 = 0) is detected on
the INT5 pin. This bit will remain set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 4: External Interrupt 4 Flag (IE4). This flag is set when a negative edge (IT4 = 1) or a positive edge (IT4 = 0) is detected on the
INT4 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 3: External Interrupt 3 Flag (IE3). This flag is set when a negative edge (IT3 = 1) or a positive edge (IT3 = 0) is detected on the
INT3 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 2: External Interrupt 2 Flag (IE2). This flag is set when a negative edge (IT2 = 1) or a positive edge (IT2 = 0) is detected on the
INT2 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 1: External Interrupt 1 Flag (IE1). This flag is set when a negative edge (IT1 = 1) or a positive edge (IT1 = 0) is detected on the
INT1 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

Bit 0: External Interrupt 0 Flag (IE0). This flag is set when a negative edge (IT0 = 1) or a positive edge (IT0 = 0) is detected on the
INT0 pin. This bit remains set until cleared in software. Setting this bit by software causes an interrupt if enabled.

6-7

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name IE7 IE6 IE5 IE4 IE3 IE2 IE1 IE0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

6.5.8 (Type D) External Interrupt Edge Select Register (EIESx)

Bit 7: Interrupt 7 Edge Select (IT7). This bit selects the edge detection mode for external interrupt 7.

0 = INT7 is positive-edge triggered

1 = INT7 is negative-edge triggered

Bit 6: Interrupt 6 Edge Select (IT6). This bit selects the edge detection mode for external interrupt 6.

0 = INT6 is positive-edge triggered

1 = INT6 is negative-edge triggered

Bit 5: Interrupt 5 Edge Select (IT5). This bit selects the edge detection mode for external interrupt 5.

0 = INT5 is positive-edge triggered

1 = INT5 is negative-edge triggered

Bit 4: Interrupt 4 Edge Select (IT4). This bit selects the edge detection mode for external interrupt 4.

0 = INT4 is positive-edge triggered

1 = INT4 is negative-edge triggered

Bit 3: Interrupt 3 Edge Select (IT3). This bit selects the edge detection mode for external interrupt 3.

0 = INT3 is positive-edge triggered

1 = INT3 is negative-edge triggered

Bit 2: Interrupt 2 Edge Select (IT2). This bit selects the edge detection mode for external interrupt 2.

0 = INT2 is positive-edge triggered

1 = INT2 is negative-edge triggered

Bit 1: Interrupt 1 Edge Select (IT1). This bit selects the edge detection mode for external interrupt 1.

0 = INT1 is positive-edge triggered

1 = INT1 is negative-edge triggered

Bit 0: Interrupt 0 Edge Select (IT0). This bit selects the edge detection mode for external interrupt 0.

0 = INT0 is positive-edge triggered

1 = INT0 is negative-edge triggered

6-8

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name IT7 IT6 IT5 IT4 IT3 IT2 IT1 IT0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

7-1

MAXQ Family User’s Guide

SECTION 7: TIMER/COUNTER 0 MODULE

This section contains the following information:

7.1 Timer 0 .7-2

7.1.1 Timer 0 Mode: 13-Bit Timer/Counter .7-2

7.1.2 Timer 0 Mode: 16-Bit Timer/Counter .7-3

7.1.3 Timer 0 Mode: 8-Bit Timer with Auto-Reload .7-3

7.1.4 Timer 0 Mode: Two 8-Bit Timer/Counters .7-4

7.2 Timer/Counter 0 Peripheral Registers .7-5

7.2.1 Timer/Counter 0 Control Register (T0CN) .7-5

7.2.2 Timer/Counter 0 High Register (T0H) .7-6

7.2.3 Timer/Counter 0 Low Register (T0L) .7-6

LIST OF FIGURES

LIST OF TABLES

Figure 7-1. Timer/Counter 0 13-Bit/16-Bit Modes .7-3

Figure 7-2. Timer/Counter 0 8-Bit Auto-Reload Mode .7-3

Figure 7-3. Timer/Counter 0 Dual 8-Bit Mode .7-4

Table 7-1. Timer 0 Mode Summary .7-2

Maxim Integrated

7-2

MAXQ Family User’s Guide

SECTION 7: TIMER/COUNTER 0 MODULE
The Timer/Counter 0 Module allows the MAXQ to control a 16-bit programmable timer/counter. Whether and how many Timer/Counter
0 Modules are implemented in a given MAXQ-based microcontroller is product dependent.

7.1 Timer 0
Timer 0 is the first type of 16-bit timer/counter. Timer 0 consists of a 16-bit register in two bytes, T0H and T0L. Timer 0 is enabled by
the Timer 0 Run Control (TR0) bit in the T0CN register. Timer 0 supports four basic modes of operations. The mode of operation is con-
trolled by the Timer 0 Control (T0CN) register. Table 7-1 shows these four modes and the corresponding T0CN register bit settings.
Each of the four Timer 0 operational modes can optionally select that an external pin serve as the Timer 0 input clock, and can also
gate the input clock source (either internal or external) based upon an external pin state. The gating feature is useful in measuring the
pulse width of external signals.

Table 7-1. Timer 0 Mode Summary

7.1.1 Timer 0 Mode: 13-Bit Timer/Counter
As referenced in Table 7-1, setting T0CN register bits M1:M0 = 00b selects the 13-bit Timer/Counter operating mode for Timer 0. T0H
provides the 8 MSbs (most significant bits) of the 13-bit timer, while bits 4–0 of T0L serve as the 5 LSbs (least significant bits) of the
13-bit timer. Bit 4 of T0L is used as a ripple-out to T0H bit 0, thereby completely bypassing bits 5 to 7 of T0L. The upper three bits of
T0L are indeterminate. When the 13-bit count reaches 1FFFh (all ones), the next count causes it to roll over to 0000h. The TF0 (T0CN.5)
flag is set, and an interrupt occurs if enabled.

Once the timer is started using the TR0 (T0CN.4) timer enable, the timer counts as long as one of the following conditions is true:

1) GATE (T0CN.3) = 0

2) GATE (T0CN.3) = 1 and T0G (external pin) = 1

The Timer 0 input clock is normally a function of the system clock frequency as defined by the T0M (T0CN.6) bit. However, an exter-
nal signal at the T0 pin can serve as the input clock if the C/T (T0CN.2) bit is set to 1. When using the T0 pin as an input clock,
Timer/Counter 0 counts 1-to-0 transitions on the pin. To reliably detect external 1-to-0 transitions, the input signal high and low times
each must be a minimum of one system clock in duration.

Note that when the Timer 0 input clock is derived from the system clock, changing the system clock divide ratio (via the CKCN regis-
ter bit controls) consequently changes the input clock to the Timer.

Note 1: When C/T = 1, the counter configuration is in effect, and the T0 pin signal provides the input clock.
Note 2: When GATE = 1, the gating control is in effect, and the T0G = 0 pin state causes gating of the Timer/Counter input clock.

T0CN REGISTER BIT SETTINGS
TIMER 0 OPERATIONAL MODE

M1 M0

13-Bit Timer/Counter 0 0

16-Bit Timer/Counter 0 1

8-Bit Timer/Counter with Auto-Reload 1 0

Two 8-Bit Timer/Counters 1 1

Maxim Integrated

7.1.2 Timer 0 Mode: 16-Bit Timer/Counter
Setting the T0CN register bits M1:M0 = 01b invokes the 16-bit Timer/Counter operating mode. This mode is identical to the 13-bit
Timer/Counter mode, except that the T0H:T0L register pair hold a 16-bit value. T0H holds the MSB and T0L holds the LSB. Rollover
occurs when the timer reaches FFFFh. An interrupt occurs if enabled and the TF0 (T0CN.5) flag is set. Time-base selection,
counter/timer selection, and the gate function operate just as described for the 13-bit Timer/Counter mode.

7.1.3 Timer 0 Mode: 8-Bit Timer with Auto-Reload
When T0CN register bits M1:M0 = 10b, Timer 0 is configured as an 8-bit timer/counter with automatic reload of the start value. The
timer uses T0L to count and T0H to store the reload value. Software must initialize both T0L and T0H with the same starting value for
the first count to be correct. Once the T0L reaches FFh, it is automatically loaded with the value in T0H. The T0H value remains
unchanged unless modified by software. Like the other Timer 0 modes, this mode allows counting of either clock cycles or pulses on
the T0 pin (C/T = 1) and allows gating (GATE = 1) of the T0 pin input with the T0G pin.

7-3

MAXQ Family User’s Guide

TR0 = T0CN.4

CLK

0

0

0 7

7
T0H

T0L

0

1

1

01

00

C/T = T0CN.2

M1:M0 = �
T0CN.1, T0CN.0

INTERRUPT

T0M = T0CN.6

T0G PIN

T0 PIN

GATE = T0CN.3

DIVIDE�
BY 12

SYSTEM�
CLOCK

TF0 = T0CN.5

Figure 7-1. Timer/Counter 0 13-Bit/16-Bit Modes

TR0 = T0CN.4

CLK

0

0

0 7

7
T0H

T0L
RELOAD

0

1

1

C/T = T0CN.2

INTERRUPT

T0M = T0CN.6

T0G PIN

T0 PIN

GATE = T0CN.3

DIVIDE�
BY 12

SYSTEM�
CLOCK

TF0 = T0CN.5

Figure 7-2. Timer/Counter 0 8-Bit Auto-Reload Mode

Maxim Integrated

7.1.4 Timer 0 Mode: Two 8-Bit Timer/Counters
When T0CN register bits M1:M0 = 11b, Timer 0 provides two 8-bit timer/counters as shown in Figure 7-3. In this mode, T0L is an 8-bit
timer/counter that can be used to count clock cycles or 1-to-0 transitions on pin T0 as determined by C/T. (T0CN.2). As in the other
modes, the GATE function can use T0G to give external run control of the timer to an outside signal.

T0H becomes an independent 8-bit timer that can only count clock cycles as shown in Figure 7-3. The clock-input enable for both
timer/counters (T0L and T0H) is controlled by the Timer 0 Run (TR0) bit, while the Timer 0 interrupt flag bit (TF0) is associated only with
rollover of the T0H register.

7-4

MAXQ Family User’s Guide

TR0 = T0CN.4

CLK

0

0 7

7

T0L

0

1

1

C/T = T0CN.2

INTERRUPT

T0M = T0CN.6

T0G PIN

T0 PIN

GATE = T0CN.3

DIVIDE�
BY 12

SYSTEM�
CLOCK

TF0 = T0CN.5

0
T0H

Figure 7-3. Timer/Counter 0 Dual 8-Bit Mode

Maxim Integrated

7.2 Timer/Counter 0 Peripheral Registers

7.2.1 Timer/Counter 0 Control Register (T0CN)

Bit 7: Enable Timer 0 Interrupt (ET0). Setting this bit to 1 enables interrupts from the Timer 0 TF0 flag. Clearing this bit to 0 disables
the Timer 0 interrupt.

Bit 6: Timer 0 Clock Select (T0M). The T0M bit selects the clock frequency for Timer 0:

0 = Uses a divide by 12 of the system clock frequency as Timer 0 base clock.

1 = Uses a divide by 1 of the system clock frequency as Timer 0 base clock.

Bit 5: Timer 0 Overflow Flag (TF0). This bit is set to 1 when Timer 0 overflows its maximum count as defined by the current mode. It
is cleared either by software or a reset. When this bit is 0, no Timer 0 overflow has been detected.

Bit 4: Timer 0 Run Control (TR0). Setting this bit enables Timer/Counter 0. Clearing this bit halts the Timer/Counter 0.

Bit 3: Timer 0 Gate Control (GATE)

0 = Timer 0 will clock when TR0 is 1, regardless of the logic state of the external T0G gating control pin

1 = Timer 0 will clock only when TR0 and the logic state of the external T0G gating control pin are 1

Bit 2: Counter/Timer 0 Select (C/T)

0 = Selects timer function with internal clock when TR0 is 1

1 = Selects counter function with external T0 input when TR0 is 1

Bits 1 and 0: (M[1:0]). These mode select bits define the Timer/Counter mode of operation:

7-5

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name ET0 T0M TF0 TR0 GATE C/T M1 M0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

M1 M0 FUNCTION

0 0 Mode 0: 8-Bit with 5-Bit Prescale

0 1 Mode 1: 16-Bit with No Prescale

1 0 Mode 2: 8-Bit with Auto-Reload

1 1 Mode 3: Two 8-Bit Timers

Maxim Integrated

7.2.2 Timer/Counter 0 High Register (T0H)

Bits 7 to 0: Timer/Counter 0 High (T0H.[7:0]). The T0H register is used to load the most significant 8-bit value and least significant
8-bit value of Timer 0.

7.2.3 Timer/Counter 0 Low Register (T0L)

Bits 7 to 0: Timer/Counter 0 Low (T0L.[7:0]). The T0L register is used to read the most significant 8-bit value and least significant
8-bit value of Timer 0.

7-6

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name T0H.7 T0H.6 T0H.5 T0H.4 T0H.3 T0H.2 T0H.1 T0H.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name T0L.7 T0L.6 T0L.5 T0L.4 T0L.3 T0L.2 T0L.1 T0L.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

8-1

MAXQ Family User’s Guide

SECTION 8: TIMER/COUNTER 1 MODULE

This section contains the following information:

8.1 Timer 1 .8-2

8.1.1 Timer 1 Mode: 16-Bit Timer/Counter with Auto-Reload .8-2

8.1.2 Timer 1 Mode: 16-Bit Event Capture .8-3

8.1.3 Timer 1 Mode: Up/Down Count with Auto-Reload .8-4

8.1.4 Timer 1 Mode: Clock Output .8-4

8.2 Timer/Counter 1 Peripheral Registers .8-5

8.2.1 Timer/Counter 1 Control Register (T1CN) .8-5

8.2.2 Timer/Counter 1 High Register (T1H) .8-6

8.2.3 Timer/Counter 1 Low Register (T1L) .8-6

8.2.4 Timer/Counter 1 High Register (T1CH) .8-6

8.2.5 Timer/Counter 1 Low Register (T1CL) .8-6

8.2.6 Timer/Counter 1 Mode Register (T1MD) .8-7

8.3 Time-Base Selection for Timers 0 and 1 .8-7

LIST OF FIGURES

LIST OF TABLES

Figure 8-1. Timer/Counter 1 16-Bit Auto-Reload Mode .8-3

Figure 8-2. Timer/Counter 1 16-Bit Event Capture .8-3

Figure 8-3. Timer/Counter 1 16-Bit Up/Down Count with Auto-Reload .8-4

Figure 8-4. Timer 1 Clock Output Mode .8-4

Table 8-1. Timer/Counter 1 Mode Summary .8-2

Table 8-2. Input Clock Frequency Selection for Timer 0 and Timer 1 .8-7

Maxim Integrated

8-2

MAXQ Family User’s Guide

SECTION 8: TIMER/COUNTER 1 MODULE
The Timer/Counter 1 Module allows the MAXQ to control a 16-bit programmable timer/counter. Whether and how many Timer/Counter
1 Modules are implemented in a given MAXQ-based microcontroller is product dependent.

8.1 Timer 1
Timer 1 is the second type of 16-bit timer/counter. Timer 1 consists of a 16-bit register in two bytes, T1H and T1L. Timer 1 is enabled
by the Timer 1 Run Control (TR1) bit in the T1CN register. Unlike Timer 0, Timer 1 is operable only as a full 16-bit timer/counter. However,
it supports many optional modes not available on Timer 0. These optional modes are enabled by T1CN register bits. To support the
extended functionality of Timer 1, a 16-bit capture register composed of the T1CH, T1CL bytes and a second mode control register
(T1MD) are implemented. Table 8-1 shows the Timer 1 operational modes and the corresponding T1CN register bit settings. With
exception of the Timer 1 clock output mode, all Timer 1 modes can optionally select that an external pin serve as the Timer 1 input
clock.

Table 8-1. Timer/Counter 1 Mode Summary

8.1.1 Timer 1 Mode: 16-Bit Timer/Counter with Auto-Reload
The Timer 1 auto-reload mode is configured by setting the CP/RL1 (T1CN.0) bit to logic 0. In this mode, Timer 1 performs a simple
timer or counter function where it behaves similarly to the 16-bit timer/counter mode offered on Timer 0, but adds a separate 16-bit
reload value and the ability to trigger a reload with an external pin.

Timer 1 begins counting from the value supplied in T1H and T1L. When Timer 1 reaches an overflow state, i.e., rolls over from FFFFh
to 0000, it sets the TF1 Flag. This flag can generate an interrupt if enabled. In addition, the timer restores its starting value and begins
timing (or counting) again. The starting value is preloaded by software into the capture registers T1CH and T1CL. These registers can-
not be used for capture functions while also performing auto-reload, so these modes are mutually exclusive.

When in auto-reload mode, Timer 1 can also be forced to reload with the T1EX pin. If EXEN1 (T1CN.3) is set to logic 1, then a 1-to-0
transition on T1EX causes a reload. Otherwise, the T1EX pin is ignored.

T1CN REGISTER BIT SETTINGS
TIMER 1 OPERATIONAL MODE

T1OE DCEN EXEN1 C/T1 CP/RL1
OPTIONAL CONTROL

Auto-Reload 0 0 0 x 0 —
Auto-Reload Using T1EX Pin 0 0 1 x 0 —
Capture Using T1EX Pin 0 0 1 x 1 —
Up/Down Count Using T1EX Pin 0 1 0 x 0 —
— 0 x x 1 x Input clock = T1 pin
Clock Output on T1 Pin 1 x x 0 0 —

Maxim Integrated

If the C/T1 bit (T1CN.1) is logic 0, the timer’s input clock is a function of the system clock. When C/T1 = 1, pulses on the T1 pin are
counted. Counting or timing is enabled or disabled using the with the Timer 1 Run Control bit = TR1 (T1CN.2). This mode, including
the optional reload control, is illustrated in Figure 8-1.

8.1.2 Timer 1 Mode: 16-Bit Event Capture
The 16-bit capture mode is invoked by setting the CP/RL1 (T1CN.0) bit to logic 1. Timer 1 begins counting from the value supplied in
T1H and T1L until reaching an overflow state, i.e., rolls over from FFFFh to 0000, at which point it sets the TF1 Flag. This flag can gen-
erate an interrupt if enabled. The optional capture function is enabled by setting the EXEN1 (T1CN.3) bit to logic 1. Once this has been
done, a 1-to-0 transition on the T1EX pin causes the value in Timer 1 (T1H, T1L) to be transferred into the capture registers (T1CH,
T1CL) and the EXF1 (T1CN.6) flag to be set. Setting of the EXF1 flag can generate an interrupt if enabled. If the EXEN1 bit is set to
logic 0, 1-to-0 transitions on the T1EX pin do not automatically trigger a capture event.

8-3

MAXQ Family User’s Guide

TR1 = T1CN.2

CLK

0

0

1

1

0

0

7 8

7 8

15

15

C/T1 = T1CN.1

T1M = T1MD.0

EXEN1 = T1CN.3

T1 PIN

T1EX PIN

DIVIDE�
BY 12

TF1 =�
T1CN.7

TIMER 1�
INTERRUPT

SYSTEM�
CLOCK

ƒ

T1L T1H

T1CL T1CH

EXF1 =�
T1CN.6

Figure 8-1. Timer/Counter 1 16-Bit Auto-Reload Mode

TR1 = T1CN.2

CLK

CAPTURE

0

0

C/T1 = T1CN.1

T1M = T1MD.0

EXEN1 = T1CN.3

T1 PIN

T1EX PIN

DIVIDE�
BY 12

TF1 =�
T1CN.7

TIMER 1�
INTERRUPT

SYSTEM�
CLOCK

ƒ

T1L T1H

EXF1 =�
T1CN.6

1

1

0

0

7 8

7 8

15

15

T1CL T1CH

Figure 8-2. Timer/Counter 1 16-Bit Event Capture

Maxim Integrated

8.1.3 Timer 1 Mode: Up/Down Count with Auto-Reload
The up/down count auto-reload option is enabled by the DCEN (T1CN.4) bit. When DCEN is set to logic 1, Timer 1 counts up or down
as controlled by the state of T1EX pin. T1EX causes upward counting when a logic 1 is applied and down counting when a logic 0 is
applied. When DCEN = 0, Timer 1 only counts up.

When an upward counting overflow occurs, the value in T1CH and T1CL loads into T1H and T1L. In the down count direction, an under-
flow occurs when T1H and T1L match the values in T1CH and T1CL, respectively. When an underflow occurs, FFFFh is loaded into
T1H and T1L and counting continues.

Note that in this mode, the overflow/underflow output of the timer is provided to an edge-detection circuit as well as to the TF1 bit
(T1CN.7). This edge-detection circuit toggles the EXF1 bit (T1CN.6) on every overflow or underflow. Therefore, the EXF1 bit behaves
as a 17th bit of the counter, and may be used as such.

8-4

MAXQ Family User’s Guide

TR1 = T1CN.2

CLK

0

0

C/T1 = T1CN.1

T1M = T1MD.0

T1 PIN

DIVIDE�
BY 12

TIMER 1�
INTERRUPT

SYSTEM�
CLOCK

T1L T1H

15

15

T1CH

FFH FFH

(DOWN COUNTING RELOAD VALUE)

(UP COUNTING RELOAD VALUE)
COUNT DIRECTION�
(1 = UP, 0 = DOWN)

EXF1 =�
T1CN.6

TF1 =�
T1CN.7

T1EX PIN

1

1

T1CL

Figure 8-3. Timer/Counter 1 16-Bit Up/Down Count with Auto-Reload

TR1 =�
T1CN.2

0
T1M = T1MD.0

T1 PIN

C/T1 = T1CN.1 = 0

DIVIDE�
BY 12

DIVIDE�
BY 2

TIMER 1�
INTERRUPT

SYSTEM�
CLOCK

T1L T1H

8

80

T1CHT1CL

T1OE = T1CN.5 = 1

EXEN1 = T1CN.3

T1EX PIN

EXF1 =�
T1CN.6

T1 FREQUENCY OUT = SYSTEM CLOCK (2 x (65,536 – T1CH, T1CL))

ƒ

1
0 7

7

15

15

Figure 8-4. Timer 1 Clock Output Mode

8.1.4 Timer 1 Mode: Clock Output
Timer 1 can also be configured to drive a clock output on the T1 port pin, as shown in Figure 8-4. To configure Timer 1 for this mode,
it must first be set to 16-bit auto-reload timer mode (CP/RL1 = 0, C/T1 = 0). Next, the T1OE (T1CN.5) bit must be set to logic 1. TR1

Maxim Integrated

(T1CN.2) must also be set to logic 1 to enable the timer. The DCEN bit has no effect in this mode. This mode produces a 50% duty
cycle square-wave output. The frequency of the square wave is given by the formula in Figure 8-4. Each timer overflow causes an edge
transition on the pin, i.e., the state of the pin toggles. Note that the timer itself does not generate an interrupt, but if needed, the Timer
1 external interrupt is still available for use when enabled (EXEN1 = 1).

8.2 Timer/Counter 1 Peripheral Registers

8.2.1 Timer/Counter 1 Control Register (T1CN)

Bit 7: Timer 1 Overflow Flag (TF1). This bit is set when Timer 1 overflows from FFFFh or the count is equal to the capture register in
down count mode. It must be cleared by software.

Bit 6: External Timer 1 Trigger Flag (EXF1). A negative transition on the T1EX causes this flag to be set if (CP/RL1 = EXEN1 = 1) or
(CP/RL1 = DCEN = 0 and EXEN1 = 1). When CP/RL1 = 0 and DCEN = 1, EXF1 toggles whenever Timer 1 underflows or overflows. In
this mode, EXF1 can be used as the 17th Timer bit and will not cause an interrupt. If set by a negative transition, this flag must be
cleared by software. Setting this bit to 1 forces a Timer interrupt if enabled.

Bit 5: Timer 1 Output Enable (T1OE). Setting this bit to 1 enables the clock output function of T1 pin if C/T1 = 0. Timer 1 rollovers will
not cause interrupts. Clearing this bit to 0 causes the T1 pin to function as either a standard port pin or a counter input for Timer 1.

Bit 4: Down Count Enable (DCEN). This bit, in conjunction with the T1EX pin, controls the direction that Timer 1 counts in 16-bit auto-
reload mode. Clearing this bit to 0 causes Timer 1 to count up. Setting this bit to 1 causes Timer 1 to count up if the T1EX pin is 1 and
to count down if the T1EX pin is 0.

Bit 3: Timer 1 External Enable (EXEN1). Setting this bit to 1 enables the capture/reload function on the T1EX pin for a negative tran-
sition. Clearing this bit to 0 causes Timer 1 to ignore all external events on T1EX pin.

Bit 2: Timer 1 Run Control (TR1). Setting this bit enables Timer 1. Clearing this bit halts the Timer 1.

Bit 1: Counter/Timer Select (C/T1). This bit determines whether Timer 1 functions as a Timer or counter. Setting this bit to 1 causes
Timer 1 to count negative transitions on the T1 pin. Clearing this bit to 0 causes Timer 1 to function as a Timer. The speed of Timer 1
is determined by the T1M bit, either divide by 1 or divide by 12 of the system clock, including the clock output mode.

Bit 0: Capture/Reload Select (CP/RL1). This bit determines whether the capture or reload function is used for Timer 1. Timer 1 func-
tions in an auto-reload mode following each overflow. Setting this bit to 1 causes a Timer 1 capture to occur when a falling edge is
detected on T1EX if EXEN1 = 1. Clearing this bit to 0 causes an auto-reload to occur when Timer 1 overflow or a falling edge is detect-
ed on T1EX if EXEN1 = 1.

8-5

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name TF1 EXF1 T1OE DCEN EXEN1 TR1 C/T1 CP/RL1

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

8-6

MAXQ Family User’s Guide

8.2.2 Timer/Counter 1 High Register (T1H)

Bits 7 to 0: Timer/Counter 1 High (T1H.[7:0]). The T1H register is used to load the most significant 8-bit value and least significant
8-bit value of Timer 1.

8.2.3 Timer/Counter 1 Low Register (T1L)

Bits 7 to 0: Timer/Counter 1 Low (T1L.[7:0]). The T1L register is used to read the most significant 8-bit value and least significant 8-
bit value of Timer 1.

8.2.4 Timer/Counter 1 High Register (T1CH)

Bits 7 to 0: Timer/Counter 1 High (T1CH.[7:0]). The T1CH register is used to capture the T1H values when Timer 1 is configured in
capture mode. This register is also used as the MSB of a 16-bit reload value when Timer 1 is configured in auto-reload mode.

8.2.5 Timer/Counter 1 Low Register (T1CL)

Bits 7 to 0: Timer/Counter 1 Low (T1CL.[7:0]). The T1CL register is used to capture the T1L values when Timer 1 is configured in
capture mode. This register is also used as the LSB of a 16-bit reload value when Timer 1 is configured in auto-reload mode.

Bit # 7 6 5 4 3 2 1 0

Name T1H.7 T1H.6 T1H.5 T1H.4 T1H.3 T1H.2 T1H.1 T1H.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name T1L.7 T1L.6 T1L.5 T1L.4 T1L.3 T1L.2 T1L.1 T1L.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name T1CH.7 T1CH.6 T1CH.5 T1CH.4 T1CH.3 T1CH.2 T1CH.1 T1CH.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name T1CL.7 T1CL.6 T1CL.5 T1CL.4 T1CL.3 T1CL.2 T1CL.1 T1CL.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

8.2.6 Timer/Counter 1 Mode Register (T1MD)

Bits 7 to 2: Reserved

Bit 1: Enable Timer 1 Interrupt (ET1). Setting this bit to 1 enables interrupts from the Timer 1 TF1 and EXF1 flags in T1CN. The EXF1
flag does not cause interrupts in the up/down count mode.

Bit 0: Timer 1 Clock Select (T1M). The T0M bit selects the clock frequency for Timer 1:

0 = Uses a divide by 12 of the system clock frequency as Timer 1 base clock

1 = Uses a divide by 1 of the system clock frequency as Timer 1 base clock

8.3 Time-Base Selection for Timers 0 and 1
The MAXQ allows selection of the time base for each timer independently. The input clock for each timer defaults to 12 system clocks
per timer tick. The timer-input clock frequency can be increased by setting the respective TxM bit for the timer (T0M for Timer 0; T1M
for Timer 1). Setting the TxM bit allows the system clock input to be used for the timer-input clock. Table 8-2 shows the resulting timer
input clock for the various system clock modes according to timer control bit TxM setting.

Table 8-2. Input Clock Frequency Selection for Timer 0 and Timer 1

8-7

MAXQ Family User’s Guide

TIMER 0, 1
INPUT CLOCK FREQUENCYSYSTEM CLOCK MODE SYSTEM CLOCK SELECT

BITS PMME, CD1, CD0
TxM = 0 TxM = 1

Divide by 1 000 CLK / 12 CLK / 1
Divide by 2 001 CLK / 24 CLK / 2
Divide by 4 010 CLK / 48 CLK / 4
Divide by 8 011 CLK / 96 CLK / 8

Power Management Mode
(Divide by 256)

1xx CLK / 3072 CLK / 256

Bit # 7 6 5 4 3 2 1 0

Name — — — — — — ET1 T1M

Reset 0 0 0 0 0 0 0 0

Access r r r r r r rw rw

r = read, w = write

Maxim Integrated

9-1

MAXQ Family User’s Guide

SECTION 9: TIMER/COUNTER 2 MODULE

This section contains the following information:

9.1 Timer 2 .9-4

9.2 Modes of Operation .9-5

9.2.1 16-Bit Timer: Auto-Reload/Compare .9-6

9.2.1.1 Output Enable (PWM Out) .9-6

9.2.1.2 Polarity Control .9-6

9.2.1.3 Gated .9-6

9.2.1.4 Single Shot (and Gating) .9-6

9.2.1.5 Capture/Reload Control .9-7

9.2.2 16-Bit Timer: Capture Mode .9-7

9.2.2.1 Output Enables .9-7

9.2.2.2 Polarity Control .9-7

9.2.2.3 Edge Detection .9-7

9.2.2.4 Gated .9-7

9.2.2.5 Single Shot .9-7

9.2.2.6 Capture and Reload .9-7

9.2.3 16-Bit Counter .9-7

9.2.3.1 Output Enable .9-8

9.2.3.2 Polarity Control .9-8

9.2.3.3 Gating and Single Shot .9-8

9.2.4 Dual 8-Bit Timers .9-8

9.2.4.1 Output Enable (PWM Out) .9-8

9.2.4.2 Polarity Control .9-8

9.2.4.3 Gated .9-8

9.2.4.4 Single Shot .9-8

9.2.5 8-Bit Timer/8-Bit Capture Mode .9-9

9.2.6 8-Bit Timer/8-Bit Counter .9-9

9.2.7 Timer 2 Input Clock Selection .9-9

9.3 Timer 2 Capture Application Examples .9-10

9.3.1 Measure Low-Pulse Duration .9-10

Maxim Integrated

9.3.2 Measure High-Pulse Duration Repeatedly .9-11

9.3.3 Measure Period .9-12

9.3.4 Measure Duty Cycle Repeatedly .9-13

9.3.5 Overflow/Interrupt on Cumulative Time .9-14

9.4 Timer/Counter 2 Peripheral Registers .9-15

9.4.1 Timer/Counter 2 Configuration Register (T2CFG) .9-15

9.4.2 Timer/Counter 2 Control Register A (T2CNA) .9-16

9.4.3 Timer/Counter 2 Control Register B (T2CNB) .9-17

9.4.4 Timer 2 Value Register (T2V) .9-18

9.4.5 Timer 2 Value High Register (T2H) .9-18

9.4.6 Timer 2 Reload Register (T2R) .9-18

9.4.7 Timer 2 Reload High Register (T2RH) .9-19

9.4.8 Timer 2 Capture/Compare Register (T2C) .9-19

9.4.9 Timer 2 Capture/Compare High Register (T2CH) .9-19

9.5 Low-Speed Infrared Transmit/Receive Support Using Timer 2 .9-20

9.5.1 Subcarrier Generation Using Timer 2 Low .9-20

9.5.2 Transmit Baseband Modulator .9-20

9.5.2.1 IR Encoding (Transmit) Example .9-21

9.5.2.2 Receive Pin Sampling .9-22

9.5.2.3 IR Decoding (Receive) Example .9-22

9.6 IR Peripheral Register .9-23

9.6.1 Infrared Control Register (IRCN) .9-23

9-2

MAXQ Family User’s Guide

Maxim Integrated

9-3

MAXQ Family User’s Guide

LIST OF FIGURES

LIST OF TABLES

Figure 9-1. Timer 2 Mode Selection .9-5

Figure 9-2. Output Enable and Polarity Control .9-5

Figure 9-3. Timer 2 Clock .9-9

Figure 9-4. Timer 2 Application Example—Measure Low Pulse Width .9-10

Figure 9-5. Timer 2 Application Example—Measure High Pulse Width .9-11

Figure 9-6. Timer 2 Application Example—Measure Period .9-12

Figure 9-7. Timer 2 Application Example—Measure Duty Cycle .9-13

Figure 9-8. Timer 2 Application Example—Overflow/Interrupt on Cumulative Time 9-14

Figure 9-9. IR Transmit Subcarrier Generation and Baseband Modulator Control 9-20

Figure 9-10. Biphase Encoding Example (T2RH Remains Fixed) .9-21

Figure 9-11. Bit-Length Encoding Example (T2RH Modified) .9-21

Figure 9-12. IR Receive Pin Sampling .9-22

Figure 9-13. Biphase Decoding Example .9-22

Figure 9-14. Bit Length Decoding Example .9-23

Table 9-1. Timer/Counter 2 Functions and Control .9-4

Maxim Integrated

9-4

MAXQ Family User’s Guide

SECTION 9: TIMER/COUNTER 2 MODULE
The Timer/Counter 2 Module provides a 16-bit programmable timer/counter with pulse-width modulation capability. Whether and how
many Timer 2 Modules are implemented in a given MAXQ-based microcontroller is product dependent.

Timer 2 is an auto-reload, 16-bit timer/counter offering the following functions:

• 8-bit/16-bit timer/counter • capture

• up/down auto-reload • compare

• counter function of external pulse • input/output enhancements

9.1 Timer 2
The 16-bit Timer 2 value is contained in the T2V register. The upper byte is always accessible through the T2H 8-bit register. When Timer 2
is operated in the dual 8-bit mode of operation, the high byte of T2V always reads x00h and is not write accessible. The low byte of the T2V
will often be referenced as T2L. Similar registers and nomenclature are used for the Timer 2 auto-reload value resides in the T2R register. A
separate 8-bit T2RH register allows read/write access to the high byte and the low byte of T2R is often referred to as T2RL. The
Capture/Compare functionality is supported by Timer 2 through the 16-bit T2C capture register and the 8-bit T2CH high-byte access regis-
ter. Timer 2 normally requires two pins to support the enhanced input/output functionality. Throughout this section the primary input/output
pin will be referred to as T2P and the secondary pin, which may or may not be present for a given device, will be referred to as T2PB.
Decision whether and/or where to implement the T2PB pin functionality is product and application dependent. Table 9-1 summarizes the
modes supported by Timer 2 and the peripheral register bits associated with those modes.

Table 9-1. Timer/Counter 2 Functions and Control

MODE T2MD C/T2 CCF[1:0] CONTROL BITS
T2OE[1:0]—output enables (PWM out)
T2POL[1:0]—input/output polarity select
SS2—single-shot pulse control

16-Bit Auto-
Reload/Compare Timer 0 0 00

G2EN—gated PWM output
T2OE[0] = 0
T2POL[0]—gate level/reload edge select
SS2—single-shot capture
G2EN—gate timer clock (or gate reload)

16-Bit Capture (CCF[1:0]
bits define capture edge) 0 0 01, 10, or 11

CPRL2—reload enable
T2OE[0] = 0
T2OE[1]—pulse counter output16-Bit Counter (CCF[1:0]

bits define count edge) 0 1 01, 10, or 11
T2POL[1]—output polarity select
T2OE[1:0]—output enables (PWM out)
T2POL[1:0]—output polarity select
T2H Only:

Dual 8-Bit Auto-Reload
Timers 1 0 00

SS2—single-shot pulse control
T2L Only:
T2OE[1]—output enable
T2POL[1]—output polarity select
T2H Only:
T2OE[0] = 0
T2POL[0]—gate level/reload edge select
SS2—single-shot capture
G2EN—gate timer (or gate reload)

8-Bit Capture and 8-Bit
Timer/PWM 1 0 01, 10, or 11

CPRL2—reload enable
T2L Only:
T2OE[1]—output enable
T2POL[1]—output polarity select
T2H Only:

8-Bit Counter and 8-Bit
Timer/PWM 1 1 01, 10, or 11

T2OE[0] = 0

Maxim Integrated

9-5

MAXQ Family User’s Guide

9.2 Modes of Operation
As summarized in Table 9-1, Timer 2 can provide six timer functions. The Timer 2 operating mode selection is illustrated in Figure 9-1
and Figure 9-2 shows the PWM timer output possibilities.

T2MD

T2L 8-BIT TIMER

T2H:T2L�
16-BIT TIMER�

OR�
T2H�

8-TIMER

POSSIBLE INPUT USE:
TIMER GATE�

EDGE�
CAPTURE/RELOAD�

EDGE COUNTER

T2PB PIN

T2OE [0]

T2OE [1]T2POL [1]

POx.x DATA
(IF PDx.x = 1)

POx.x DATA�
(IF PDx.x = 1)

T2P PIN

T2POL [0]

Figure 9-2. Output Enable and Polarity Control

T2CL

EDGE DETECTION�
AND GATING

C/T2

TR2L

T2MD

T2CLK

CCF [1:0]�
G2EN�
TR2�
SS2�

T2POL [0]

T2L

T2L COMPARE MATCH

T2H:T2L COMPARE MATCH�
OR T2H COMPARE MATCH

T2L OVERFLOW

T2H:T2L OVERFLOW�
OR T2H OVERFLOW

T2RL

T2P PIN INPUT

T2CH

T2H

T2RH

Figure 9-1. Timer 2 Mode Selection

Maxim Integrated

9-6

MAXQ Family User’s Guide

9.2.1 16-Bit Timer: Auto-Reload/Compare
The 16-bit auto-reload/compare mode for Timer 2 is in effect when the Timer 2 mode select bit (T2MD) is cleared and the capture/com-
pare function definition bits are both cleared (CCF[1:0] = 00b). The Timer 2 value is contained in the T2V register. The Timer 2 run con-
trol bit (TR2) starts and stops the 16-bit Timer. The input clock for 16-bit Timer 2 is defined as the system clock divided by the ratio
specified by the T2DIV[2:0] prescale bits. The Timer begins counting from the value contained in the T2L:T2H register pair until over-
flowing. When an overflow occurs, the reload value (T2RH:T2RL) is reloaded instead of the x0000h state. The Timer 2 overflow flag
(TF2) is set every time that an overflow condition (T2V = 0xFFFFh) is detected. If Timer 2 interrupts have been enabled (ET2 = 1), the
TF2 flag can generate an interrupt request. When operating in compare mode, the capture/compare registers (T2CH:T2CL) are com-
pared versus the Timer 2 value registers. Whenever a compare match occurs, the capture/compare status flag (TCC2) is set. If Timer
2 interrupts have been enabled (ET2 = 1), this event is capable of generating an interrupt request. If the capture/compare register is
set to a value outside the Timer 2 counting range, a compare match is not signaled and the TCC2 flag is not set. Internally, a Timer 2
output clock is generated, which toggles on the cycle following any compare match or overflow, unless the compare match value has
been set equal to the overflow condition, in which case, only one toggle will occur. This clock may be sourced by certain peripherals
and/or may be output on one or more pins as permitted by the microcontroller.

9.2.1.1 Output Enable (PWM Out)
The Output Enable bits (T2OE[1:0]) enable the Timer 2 output clock to be presented on the pins associated with the respective bits. If
Timer 2 has a single I/O pin, the T2OE[0] bit is associated with the T2P pin and the T2OE[1] bit is not implemented (as it would serve
no purpose).

9.2.1.2 Polarity Control
The Polarity Control bits (T2POL[1:0]) can be used to modify (invert) the enabled clock outputs to the pin(s). The enabled clock outputs
(defined by T2OE[1:0]) will toggle on each compare match or overflow. The T2POL[1:0] bits are logically XORed with the Timer 2 out-
put signal, therefore setting a given T2POL[x] bit will result in a high starting state. The T2POL[n] bit can be changed at any time, how-
ever the assigned T2POL[n] state will take effect on the external pin only when the corresponding T2OE[n] bit is changed from 0 to 1.
When generating PWM output, please note that changing the compare match register can result in a perceived duty cycle inversion if a
compare match is missed or multiple compare matches occur during the reload to overflow counting.

9.2.1.3 Gated
To use the T2P pin as a timer-input clock gate, the T2OE[0] bit must be cleared to 0 and the G2EN bit must be set to 1. When T2OE[0]
= 1, the G2EN bit setting has no effect. When T2OE[0] is cleared to 0, the respective polarity control bit is used to modify the polarity
of the input signal to the Timer. In the gated mode, the Timer 2 input clock is gated anytime that the external signal matches the state
of the T2POL[0] bit. This means that the default clock gating condition for the T2P pin is logic low (since T2POL[0] = 0 default). Setting
T2POL[0] = 1 results in the Timer 2 input clock being gated when the T2P pin is high. Note if multiple pins are allocated for Timer 2
(i.e., T2P, T2PB), the primary pin can be used for clock gating, while the secondary pin can be used to output the gated PWM output
signal (if T2OE[1] = 1).

9.2.1.4 Single Shot (and Gating)
When operating in 16-bit compare mode, the single-shot is used to automate the generation of single pulses under software control or
in response to an external signal (single-shot gated). To generate single-shot output pulses solely under software control, the G2EN bit
should be cleared to 0, the output enables and polarity controls should be configured as desired, and the single-shot bit should be set
to 1. Writing the single-shot bit effectively overrides the TR2 = 0 condition until Timer 2 overflow/reload occurs. The single-shot bit is
automatically cleared once the overflow/reload occurs.

Writing SS2 and TR2 = 1 at the same time still causes the SS2 bit to stay in effect until an overflow/reload occurs; however, since TR2
was also written to 1, the specified PWM output continues even after SS2 becomes clear.

If two pins are available for the Timer 2 implementation, an additional mode is supported: single-shot gated. Single-shot gated requires
that the T2P pin be used as an input (T2OE[0] = 0). It also requires that G2EN = 1, thus differentiating it from the software controlled
single-shot mode on the second output pin. If G2EN is enabled and SS2 is written to 1, the gating condition must first be removed for
the single-shot enabled output to occur on the pin. When the clock gate is removed, the single-shot output occurs. Just as described,
the SS2 bit = 1 state remains in effect until overflow/reload. Note that this makes it possible for the single-shot to span multiple
gated/non-gated intervals. Once the SS2 = 1 conditions completes, if TR2 = 1, the gated PWM mode is in effect. Otherwise (TR2 = 0),
Timer 2 is stopped.

Maxim Integrated

9-7

MAXQ Family User’s Guide

9.2.1.5 Capture/Reload Control
For the 16-bit compare operating mode, the CPRL2 bit is not used.

9.2.2 16-Bit Timer: Capture Mode
The 16-bit capture mode requires that some event trigger the capture. Normally this event is an external edge. The CCF[1:0] bits define
which edge(s) cause a capture to occur. If CCF[1:0] = 01b, a rising edge causes a capture. If CCF[1:0] = 10b, a falling edge causes
a capture. If CCF[1:0] = 11b, rising and falling edges both cause a capture to occur. The CPRL2 bit enables both capture and reload
to occur on the specified edge(s).

9.2.2.1 Output Enables
In 16-bit capture mode, the output enables are meaningless. No output waveform is allowed since the capture/compare registers are
being used for the purpose of capturing the Timer 2 value.

9.2.2.2 Polarity Control
The polarity control bits (T2POL[1:0]) have no specific meaning as related to the output function since there is no output function. The
T2POL[0] bit is used to establish the gating condition for the single-edge capture mode when gating is enabled (G2EN = 1). If cap-
ture and reload are defined (CPRL2 = 1 and CCF[1:0] = 11b) for both edges, theT2POL[0] bit can be used to specify which edge does
not have an associated edge reload when gating has also been enabled (G2EN bit = 1). When the SS2 bit is used to delay the timer
run (for both edge capture), the T2POL[0] bit also defines which edge starts/ends the single-shot process.

9.2.2.3 Edge Detection
Edge detection was previously described (CCF[1:0] controlled).

9.2.2.4 Gated
If gating is specified, it uses the T2POL[0] bit to define when the input clock to Timer 2 is gated (just as described for the compare mode).
This mode can easily be used to measure or incrementally capture high or low pulse durations. If a predefined high/low duration is
required to generate an interrupt, the gated compare mode can also be used. Note that if capture is defined for both rising and falling
edges, gating would serve no useful purpose as it would result in redundant capture data/interrupts. For this reason, when G2EN = 1
and CCF[1:0] = 11b, the T2POL[0] bit is used to specify which edge is a capture-only edge when CPRL2 = 1 (gating of the reload event).

9.2.2.5 Single Shot
The single-shot bit overrides the TR2 = 0 bit setting for a single edge-to-edge capture cycle (as defined by the CCF[1:0] bits). The sin-
gle-shot takes effect (starting the timer) only when the edge defined by CCF[1:0] is detected or the defined gating condition is removed.
While a capture and/or reload can occur on this starting edge, the interrupt flag is not set since a single-shot event has been request-
ed. When rising or falling edge capture is defined, the single-shot mode is useful for measuring single periods. If gating is also speci-
fied for the single shot, the high/low pulse widths are easily measured. If rising and falling edges are defined, the T2POL[0] bit desig-
nates which edge starts/ends the single-shot cycle, but the starting edge does not cause the interrupt flag to set. If G2EN = 1 for the
two-edge capture, the alternate edge (opposite of defined start/end edge can only be used for capture, not capture and reload). For
T2POL[0] = 1, the falling edge starts and stops the single shot. This is important for combined duty cycle and period measurement.

9.2.2.6 Capture and Reload
The CPRL2 bit enables both capture and reload on the specified edge(s). The only exception to this rule is when the G2EN bit is set
to logic 1. When G2EN is set to 1, a reload does not occur on the edge specified by T2POL[0]: when T2POL[0] = 0, the falling edge
does not cause a reload; if T2POL[0] = 1, the rising edge does not cause a reload.

9.2.3 16-Bit Counter
The 16-bit counter mode is enabled by setting the C/T2 bit to logic 1. When C/T2 = 1, rising, falling, or both rising and falling edges are
counted as determined by the CCF[1:0] bits. If CCF[1:0] = 00b, neither edge is defined as a counted edge, and the T2H:T2L counter
holds its count since no edge is defined as the counting edge. When an overflow occurs, the reload value (T2R) is reloaded instead of
the x0000h state. The Timer/Counter 2 overflow flag (TF2) is set every time that an overflow occurs. If Timer/Counter 2 interrupts have
been enabled (ET2 = 1), the TF2 flag can generate an interrupt request. In counter mode, the capture/compare register (T2C) is com-
pared versus the Timer/Counter 2 value register. Whenever a compare match occurs, the capture/compare status flag (TCC2) is set. If
Timer/Counter 2 interrupts have been enabled (ET2 = 1), this event can generate an interrupt request. If the capture/compare register
is set to a value outside the Timer 2 counting range, a compare match is not signaled and the TCC2 flag is not set.

Maxim Integrated

9-8

MAXQ Family User’s Guide

9.2.3.1 Output Enable
For Timer 2 to serve as a counter, the T2P pin must be used as an input. Thus, when C/T2 = 1, the T2OE[0] bit is ignored. The T2OE[1]
bit can be used to output the generated waveform on T2PB resulting from compare match and overflow conditions for the counter.
When generating PWM output, please note that changing the compare match register can result in a perceived duty cycle inversion if a
compare match is missed or multiple compare matches occur during the reload to overflow counting.

9.2.3.2 Polarity Control
Only the T2POL[1] bit is meaningful. It can define the starting state of the T2PB pin when the T2PB output has been enabled. The
T2POL[1] bit can be changed at any time, however the assigned T2POL[1] state will take effect on the external pin only when the cor-
responding T2OE[1] bit is changed from 0 to 1.

9.2.3.3 Gating and Single Shot
Neither gating nor single-shot modes are supported when operating in 16-bit counter mode. The G2EN and SS2 bits should not be set
to 1 when operating in the counter mode (C/T2 = 1).

9.2.4 Dual 8-Bit Timers
The dual 8-bit timer mode of operation is initiated by setting the T2MD bit to logic 1. When T2MD = 1, each 16-bit register associated
with Timer 2 is split into separate upper and lower 8-bit registers to support dual 8-bit timers. Thus, the primary 8-bit timer is composed
of T2H (value), T2RH (reload), T2CH (capture/compare), and the secondary 8-bit timer is composed of T2L(value), T2RL(reload), and
T2CH (capture/compare). There is still a single internal Timer 2 input clock that can be sourced by either of these two 8-bit timers. In
the dual 8-bit mode of operation, both Timer 2 output clocks (from T2L and T2H) are available to internal peripherals as required by a
given product. The secondary 8-bit timer/counter has its own run control bit (TR2L) and interrupt flags (TF2L, TC2L).

9.2.4.1 Output Enable (PWM Out)
The output enable bits (T2OE[1:0]) enable the respective 8-bit Timer 2 outputs to be presented on the pins associated with the respec-
tive bits. The T2H timer output onto the T2P pin is controlled by the T2OE[0] bit, and the T2L timer output onto the T2PB pin is con-
trolled by the T2OE[1] bit. If Timer 2 has a single I/O pin, only the T2OE[0] bit is required as the secondary timer T2L cannot be out-
put to a pin and can only serve as an internal timer.

9.2.4.2 Polarity Control
The polarity control bits (T2POL[1:0]) can be used to modify (invert) the enabled clock outputs to the pin(s). The starting state of the
enabled clock outputs (defined by T2OE[1:0]) is the logic state of T2POL[1:0] and toggles on each compare match or overflow. When
generating PWM output, please note that changing the compare match register can result in a perceived duty cycle inversion if a com-
pare match is missed or multiple compare matches occur during the reload to overflow counting. The T2POL[1:0] bits are logically XOR
with the Timer 2 output signal, therefore setting a given T2POL[x] bit results in a high starting state. The T2POL[n] bit can be changed
any time, however the assigned T2POL[n] state will take effect on the external pin only when the corresponding T2OE[n] bit is changed
from 0 to 1. T2POL[1] is not required for a single pin Timer 2 implementation.

9.2.4.3 Gated
To use the T2P pin as a G2EN, the T2OE[0] bit must be cleared to 0 and the G2EN bit must be set to 1. When T2OE[0] = 1, the G2EN
bit setting has no effect. When T2OE[0] is cleared to 0, the respective polarity control bit is used to modify the polarity of the input sig-
nal to the Timer. In the gated mode, the input clock to T2H is gated any time the external signal matches the state of the T2POL[0] bit.
This means that the default clock gating condition is associated with the T2P pin being low (T2POL[0] = 0). Note that the secondary
8-bit timer, T2L, cannot be gated. Also, since the output enables T2OE[1:0] apply to each individual 8-bit timer, there is no gated PWM
mode available.

9.2.4.4 Single Shot
The single-shot bit and mode apply only to the primary 8-bit timer (T2H). The single-shot mode is used to automate the generation of
single pulses under software control. To generate single-shot output pulses under software control, the G2EN bit should be cleared to
0, the output enables and polarity controls should be configured as desired and the single-shot bit should be set to 1. Writing the sin-
gle-shot bit effectively overrides the TR2 = 0 condition until Timer 2 overflow/reload occurs. Writing SS2 and TR2 = 1 at the same time
still causes the SS2 bit to stay in effect until an overflow/reload occurs. However, the specified PWM output continues since TR2 was
also written to 1.

Maxim Integrated

9-9

MAXQ Family User’s Guide

9.2.5 8-Bit Timer/8-Bit Capture Mode
When the CCF[1:0] bits are configured to a state other than 00b, the edge-capture mode is enabled for the primary timer (T2H). The
secondary timer (T2L) always remains in the timer/compare mode and does not support any capture functionality. The capture con-
trols for the 8-bit mode are identical to those specified for the 16-bit mode, however they apply only to the upper timer, T2H.

One obvious difference is that the secondary timer (T2L), operable only in compare mode, can be used to generate a PWM output with
valid T2OE[1] and T2POL[1] controls, while the primary timer is operating in capture mode.

9.2.6 8-Bit Timer/8-Bit Counter
Just as in the 16-bit mode, setting the C/T2 bit to logic 1 enables the external T2P pin to function as a counter input. The edges that
are counted are determined by the CCF[1:0] bits. The counter mode of operation applies only to the primary timer/counter (T2H). In a
similar fashion to the 16-bit counter mode, when an overflow occurs, an auto-reload of T2RH occurs and the TF2 flag is set. The TCC2
flag is also set on a compare match between the T2H counter and the T2CH compare register (except for the case where T2CH is out-
side the T2RH to 0xFFh counting range. The secondary timer (T2L) always continues to operate in 8-bit compare mode. Just as in the
above split 8-bit timer/8-bit capture mode, this allows the secondary timer (T2L) to function in the PWM output capacity if a T2PB pin
is provided. The T2POL[1] control still applies to the 8-bit T2L PWM output when T2OE[1] = 1.

9.2.7 Timer 2 Input Clock Selection
Figure 9-3 shows the Timer 2 clock source. The Timer 2 input clock is selected by the T2CI bit while the clock prescale is determined
by the T2DIV bits in the T2CFG register. Note that when T2CI is configured to 1, the alternate clock source (32kHz) is sampled by the
current system clock selection. The maximum sampleable alternate clock frequency is (system clock/4).

T2CI

32kHz

T2DIV [2:0]

SYSTEM CLOCK

T2CLK

EDGE DETECTION

DIVIDE-BY-N�
PRESCALE

Figure 9-3. Timer 2 Clock

Maxim Integrated

9-10

MAXQ Family User’s Guide

9.3 Timer 2 Capture Application Examples
The following examples and accompanying figures (Figures 9-4 through 9-8) are used to demonstrate some of the Timer 2 functions.
All examples assume that pulse and/or period measurements do not exceed 216 input clocks and that capture register holds the
desired result.

9.3.1 Measure Low-Pulse Duration
To measure the duration of the first full low pulse seen on the T2P input pin, Timer 2 could be configured for a single shot capture, gat-
ing enabled for logic high, capture on the rising edge. The CPRL2 bit could optionally be set to generate a reload on the same rising
edge as that which the capture occurs if the preconfigured T2R value is expected to be needed next.

; ------------------ Reset State: T2R = T2V = T2C = 0000h ------------------------
MOVE T2CFG, #00000010b ; T2CI =0 (sysclk/N input)

; T2DIV[2:0] =000 (/1)
; T2MD =0 (16-bit)
; CCF[1:0] =01 (rising edge)
; C/T2 =0 (timer/capture)

MOVE T2CNA, #10100111b ; ET2 =1 (enable Timer 2 ints)
; T2OE[0] =0 (input)
; T2POL[0] =1 (gating level = ‘1’)
; TR2L:TR2 =00 (don’t start timer)
; CPRL2 =1 (reload on capture edge)
; SS2 =1 (single-shot mode)
; G2EN =1 (gating enabled)

; ------------------ TCC2 Interrupt : DURATION = T2C

T2P PIN

CODE EXECUTION:�
POINT A

CODE EXECUTION:�
POINT B

1A 2A

1B 2B 3B

EVENTS:

1A: GATING CONDITION REMOVED; SINGLE-SHOT CAPTURE CYCLE BEGINS.

2A: RISING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; DURATION = T2C.

1B: RISING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE BEGINS, TIMER CLOCK GATED SINCE T2P PIN = 1.

2B: GATING CONDITION REMOVED; TIMER RUNS.

3B: RISING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; DURATION = T2C.

Figure 9-4. Timer 2 Application Example—Measure Low Pulse Width

Maxim Integrated

9-11

MAXQ Family User’s Guide

9.3.2 Measure High-Pulse Duration Repeatedly
To measure the duration of high pulses seen on the T2P input pin repeatedly, Timer 2 could be configured for a single-shot delayed
run, gating enabled for logic low, capture on the falling edge. The CPRL2 bit could be set to generate a reload on each falling edge.

; ------------------ Reset State: T2R = T2V = T2C = 0000h ------------------------
MOVE T2CFG, #00000100b ; T2CI =0 (sysclk/N input)

; T2DIV[2:0] =000 (/1)
; T2MD =0 (16-bit)
; CCF[1:0] =10 (falling edge)
; C/T2 =0 (timer/capture)

MOVE T2CNA, #10001111b ; ET2 =1 (enable Timer 2 ints)
; T2OE[0] =0 (input)
; T2POL[0] =0 (gating level = ‘0’)
; TR2L:TR2 =01 (start timer 2 on single shot condition)
; CPRL2 =1 (reload on capture edge)
; SS2 =1 (single-shot mode)
; G2EN =1 (gating enabled)

; ------------------ TCC2 Interrupt : DURATION = T2C

EVENTS:

1A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE BEGINS; TIMER CLOCK GATED SINCE T2P PIN = 0.

2A: GATING CONDITION REMOVED; TIMER RUNS.

3A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; DURATION = T2C. TIMER CONTINUES TO OPERATE

SINCE TR2 = 1, BUT TIMER CLOCK GATED SINCE T2P PIN = 0.

4A: GATING CONDITION REMOVED; TIMER RUNS.

1B: GATING CONDITION REMOVED; SINGLE-SHOT CAPTURE CYCLE BEGINS.

2B: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; DURATION = T2C. TIMER CONTINUES TO OPERATE

SINCE TR2 = 1, BUT TIMER CLOCK GATED SINCE T2P PIN = 0.

3B: GATING CONDITION REMOVED; TIMER RUNS.

T2P PIN

CODE EXECUTION:�
POINT A

CODE EXECUTION:�
POINT B

1A 2A

1B 2B 3B

3A 4A

Figure 9-5. Timer 2 Application Example—Measure High Pulse Width

Maxim Integrated

9-12

MAXQ Family User’s Guide

9.3.3 Measure Period
To measure the period of the signal seen on the T2P input pin, Timer 2 could be configured for a single-shot capture, no gating, either
edge (selected by the CCF[1:0] bits). The CPRL2 bit could be set to generate a reload on each capture edge.

; ------------------ Reset State: T2R = T2V = T2C = 0000h ------------------------
MOVE T2CFG, #00000100b ; T2CI =0 (sysclk/N input)

; T2DIV[2:0] =000 (/1)
; T2MD =0 (16-bit)
; CCF[1:0] =10 (falling edge)
; C/T2 =0 (timer/capture)

MOVE T2CNA, #10000110b ; ET2 =1 (enable Timer 2 ints)
; T2OE[0] =0 (input)
; T2POL[0] =0 (gating level = ‘0’)
; TR2L:TR2 =00 (don’t start timer 2)
; CPRL2 =1 (reload on capture edge)
; SS2 =1 (single-shot mode)
; G2EN =0 (gating disabled)

; ------------------ TCC2 Interrupt : PERIOD = T2C

T2P PIN

CODE EXECUTION:�
POINT A

CODE EXECUTION:�
POINT B

1A 2A

1B 2B

EVENTS:

1A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE BEGINS.

2A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; PERIOD = T2C.

1B AND 2B: SAME SEQUENCE AS 1A–2A, EXCEPT THAT THE SINGLE-SHOT CAPTURE CYCLE DOES NOT BEGIN UNTIL THE FIRST FALLING EDGE IS DETECTED.

Figure 9-6. Timer 2 Application Example—Measure Period

Maxim Integrated

9-13

MAXQ Family User’s Guide

9.3.4 Measure Duty Cycle Repeatedly
To measure the duty cycle of the signal seen on the T2P input pin, Timer 2 could be configured for a single-shot delayed run with both
edges defined for capture. The CPRL2 bits should be configured to 1 to request reloads on each edge. To prevent reloads on one of
the edges, gating should be enabled. The T2POL[0] bit specifies which edge starts/ends the capture cycle and which edge does not
have a reload associated with it.

; ------------------ Reset State: T2R = T2V = T2C = 0000h ------------------------
MOVE T2CFG, #00000110b ; T2CI =0 (sysclk/N input)

; T2DIV[2:0] =000 (/1)
; T2MD =0 (16-bit)
; CCF[1:0] =11 (both edges)
; C/T2 =0 (timer/capture)

MOVE T2CNA, #10101111b ; ET2 =1 (enable Timer 2 ints)
; T2OE[0] =0 (input)
; T2POL[0] =1 (no reload on rising edge

; single-shot start/end on falling edge)
; TR2L:TR2 =01 (start timer 2 on single shot condition)
; CPRL2 =1 (reload on capture edge)
; SS2 =1 (single-shot mode)
; G2EN =1 (gating enabled)

; ------------------ TCC2 Interrupt : LOW TIME=T2C
;------------------- TCC2 Interrupt : PERIOD = T2C

T2P PIN

CODE EXECUTION:�
POINT A

CODE EXECUTION:�
POINT B

1A 3A

1B 3B

2A

2B

EVENTS:

1A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE BEGINS.

2A: RISING EDGE CAUSES CAPTURE; LOW TIME = T2C.

3A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; PERIOD = T2C. TIMER CONTINUES TO OPERATE

SINCE TR2 = 1, ALLOWING THE NEXT LOW TIME/PERIOD TO BE MEASURED.

1B–3B: SAME SEQUENCE AS 1A–3A, EXCEPT THAT THE SINGLE-SHOT CAPTURE CYCLE DOES NOT BEGIN UNTIL THE FIRST FALLING EDGE IS DETECTED.

Figure 9-7. Timer 2 Application Example—Measure Duty Cycle

Maxim Integrated

9-14

MAXQ Family User’s Guide

9.3.5 Overflow/Interrupt on Cumulative Time
To cause an overflow only when the T2P pin has been low for some cumulative duration, Timer 2 could be configured to the gated com-
pare mode of operation with an initial starting value appropriate for the cumulative duration to be detected.

; ------------------ Reset State: T2R = T2V = T2C = 0000h ------------------------
MOVE T2V, #1234h ; Overflow after T2P input low for (10000h-01234h) T2CLKs
MOVE T2CFG, #01110000b ; T2CI =0 (sysclk/N input)

; T2DIV[2:0] =111 (/128)
; T2MD =0 (16-bit)
; CCF[1:0] =00 (no edges)
; C/T2 =0 (timer/compare)

MOVE T2CNA, #10101001b ; ET2 =1 (enable Timer 2 ints)
; T2OE[0] =0 (input)
; T2POL[0] =1 (gating level = ‘1’)
; TR2L:TR2 =01 (start timer 2)
; CPRL2 =0 (no capture possible)
; SS2 =0 (not single-shot mode)
; G2EN =1 (gating enabled)

; ------------------ TF2 Interrupt : Cumulative low duration reached

T2P PIN

CODE EXECUTION:�
POINT A

CODE EXECUTION:�
POINT B

1A

1B

2A

2B

EVENTS:

1A: GATING CONDITION IS REMOVED; TIMER BEGINS TO RUN.

2A: TIMER 2 OVERFLOWS.

1B–2B: SAME SEQUENCE AS 1A–2A, EXCEPT THAT TIMER 2 STARTS RUNNING IMMEDIATELY SINCE IT IS NOT GATED.

Figure 9-8. Timer 2 Application Example—Overflow/Interrupt on Cumulative Time

Maxim Integrated

9-15

MAXQ Family User’s Guide

9.4 Timer/Counter 2 Peripheral Registers

9.4.1 Timer/Counter 2 Configuration Register (T2CFG)

Bit 7: Timer 2 Clock Input Select Bit (T2CI). Setting this bit enables an alternate input clock source to the Timer 2 block. The alter-
nate input clock selection is the 32kHz clock. The alternate input clock must be sampled by the system clock, which requires that the
system clock be at least 4 x 32kHz for proper operation unless the system clock is also source from the 32kHz crystal.

Bits 6 to 4: Timer 2 Clock Divide 2:0 Bits (T2DIV[2:0]). These three bits select the divide ratio for the timer clock-input clock (as a
function of the system clock) when operating in timer mode with T2CI = 0.

Bit 3: Timer 2 Mode Select (T2MD). This bit enables the dual 8-bit mode of operation. The default-reset state is 0, which selects the
16-bit mode of operation. When the dual 8-bit mode is established, the primary timer/counter (T2H) carries all of the counter/capture
functionality while the secondary 8-bit timer (T2L) must operate in timer compare mode, sourcing the defined internal clock.

0 = 16-bit mode (default)

1 = dual 8-bit mode

Bits 2 to 1: Capture/Compare Function Select Bits (CCF[1:0]). These bits, in conjunction with the C/T2 bit, select the basic operat-
ing mode of Timer 2. In the dual 8-bit mode of operation (T2MD = 1), the T2L timer only operates in compare mode.

Bit 0: Counter/Timer Select (C/T2). This bit enables/disables the edge counter mode of operation for the 16-bit counter (T2H:T2L) or
the 8-bit counter (T2H) when the dual 8-bit mode of operation is enabled (T2MD = 1). The edge for counting (rising/falling/both) is
defined by the CCF[1:0] bits.

0 = timer mode

1 = counter mode

Bit # 7 6 5 4 3 2 1 0

Name T2CI T2DIV2 T2DIV1 T2DIV0 T2MD CCF1 CCF0 C/T2

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

T2DIV2 T2DIV1 T2DIV0 DIVIDE RATIO

0 0 0 1

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

CCF1 CCF0 EDGE(S) C/T2 = 0 (TIMER MODE) C/T2 = 1 (COUNTER MODE)

0 0 None Compare Mode Disabled

0 1 Rising Capture/Reload Counter

1 0 Falling Capture/Reload Counter

0 1 Rising and Falling Capture/Reload Counter

Maxim Integrated

9-16

MAXQ Family User’s Guide

9.4.2 Timer/Counter 2 Control Register A (T2CNA)

Bit 7: Enable Timer 2 Interrupts (ET2). This bit serves as the local enable for Timer 2 interrupt sources that fall under the TF2 and
TCC2 interrupt flags.

Bit 6: Timer 2 Output Enable 0 (T2OE0). This register bit enables the Timer 2 output function for the external T2P pin. The table below
shows Timer 2 output possibilities for the T2P, T2PB pins.

Bit 5: Timer 2 Polarity Select 0 (T2POL0). When the Timer 2 output function has been enabled (T2OE0 = 1), the polarity select bit
defines the starting logic level for the T2P output waveform. When T2POL0 = 0, the starting state for the T2P output will be logic low.
When T2POL0 = 1, the starting state for the T2P output is logic high. The T2POL0 bit can only be modified when T2OE0 = 0 and takes
effect on the external pin when T2OE0 is set to 1. When the Timer 2 pin is being used as an input (T2OE0 = 0), the polarity select bit
defines which logic level can be used to gate the timer input clock (when CCF[1:0]<>11b). When CCF[1:0] = 11b, T2POL0 defines
which edge can start/stop a single-shot capture and which edge reload can be skipped (if CPRL2 = 1 and G2EN = 1).

Bit 4: Timer 2 Low Run Enable (TR2L). This bit start/stops the low 8-bit Timer (T2L) when dual 8-bit mode (T2MD = 1) is in effect.
This bit has no effect when T2MD = 0.

0 = Timer 2 Low stopped

1 = Timer 2 Low run

Bit 3: Timer 2 Run Enable (TR2). This bit starts/stop Timer 2. In the dual 8-bit mode of operation, this bit applies only to the T2H
timer/counter. Otherwise, the bit applies to the full 16-bit T2H:T2L timer/counter. When the timer is stopped (TR2 = 0), the timer regis-
ters hold their count. The single-shot bit (SS2) can override and/or delay the effect of the TR2 bit.

0 = Timer 2 stopped

1 = Timer 2 run

Bit 2: Capture and Reload Enable (CPRL2). This bit enables a reload (in addition to a capture) on the edge specified by CCF[1:0]
when operating in capture/reload mode (C/T2 = 0). If both edges are defined for capture/reload (CCF[1:0] = 11b), enabling the gating
control (G2EN = 1) allows the T2POL0 bit to be used to prevent a reload on one of the edges. If T2POL[0] is 0, no reload on the falling
edge; if T2POL[0] is 1, no reload on the rising edge.

0 = capture on edge(s) specified by CCF[1:0] bits

1 = capture and reload on edge(s) specified by CCF[1:0] bits

Bit 1: Single Shot (SS2). This bit is used to automatically override or delay the effect of the TR2 bit setting. The single-shot bit is only
useful in the timer mode of operation (C/T2 = 0) and should not be set to 1 when the counter mode of operation is enabled (C/T2 = 1).

Bit # 7 6 5 4 3 2 1 0

Name ET2 T2OE0 T2POL0 TR2L TR2 CPRL2 SS2 G2EN

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

T2OE[1:0] T2MD T2P PIN T2PB PIN

00 X Port Data Port Data

01 0 16-Bit PWM Output Port Data

10 0 Port Data 16-Bit PWM Output

11 0 16-Bit PWM Output 16-Bit PWM Output

01 1 8-Bit PWM Output (T2H) Port Data

10 1 Port Data 8-Bit PWM Output (T2L)

11 1 8-Bit PWM Output (T2H) 8-Bit PWM Output (T2L)

Maxim Integrated

9-17

MAXQ Family User’s Guide

Compare Mode:

If SS2 is written to 1 while in compare mode, one cycle of the defined waveform (reload to overflow) is output to the T2P, T2PB pins as
prescribed by T2POL[1:0] and T2OE[1:0] controls. The only time that this does not immediately occur is when a gating condition is
also defined. If a gating condition is defined, the single-shot cycle cannot occur until the gating condition is removed. If the specified
non-gated level is already in effect, the singleshot period will start. The gated single-shot output is not supported in dual 8-bit mode.

Capture Mode:

If SS2 is written to 1 while in capture mode, the timer is halted and the single-shot capture cycle does not begin until the edge speci-
fied by CCF[1:0] is detected, or the defined gating condition is removed. Once running, the timer continues running (as allowed by the
gate condition) until the defined capture single-shot edge is detected. In this way, the SS2 bit can be used to delay the running of a
timer until an edge is detected (setting both SS2 and TR2 =1) or override the TR2 = 0 bit setting for one capture cycle (setting only
SS2 = 1). When both edges are defined for capture CCF[1:0] = 11b), the T2POL[0] bit serves to define the single-shot start/end edge:
falling edge if T2POL[0] = 1; rising edge if T2POL[0] = 0. No interrupt flag is set when the starting edge for the single-shot capture
cycle is detected. The single-shot capture cycle always ends when the next single shot edge is detected. The start/end edge is defined
by T2POL[0]. This bit is intended to automate pulse-width measurement (low or high) and duty cycle/period measurement.

Bit 0: Gating Enable (G2EN). This bit enables the external T2P pin to gate the input clock to the 16-bit (T2MD = 0) or highest 8-bit
(T2MD = 1) Timer. Gating uses T2P as an input, thus it can only be used when T2OE0 = 0 and C/T2 = 0. Gating is not possible on the
low 8-bit timer (T2L) when Timer 2 is operated in dual 8-bit mode. Gating is not supported for counter mode operation (C/T2 = 1). The
G2EN bit serves a different purpose when capture and reload have been defined for both edges (CCF[1:0] = 11b and CPRL2 = 1).
For this special case, setting G2EN = 1 allows the T2POL0 bit to specify which edge does not cause a reload. If T2POL0 is 0, no reload
on the falling edge; if T2POL0 is 1, no reload on the rising edge.

0 = gating disabled

1 = gating enabled

9.4.3 Timer/Counter 2 Control Register B (T2CNB)

Bit 7: Enable Timer 2 Low Interrupts (ET2L). This bit serves as the local enable for Timer 2 Low interrupt sources that fall under the
TF2L and TC2L interrupt flags.

Bit 6: Timer 2 Output Enable 1 (T2OE1). See table given under T2CNA.5 description. The T2OE1 bit is not implemented for single
pin versions of Timer 2.

Bit 5: Timer 2 Polarity Select 1 (T2POL1). When the T2B output is enabled (T2OE1 = 1), this bit selects the starting logic level for the
alternate pin output. The output that is driven on the T2PB pin can be derived from the 16-bit Timer 2 or the 8-Timer (T2L) depending
upon whether operating in the 16-bit mode or the dual 8-bit mode. The T2POL1 bit can be modified anytime, but takes effect on the
external pin when T2OE1 is changed from 0 to 1.

Bit 3: Timer 2 Overflow Flag (TF2). This flag becomes set anytime there is an overflow of the full 16-bit T2V timer/counter (when T2MD
= 0) or an overflow of the 8-bit T2H timer/counter when the dual 8-bit mode of operation is selected (T2MD = 1).

Bit 2: Timer 2 Low Overflow Flag (TF2L). This flag is meaningful only when in the dual 8-bit mode of operation (T2MD = 1) and
becomes set whenever there is an overflow of the T2L 8-bit timer.

Bit 1: Timer 2 Capture/Compare Flag (TCC2). This flag is set on any compare match between the Timer 2 value and compare reg-
ister (T2V = T2C or T2H = T2CH, respectively, for 16-bit and 8-bit compare modes) or when a capture event is initiated by an external
edge.

Bit 0: Timer 2 Low Compare Flag (TC2L). This flag is meaningful only for the dual 8-bit mode of operation (T2MD = 1) and becomes
set only when a compare match occurs between T2CL and T2L. Timer 2 Low does not have an associated capture function.

Bit # 7 6 5 4 3 2 1 0

Name ET2L T2OE1 T2POL1 — TF2 TF2L TCC2 TC2L

Reset 0 0 0 0 0 0 0 0

Access rw rw rw r rw rw rw rw

r = read, w = write

Maxim Integrated

9-18

MAXQ Family User’s Guide

9.4.4 Timer 2 Value Register (T2V)

Bits 15 to 0: Timer 2 Value (T2V.[15:0]). The T2V register is a 16-bit register that holds the current Timer 2 value. When operating in
16-bit mode (T2MD = 0), the full 16 bits are read/write accessible. If the dual 8-bit mode of operation (T2MD = 1) is selected, the upper
byte of T2V is inaccessible. T2V reads while in the dual 8-bit mode will return 00h as the high byte and writes to the upper byte of T2V
will be blocked. A separate T2H register is provided to facilitate high byte access for dual 8-bit mode.

9.4.5 Timer 2 Value High Register (T2H)

Bits 7 to 0: Timer 2 Value High (T2H.[7:0]). This register is used to load and read the most significant 8-bit value in Timer 2.

9.4.6 Timer 2 Reload Register (T2R)

Bits 15 to 0: Timer 2 Reload (T2R.[15:0]). This 16-bit register holds the reload value for Timer 2. When operating in 16-bit mode
(T2MD = 0), the full 16 bits are read/write accessible. If the dual 8-bit mode of operation is selected, the upper byte of T2R is inac-
cessible. T2R reads while in the dual 8-bit mode will return 00h as the high byte and writes to the upper byte of T2R will be blocked.
A separate T2RH register is provided to facilitate high byte access for the dual 8-bit mode.

Bit # 15 14 13 12 11 10 9 8

Name T2V.15 T2V.14 T2V.13 T2V.12 T2V.11 T2V.10 T2V.9 T2V.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name T2V.7 T2V.6 T2V.5 T2V.4 T2V.3 T2V.2 T2V.1 T2V.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name T2H.7 T2H.6 T2H.5 T2H.4 T2H.3 T2H.2 T2H.1 T2H.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name T2R.15 T2R.14 T2R.13 T2R.12 T2R.11 T2R.10 T2R.9 T2R.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name T2R.7 T2R.6 T2R.5 T2R.4 T2R.3 T2R.2 T2R.1 T2R.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

9-19

MAXQ Family User’s Guide

9.4.7 Timer 2 Reload High Register (T2RH)

Bits 7 to 0: Timer 2 Reload High (T2RH.[7:0]). This register is used to load and read the most significant 8-bit reload value in Timer 2.

9.4.8 Timer 2 Capture/Compare Register (T2C)

Bits 15 to 0: Timer 2 Capture/Compare (T2C.[15:0]). This 16-bit register that holds the compare value when operating in compare
mode and gets the capture value when operating in capture mode. When operating in 16-bit mode (T2MD = 0), the full 16-bits are
read/write accessible. If the dual 8-bit mode of operation is selected, the upper byte of T2C is inaccessible. T2C reads while in the
dual 8-bit mode will return 00h as the high byte and writes to the upper byte of T2C will be blocked. A separate T2CH register is pro-
vided to facilitate high-byte access.

9.4.9 Timer 2 Capture/Compare High Register (T2CH)

Bits 7 to 0: Timer 2 Capture/Compare High (T2CH.[7:0]). This register is used to load and read the most significant 8-bit capture/
compare value of Timer 2.

Bit # 7 6 5 4 3 2 1 0

Name T2RH.7 T2RH.6 T2RH.5 T2RH.4 T2RH.3 T2RH.2 T2RH.1 T2RH.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name T2C.15 T2C.14 T2C.13 T2C.12 T2C.11 T2C.10 T2C.9 T2C.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name T2C.7 T2C.6 T2C.5 T2C.4 T2C.3 T2C.2 T2C.1 T2C.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name T2CH.7 T2CH.6 T2CH.5 T2CH.4 T2CH.3 T2CH.2 T2CH.1 T2CH.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

9-20

MAXQ Family User’s Guide

9.5 Low-Speed Infrared Transmit/Receive Support Using Timer 2
The MAXQ microcontroller can provide hardware to simplify support for low-speed infrared (IR) communication. To take advantage of
the embedded hardware, the microcontroller device must be equipped with at least one Timer 2 module; that Timer must have at least
two pins implemented and that Timer must be configured to a specific mode of operation.

The associated Timer 2 has to be configured into the dual 8-bit mode of operation. More specifically, it should be configured to the 8-
bit Counter + 8-bit Timer/PWM mode. The T2OE[0] bit should be configured to logic 0 if it is intended that the T2 pin serve in the IRRX
capacity. The T2OE[1] control bit should be configured to logic 0 if it is intended to serve in the IRTX capacity, since the internal IR
hardware provides a separate control mechanism for enabling the carrier output to the T2PB pin. The 8-bit Timer/PWM is used to cre-
ate the appropriate subcarrier waveform, while the 8-bit counter is used for modulation of the subcarrier when transmitting and for com-
pare timing when decoding the IR receive waveforms. It is expected that the IR receive waveform will be coming directly from an exter-
nal IR receiver module or circuitry, which can provide a filtered digital output indicating carrier presence by a logic 0 or logic 1.

9.5.1 Subcarrier Generation Using Timer 2 Low
Generation of the subcarrier frequency will always be performed by the 8-bit Timer/PWM (T2L). The period and duty cycle for the sub-
carrier is determined by the settings of reload and compare registers as described in the Timer 2 documentation. Figure 9-9 diagrams
the basic subcarrier generation and its path to the T2PB/IRTX output pin. Notice that the T2POL[1] bit control still applies.

9.5.2 Transmit Baseband Modulator
Generation of the baseband modulator waveform is handled by the 8-bit counter (T2H). Normally, the 8-bit counter sources the exter-
nal T2A pin signal and counts edges as defined by CCF[1:0]. However, when the IR hardware is enabled (IREN = 1), this counter
sources the output of the T2L subcarrier waveform. This allows user software to define the number of subcarrier cycles through the
T2RH register, which should be counted before T2H overflow. The T2POL[1] bit defines the starting (idle) state for the T2L output and
the edge that are counted by the T2H counter. If T2POL[1] = 1, the T2L output idles high and only rising edges are counted by T2H.
If T2POL[1] = 0, the T2L output idles low and only falling edges are counted by T2H. A separate register bit, IR bit-bang (IRBB), is
used to determine whether the T2L output is gated or output to the pin for the next X subcarrier cycles. The value of X, as alluded to
earlier, can be controlled by modifying the reload value. When IRBB = 1 and IRTX = 1, the T2L output is enabled onto the T2PB/IRTX
pin. When IRBB = 0 and IRTX = 1, the gated (idle) condition, as defined by T2POL[1], is in effect on the pin.

00h T2CLT2RL FFh

T2CLK

T2POL[1]T2MD = 1

T2OE[1] = 0

POx.x DATA�
(IF PDx.x = 1)

T2PB�
PIN

T2L 8-BIT TIMER

T2H 8-BIT COUNTER

T2P PIN

GATE

IREN
IRBB�

(SOFTWARE CONTROL)

1

0

1

0

IRTX = 1

IREN = 1�
00h FFh�

T2RH
T2RH FFh�

T2RH

Figure 9-9. IR Transmit Subcarrier Generation and Baseband Modulator Control

Maxim Integrated

9-21

MAXQ Family User’s Guide

9.5.2.1 IR Encoding (Transmit) Example
For any encoding scheme, the proper T2L subcarrier generation settings should be established along with the desired T2POL[1] bit
state. The T2POL[1] state takes effect once IREN = 1 and IRTX = 1.

For biphase encoding, the T2H reload value (T2RH) would be configured to count X subcarrier pulses in one half a bit time. The IRTX
enable bit should be configured to logic 1 to block the functionality of the T2 pin used in receive mode. The IRBB bit would initially be
configured to 0 to make the gated condition the starting state on the T2PB pin. At this point, the timer run bits for both the 8-bit timer/coun-
ters, which should be set. Once the timers are running, the software could then modify the IRBB control bit as needed for each half-bit
time. On each T2H overflow, the same T2RH value is used as the reload and IRBB would be used to control whether the T2L subcarri-
er output is enabled to the output pin or gated. This process would continue until the desired number of bits are transmitted, at which
point the user software would be responsible for placing the IR hardware back into receive mode or turning it off entirely.

For bit length encoding, the T2RH reload value could be modified selectively dependent upon whether a 0 or 1 subcarrier duration
needed to be transmitted. In this case, the IRBB control function would remain the same and would typically be toggled on every over-
flow. Figure 9-11 illustrates an example of bit-length encoding.

DESIRED OUTPUT

0 1 0 1

IRBB BIT �
(SOFTWARE CONTROLLED)

T2RH �
(SOFTWARE MODIFIED) SHORT LONG SHORT LONG

Figure 9-11. Bit-Length Encoding Example (T2RH Modified)

DESIRED OUTPUT

1 1 0 0 1

IRBB BIT �
(SOFTWARE CONTROLLED)

Figure 9-10. Biphase Encoding Example (T2RH Remains Fixed)

Maxim Integrated

9-22

MAXQ Family User’s Guide

9.5.2.2 Receive Pin Sampling
When IREN = 1 and IRTX = 0, the IR hardware supports the T2H register counting of internal T2L edges just as described for the IR
Transmit mode, but the function of the IRBB bit changes. The IRBB bit is used to store the state of the T2P input pin when a compare
match occurs between the T2H and T2CH registers. Additionally, the CCF[1:0] bits define which edge(s) of the T2 pin should trigger
reloads of the T2H counter to allow some form of synchronization when slightly different transmitter/receiver carrier frequencies and bit
timing exist. The user software would be responsible for reading the IRBB sampled pin states and recreating, based upon the IR encod-
ing format, the actual received data. The IRBB bit can be overwritten, thus the user software is responsible for reading the IRBB bit
between compare matches to avoid loss of captured pin data.

9.5.2.3 IR Decoding (Receive) Example
One possible decoding configuration is shown in Figure 9-13 with the T2CH register configured to produce a match after approximately
1/4 of the subcarrier cycles present during a fixed bit time. Each of the two IRBB samples could be examined to determine one
received bit.

Bit length decoding could use a similar strategy, possibly configuring the T2CH match register to 3/4 the number of subcarrier cycles
present in a 0 bit time. The collected IRBB pattern could simply be inverted to produce the actual input stream.

T2P INPUT

RELOAD (FALLING)�
CCF[1:0] = 10b

IRBB�
(T2CH MATCH)

10 10 0 0 1 1 0 1

Figure 9-13. Biphase Decoding Example

00h T2CLT2RL FFh

T2CLK

T2POL[1]T2MD = 1

T2OE[1] = 0

PORT LATCH�
(IF PDx.x = 1)

T2PB�
PIN

T2L 8-BIT TIMER

T2H 8-BIT COUNTER

T2P PIN

GATE

IREN

IRBB�
SAMPLE T2P ON�

T2CH MATCH

CCF[1:0]

T2P PIN

1

0

1

0

IREN = 1�
IRTX = 0

00h FFh�
T2RH

T2RH FFh�
T2RH

T2CH T2CH

EDGE�
RELOAD

Figure 9-12. IR Receive Pin Sampling

Maxim Integrated

9-23

MAXQ Family User’s Guide

9.6 IR Peripheral Register

9.6.1 Infrared Control Register (IRCN)

Bits 7 to 3: Reserved

Bit 2: Infrared Subcarrier Enable (IREN). This register bit enables a special mode of operation for Timer 2. To use the IR hardware
(i.e., before setting IREN = 1), Timer 2 should be configured properly to the dual 8-bit timer/8-bit counter mode. Setting IREN = 1
enables the IRRX mode if IRTX = 0, and enables the IRTX mode if IRTX = 1. In both cases, the T2L 8-bit timer output is fed as input to
the T2H 8-bit counter.

Bit 1: Infrared Transmit Enable (IRTX). This register bit controls the contextual usage of the IRBB bit. When IRTX = 0, the IRBB bit
captures the T2P(IRRX) pin state on compare matches. When IRTX = 1, the IRBB enables the T2L subcarrier output to the T2PB out-
put pin on the next T2H counter overflow. This bit has no effect when IREN = 0.

Bit 0: Infrared Bit Bang Bit (IRBB). This register bit serves different purposes depending upon whether the IR Transmit Enable is con-
figured as a 1 or 0. When IRTX = 1, the IR transmit mode is in effect and setting the IRBB bit to logic 1 enables the T2POL[1] modified
T2L output starting at the next T2H counter overflow (allowing the subcarrier to be output to the pin). The user software is responsible
for manually toggling IRBB and controlling the T2RH reload to achieve the desired protocol. For receive mode, IRTX = 0, the IRBB bit
contains the latched state of the IRRX pin each time that a compare match (with T2CH) occurs. The user software is responsible for
unloading IRBB and translating the recorded bit stream into the proper IR serial receive data.

T2P INPUT
0 01 1

RELOAD (FALLING)�
CCF[1:0] = 10b

IRBB BIT�
(T2CH MATCH)

Figure 9-14. Bit Length Decoding Example

Bit # 7 6 5 4 3 2 1 0

Name — — — — — IREN IRTX IRBB

Reset 0 0 0 0 0 0 0 0

Access r r r r r rw rw rw

r = read, w = write

Maxim Integrated

10-1

MAXQ Family User’s Guide

SECTION 10: SERIAL I/O MODULE

This section contains the following information:

10.1 UART Modes .10-2

10.1.1 UART Mode 0 .10-2

10.1.2 UART Mode 1 .10-4

10.1.3 UART Mode 2 .10-4

10.1.4 UART Mode 3 .10-7

10.2 Baud-Rate Generation .10-8

10.2.1 Mode 0 Baud Rate .10-8

10.2.2 Mode 2 Baud Rate .10-8

10.2.3 Mode 1 or 3 Baud Rate .10-8

10.2.4 Baud-Clock Generator .10-8

10.3 Framing Error Detection .10-9

10.4 UART Peripheral Registers .10-10

10.4.1 Serial Control Register (SCON) .10-10

10.4.2 Serial Port Mode Register (SMD) .10-11

10.4.3 Serial Port Data Buffer Register (SBUF) .10-11

10.4.4 Serial Port Phase Register (PR) .10-11

LIST OF FIGURES

LIST OF TABLES

Figure 10-1. UART Mode 0 .10-3

Figure 10-2. UART Mode 1 .10-5

Figure 10-3. UART Mode 2 .10-6

Figure 10-4. UART Mode 3 .10-7

Figure 10-5. Baud-Clock Generator .10-9

Table 10-1. UART Mode Summary .10-2

Table 10-2. UART Baud Clock Summary .10-8

Table 10-3. Example Baud-Clock Generator Settings (SMOD = 1) .10-9

Maxim Integrated

10-2

MAXQ Family User’s Guide

SECTION 10: SERIAL I/O MODULE
The Serial I/O Module provides the MAXQ access to a universal asynchronous receiver/transmitter (UART) for serial communication
with framing error detection.

10.1 UART Modes
The UART supports four basic modes of operation, and is capable of both synchronous and asynchronous modes, with different pro-
tocols and baud rates. In the synchronous mode, the microcontroller supplies the clock and communication takes place in a half-
duplex manner, while the asynchronous mode supports full-duplex operation. Table 10-1 shows the four serial operating modes.

The UART has a control register (SCON) and a transmit/receive buffer register (SBUF). Transmit or receive buffer access depends upon
whether SBUF is used contextually as a source or destination. When SBUF is used as a source (read operation), the receive buffer will
be accessed. When SBUF is used as a destination (write operation), the transmit buffer is accessed. The UART receiver incorporates
a holding buffer so that it may receive an incoming word before software has read the previous one.

Please note that there is no single register bit that explicitly enables the UART for transmission. This means that the port pin(s) asso-
ciated with UART transmission (i.e., TXD, and RXD for mode 0) will be controlled by the PDx and POx port control register bits when
the UART is not actively transmitting a character.

Table 10-1. UART Mode Summary

10.1.1 UART Mode 0
This mode is used to communicate in synchronous, half-duplex format with devices that accept the MAXQ microcontroller as a mas-
ter. Figure 10-1 shows a functional block diagram and basic timing of this mode. As can be seen, there is one bidirectional data line
(RXD) and one shift clock line (TXD) used for communication. Mode 0 requires that the MAXQ microcontroller be the master since it
generates the serial shift clock for data transfers that occur in either direction.

The RXD signal is used for both transmission and reception. Data bits enter and exit LSb first. TXD provides the shift clock. The baud
rate is equal to the shift clock frequency. When not using Power Management Mode, the baud rate in Mode 0 is equivalent to the sys-
tem clock divided by either 12 or 4, as selected by SM2 bit (SCON.5) for the UART.

The UART begins transmitting when any instruction writes to SBUF. The internal shift register then begins to shift data out. The clock
is activated and transfers data until the 8-bit value is complete. Data is presented just prior to the falling edge of the shift clock (TXD)
so that an external device can latch the data using the rising edge.

The UART begins to receive data when the REN bit in the SCON register (SCON.4) is set to logic 1 and the RI bit (SCON.0) is set to
logic 0. This condition tells the UART that there is data to be shifted in. The shift clock (TXD) activates, and the UART latches incom-
ing data on the rising edge. The external device should therefore present data on the falling edge. This process continues until 8 bits
have been received. The RI bit is automatically set to logic 1 immediately following the last rising edge of the shift clock on TXD. This
causes reception to stop until the SBUF has been read and the RI bit cleared. When RI is cleared, another byte can be shifted in.

MODE SYNCHRONOUS/
ASYNCHRONOUS BAUD CLOCK* DATA BITS START/STOP 9TH BIT FUNCTION

0 Synchronous 4 or 12 clocks 8 None None
1 Asynchronous Baud Clock Generator 8 1 start, 1 stop None
2 Asynchronous 32 or 64 clocks 9 1 start, 1 stop 0, 1, parity
3 Asynchronous Baud Clock Generator 9 1 start, 1 stop 0, 1, parity

*Use of any system clock-divide modes or power management mode affects the baud clock.

Maxim Integrated

10-3

MAXQ Family User’s Guide

DIVIDE
BY 12

D7 D6 D5 D4 D3 D2 D1 D0LO
AD

CL
OC

K

OUTPUT SHIFT REGISTER�

S0 LATCH

RECEIVE DATA BUFFER� WR�RD

D7 D6 D5 D4 D3 D2 D1 D0CLOCK�

RECEIVE SHIFT REGISTER�

SI

BAUD�
CLOCK�

LOAD
SERIAL
BUFFER

RECEIVE
BUFFER

DATA
CLOCK

SERIAL I/O
CONTROL

IN
TS

SHIFT
READ

SERIAL

T1�
FLAG =�
SCON.1

R1
FLAG =�
SCON.0

DIVIDE
BY 4

LDSBUF
RDSBUF

0 1

TRANSMIT TIMING

LDSBUF

SHIFT

RXD

(DATA OUT)

TXD

(DATA CLOCK)

TI

WRITE TO SCON (CLEAR RI)

WRITE TO SBSUF

SBUF

TXD
PIN

SYSTEM
CLOCK�

RECEIVE TIMING

RDSBUF

SHIFT

RXD

(DATA IN)

TXD
(DATA CLOCK)

RI

D0 D1 D2 D3 D4 D5 D6 D7

D0 D1 D2 D3 D4 D5 D6 D7

RXD
PIN

SERIAL
INTERRUPT

DATA BUS�

Figure 10-1. UART Mode 0

Maxim Integrated

10-4

MAXQ Family User’s Guide

10.1.2 UART Mode 1
This mode provides asynchronous, full-duplex communication. A total of 10 bits is transmitted, consisting of a start bit (logic 0), 8 data
bits, and 1 stop bit (logic 1), as illustrated in Figure 10-2. The data is transferred LSb first. The baud rate is programmable through the
baud clock generator. Following a write to SBUF, the UART begins transmission five cycles after the first baud clock from the baud
clock generator. Transmission takes place on the TXD pin. It begins with the start bit being placed on the pin. Data is then shifted out
onto the pin, LSb first. The stop bit follows. The TI bit is set by hardware after the stop bit is placed on the pin. All bits are shifted out
at the rate determined by the baud clock generator.

Once the baud clock generator is active, reception can begin at any time. The REN bit (SCON.4) must be set to logic 1 to allow recep-
tion. The detection of a falling edge on the RXD pin is interpreted as the beginning of a start bit, and will begin the reception process.
Data is shifted in at the selected baud rate. At the middle of the stop bit time, certain conditions must be met to load SBUF with the
received data:

RI must = 0, and either

If SM2 = 0, the state of the stop bit does not matter

or

If SM2 = 1, the state of the stop bit must = 1.

If these conditions are true, then SBUF (address) is loaded with the received byte, the RB8 bit (SCON.2) is loaded with the stop bit,
and the RI bit (SCON.0) is set. If these conditions are false, then the received data will be lost (SBUF and RB8 not loaded) and RI will
not be set. Regardless of the receive word status, after the middle of the stop bit time, the receiver goes back to looking for a 1-to-0
transition on the RXD pin.

Each data bit received is sampled on the 7th, 8th and 9th clock used by the divide-by-16 counter. Using majority voting, two equal
samples out of the three determine the logic level for each received bit. If the start bit was determined to be invalid (= 1), then the
receiver goes back to looking for a 1-to-0 transition on the RXD pin to start the reception of data.

10.1.3 UART Mode 2
This mode uses a total of 11 bits in asynchronous, full-duplex communication as illustrated in Figure 10-3. The 11 bits consist of one
start bit (a logic 0), 8 data bits, a programmable 9th bit, and one stop bit (a logic 1). Like Mode 1, the transmissions occur on the TXD
signal pin and receptions on RXD.

For transmission purposes, the 9th bit can be stuffed as a logic 0 or 1. The 9th bit is transferred from the TB8 bit position in the SCON
register (SCON.3) following a write to SBUF to initiate a transmission. Transmission begins five clock cycles after the first rollover of the
divide-by-16 counter following a software write to SBUF. It begins with the start bit being placed on the TXD pin. The data is then shift-
ed out onto the pin, LSb first, followed by the 9th bit, and finally the stop bit. The TI bit (SCON.1) is set when the stop bit is placed on
the pin.

Once the baud-rate generator is active and the REN bit (SCON.4) has been set to logic 1, reception can begin at any time. Reception
begins when a falling edge is detected as part of the incoming start bit on the RXD pin. The RXD pin is then sampled according to the
baud-rate speed. The 9th bit is placed in the RB8 bit location in SCON (SCON.2). At the middle of the 9th bit time, certain conditions
must be met to load SBUF with the received data.

RI must = 0, and either

If SM2 = 0, the state of the 9th bit does not matter

or

If SM2 = 1, the state of the 9th bit must = 1.

If these conditions are true, then SBUF will be loaded with the received byte, RB8 will be loaded with the 9th bit, and RI will be set. If
these conditions are false, then the received data will be lost (SBUF and RB8 not loaded) and RI will not be set. Regardless of the
receive word status, after the middle of the stop bit time, the receiver goes back to looking for a 1-to-0 transition on RXD.

Data is sampled in a similar fashion to Mode 1 with the majority voting on three consecutive samples. Mode 2 uses the sample divide-
by-16 counter with either the clock divided by 2 or 4, thus resulting in a baud clock of either system clock/32 or system clock/64.

Maxim Integrated

10-5

MAXQ Family User’s Guide

DIVIDE
BY 4

D7 D6 D5 D4 D3 D2 D1 D0

01

LO
AD

CL
OC

K

TRANSMIT SHIFT REGISTER�

S0 LATCH

RECEIVE DATA BUFFER� WR�

SBUF�

RD

D7 D6 D5 D4 D3 D2 D1 D0

CL
OC

K

RECEIVE SHIFT REGISTER�

SI

RESET�

BAUD
CLOCK�

LOAD
SERIAL
BUFFER

LOAD

SERIAL I/O
CONTROL

IN
TS

SHIFT

READ
SERIAL

BUFFER

T1�
FLAG =�
SCON.1

R1
FLAG =�
SCON.0

DIVIDE
BY 16

LDSBUF
RDSBUF

0 1

SBUF

SMOD

RXD
PIN

SYSTEM
CLOCK�

D0 D1 D2 D3 D4 D5 D6 D7

D0 D1 D2 D3 D4 D5 D6 D7

DIVIDE
BY 16

BIT
DETECTION

TXD
PIN

RB8 =
SCON.2

BAUD CLOCK
GENERATOR

ST
AR

T

ST
OP

ST
AR

T

ST
AR

T

SERIAL
INTERRUPT

DATA BUS�

RECEIVE TIMING

BIT DETECTOR
SAMPLING

SHIFT

RI

RXD
STOPSTART

TRANSMIT TIMING

LDSBUF

SHIFT

TI

TXD
STOPSTART

Figure 10-2. UART Mode 1

Maxim Integrated

10-6

MAXQ Family User’s Guide

DIVIDE
BY 2

D7 D6 D5 D4 D3 D2 D1 D0

01

LO
AD

CL
OC

K

TRANSMIT SHIFT REGISTER�

S0 LATCH

RECEIVE DATA BUFFER� WR�

SBUF�

RD

D7 D6 D5 D4 D3 D2 D1 D0

CL
OC

K

RECEIVE SHIFT REGISTER�

SI

RESET�

SHIFT
CLOCK�

LOAD
SERIAL
BUFFER

LOAD

SERIAL I/O
CONTROL

IN
TS

SHIFT

READ
SERIAL

BUFFER

T1�
FLAG =�
SCON.1

R1
FLAG =�
SCON.0

DIVIDE
BY 16

LDSBUF
RDSBUF

0 1

SBUF

SMOD

RXD
PIN

SYSTEM
CLOCK/2

DIVIDE
BY 16

BIT
DETECTION

TXD
PIN

RB8 =
SCON.2

TB8 =�
SCON.3

D8 ST
AR

T

ST
OP

D8

ST
AR

T

ST
OP

SERIAL
INTERRUPT

DATA BUS�

D0START

START

D1 D2 D3 D4 D5 D6 D7 RB8 STOP

D0 D1 D2 D3 D4 D5 D6 D7 TB8 STOP

RECEIVE TIMING

SHIFT

RI

RXD

BIT DETECTOR
SAMPLING

TRANSMIT TIMING

LDSBUF

SHIFT

TI

TXD

Figure 10-3. UART Mode 2

Maxim Integrated

10.1.4 UART Mode 3
This mode has the same operation as Mode 2, except for the baud-rate source. As shown in Figure 10-4, Mode 3 generates baud rates
through the baud clock generator. The bit shifting and protocol are the same.

10-7

MAXQ Family User’s Guide

D0 D1 D2 D3 D4 D5 D6 D7 RB8 STOP

D0 D1 D2 D3 D4 D5 D6 D7 TB8 STOP

RECEIVE TIMING

TRANSMIT TIMING

BAUD
CLOCK�

DIVIDE
BY 4

D7 D6 D5 D4 D3 D2 D1 D0

01

LO
AD

CL
OC

K

TRANSMIT SHIFT REGISTER�

S0 LATCH

RECEIVE DATA BUFFER� WR�

SBUF�

RD

D7 D6 D5 D4 D3 D2 D1 D0

CL
OC

K

RECEIVE SHIFT REGISTER�

SI

RESET�

LOAD
SERIAL
BUFFER

LOAD

SERIAL I/O
CONTROL

IN
TS

SHIFT

READ
SERIAL

BUFFER

T1�
FLAG =�
SCON.1

R1
FLAG =�
SCON.0

DIVIDE
BY 16

LDSBUF
RDSBUF

0 1

SBUF

SMOD

RXD
PIN

SYSTEM
CLOCK�

DIVIDE
BY 16

BIT
DETECTION

TXD
PIN

BAUD CLOCK
GENERATOR

ST
AR

T

ST
OP

ST
AR

T

SERIAL
INTERRUPT

DATA BUS�

TB8 =�
SCON.3

D8

RB8 =
SCON.3

D8

ST
OP

LDSBUF

SHIFT

TI

TXD

SHIFT

RI

RXD

BIT DETECTOR
SAMPLING

START

START

Figure 10-4. UART Mode 3

Maxim Integrated

10.2 Baud-Rate Generation
Each mode of operation has a baud-rate generator associated with it. The baud-rate generation techniques are affected by certain
user options such as the Power Management Mode Enable (PMME), Serial Mode 2 (SM2) select bit, and Baud-Rate Doubler (SMOD)
bit. Table 10-2 summarizes the effects of the various user options on the UART baud clock.

Table 10-2. UART Baud Clock Summary

10.2.1 Mode 0 Baud Rate
Baud rates for mode 0 are driven directly from the system clock source divided by either 12 or 4, with the default case being divide
by 12. The user can select the shift clock frequency using the SM2 bit in the SCON register. When SM2 is set to logic 0, the baud rate
is fixed at a divide by 12 of the system clock. When SM2 is set to logic 1, the baud rate is fixed at a divide by 4 of the system clock.

Mode 0 Baud Rate = System Clock Frequency x 3SM2 / 12

10.2.2 Mode 2 Baud Rate
In this asynchronous mode, baud rates are also generated from the system clock source. The user can effectively double the UART
baud clock frequency by setting the SMOD bit to a logic 1. The SMOD bit is set to a logic 0 on all resets, thus making ‘divide by 64’
the default setting. The baud rate is given by the following formula:

Mode 2 Baud Rate = System Clock Frequency x 2SMOD / 64

10.2.3 Mode 1 or 3 Baud Rate
These asynchronous modes are commonly used for communication with PCs, modems, and other similar interfaces. The baud rates
are programmable using the baud clock generator in the UART module. The baud clock generator is basically a phase accumulator
that generates a baud clock as the result of phase overflow into the most significant bit of the phase shifter. This baud-clock genera-
tor is driven by the system clock or system clock divided-by-4 source (depending upon the state of the SMOD bit). The baud-clock-
generator output is always divided by 16 to generate the exact baud rate.

10.2.4 Baud-Clock Generator
The baud-clock generator is basically a phase accumulator that produces a baud clock as the result of phase overflow from the most
significant bit of the phase shift circuitry. A 16-bit Phase Register (PR) is programmable by the user to select a suitable phase value
for its baud clock. The phase value dictates the phase period of the accumulation process. The phase value is added to the current
phase accumulator value on each system clock (SMOD = 1) or every 4th system clock (SMOD = 0). The baud clock is the result of
addition overflow out of the most significant bit of the phase accumulator (bit 16). The baud-clock-generator output is always divided
by 16 to produce the exact baud rate.

The following two formulas can be used to calculate the output of the baud-clock generator and the resultant Mode 1, 3 baud rates.
Additionally, Table 10-3 gives example phase register (PR) settings needed to produce some more common baud rates at certain sys-
tem clock frequencies (assuming SMOD = 1).

Baud Clock Generator Output (BAUD) = System Clock Frequency x PR / 217

Baud Rate for Modes 1 and 3 = BAUD x 2(SMOD x 2) / 26

10-8

MAXQ Family User’s Guide

BAUD CLOCK FREQUENCY

MODE 0 MODE 2 MODE 1, 3†SYSTEM CLOCK MODE

SM2 = 0 SM2 = 1 SMOD = 0 SMOD = 1 SMOD = 0 SMOD = 1
Divide by 1 (default) CLK /12 CLK /4 CLK /64 CLK /32 BAUD /64 BAUD /16

Divide by 2 CLK /24 CLK /8 CLK /128 CLK /64 BAUD /64 BAUD /16
Divide by 4 CLK /48 CLK /16 CLK /256 CLK /128 BAUD /64 BAUD /16
Divide by 8 CLK /96 CLK /32 CLK /512 CLK /256 BAUD /64 BAUD /16

Power Management Mode
(Divide by 256) CLK /3072 CLK /1024 CLK /16384 CLK /8192 BAUD /64 BAUD /16

†The BAUD frequency is determined by the baud-clock generator.

Maxim Integrated

Table 10-3. Example Baud-Clock Generator Settings (SMOD = 1)

10.3 Framing Error Detection
A framing error occurs when a valid stop bit is not detected. This results in the possible improper reception of the serial word. The
UART can detect a framing error and notify the software. Typical causes of framing errors are noise and contention. The Framing Error
condition is reported in the SCON register for the UART.

The Framing Error bit, FE, is located in SCON.7. Note that this bit normally serves as SM0 and is described as SM0/FE_0 in the regis-
ter description. Framing Error information is made accessible by the FEDE (Framing Error Detection Enable) bit located at SMD.0.
When FEDE is set to logic 1, the framing error information is shown in SM0/FE (SCON.7). When FEDE is set to logic 0, the SM0 func-
tion is accessible. The information for bits SM0 and FE is actually stored in different registers. Changing FEDE only modifies which reg-
ister is accessed, not the contents of either.

The FE bit is set to 1 when a framing error occurs. It must be cleared by software. Note that the FEDE state must be 1 while reading
or writing the FE bit. Also note that receiving a properly framed serial word does not clear the FE bit. This must be done in software.

10-9

MAXQ Family User’s Guide

0

15 0

PR

16

ADDITION

BAUD CLOCK OUTPUT =�
CARRY OUT FROM�

PHASE ACCUMULATOR [16]

0

PHASE ACCUMULATOR

Figure 10-5. Baud-Clock Generator

SYSTEM CLOCK FREQUENCY
(MHz)

BAUD RATE
(PR SETTING)

SYSTEM CLOCK FREQUENCY
(MHZ)

BAUD RATE
(PR SETTING)

10

115,200 (5E5F);
57,600 (2F30);
19,200 (0FBB);
9600 (07DD);
2400 (01FF)

3.579545

57,600 (83D2);
19,200 (2BF1);
9600 (15F8);
2400 (057E)

8

115,200 (75F7);
57,600 (3AFB);
19,200 (13A9);
9600 (09D5);
2400 (0275)

2.4576

57,600 (C000);
19,200 (4000);
9600 (2000);
2400 (0800)

3.6864

115,200 (FFFF);
57,600 (8000);
19,200 (2AAB);

9600 (1555);
2400 (0555)

1
19,200 (9D49);
9600 (4EA5);
2400 (13A9)

Maxim Integrated

10.4 UART Peripheral Registers

10.4.1 Serial Control Register (SCON)

Bit 7: Framing Error Flag (FE). (FEDE = 1) This bit is set upon detection of an invalid stop bit. It must be cleared by software.
Modification of this bit when FEDE is set has no effect on the serial mode setting.

Bit 7: Serial Port 0 Mode Bit 0 (SM0). (FEDE = 0) This bit is used in conjunction with the SM2 and SM1 bits to define the serial mode.

Bit 6: Serial Port 0 Mode Bit 1 (SM1). See the above table for more information.

Bit 5: Serial Port 0 Mode Bit 2 (SM2). Setting this bit in mode 1 ignores reception if an invalid stop bit is detected. Setting this bit in
mode 2 or 3 enables multiprocessor communications, and prevents the RI bit from being set and the interrupt from being asserted if
the 9th bit received is 0. See the above table for more information. This bit is also used to support mode 0 for clock selection:

0 = serial clock is system clock divided by 12

1 = serial clock is system clock divided by 4

Bit 4: Receive Enable (REN)

0 = serial port receiver disabled

1 = serial port receiver enabled for modes 1, 2, and 3; initiate synchronous reception for mode 0 (if RI = 0)

Bit 3: 9th Transmission Bit State (TB8). This bit defines the state of the 9th transmission bit in serial port modes 2 and 3.

Bit 2: 9th Received Bit State (RB8). This bit identifies the state of the 9th bit of received data in serial port modes 2 and 3. When SM2
is 0, it is the state of the stop bit in mode 1. This bit has no meaning in mode 0.

Bit 1: Transmit Interrupt Flag (TI). This bit indicates that the data in the serial port data buffer has been completely shifted out. It is
set at the end of the last data bit for all modes of operation and must be cleared by software once set.

Bit 0: Receive Interrupt Flag (RI). This bit indicates that a data byte has been received in the serial port buffer. The bit is set at the
end of the 8th bit for mode 0, after the last sample of the incoming stop bit for mode 1 subject to the value of the SM2 bit, or after the
last sample of RB8 for modes 2 and 3. This bit must be cleared by software once set.

10-10

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

MODE SM[2:0] FUNCTION LENGTH PERIOD

0 0 0 0 Synchronous 8 Bits 12 System Clock

0 1 0 0 Synchronous 8 Bits 4 System Clock

1 x 1 0 Asynchronous 10 Bits 64/16 Baud Clock (SMOD = 0/1)

2 0 0 1 Asynchronous 11 Bits 64/32 System Clock (SMOD = 0/1)

2 1 0 1 Asynchronous (MP) 11 Bits 64/32 System Clock (SMOD = 0/1)

3 0 1 1 Asynchronous 11 Bits 64/16 Baud Clock (SMOD = 0/1)

3 1 1 1 Asynchronous (MP) 11 Bits 64/16 Baud Clock (SMOD = 0/1)

Maxim Integrated

10-11

MAXQ Family User’s Guide

10.4.2 Serial Port Mode Register (SMD)

Bits 7 to 3: Reserved

Bit 2: Framing Error Detection Enable (FEDE). This bit selects the function of SM0 (SCON.7):

0 = SCON.7 functions as SM0 for serial port mode selection

1 = SCON.7 is converted to the Framing Error (FE) flag

Bit 1: Serial Port Baud Rate Select (SMOD). The SMOD selects the final baud rate for the asynchronous mode:

1 = 16 times the baud clock for mode 1 and 3, 32 times the system clock for mode 2

0 = 64 times the baud clock for mode 1 and 3, 64 times the system clock for mode 2

Bit 0: Enable Serial Port Interrupt (ESI). Setting this bit to 1 enables interrupt requests generated by the RI or TI flags in SCON.
Clearing this bit to 0 disables the serial port interrupt.

10.4.3 Serial Port Data Buffer Register (SBUF)

Bits 7 to 0: Serial Port Data Buffer (SBUF.[7:0]). Data for serial port is read from or written to this location. The serial transmit and
receive buffers are separate but both are addressed at this location.

10.4.4 Serial Port Phase Register (PR)

Bits 15 to 0: Serial Port Phase (PR.[15:0]). This register is used to load and read the value in the phase register.

Bit # 7 6 5 4 3 2 1 0

Name — — — — — ESI SMOD FEDE

Reset 0 0 0 0 0 0 0 0

Access r r r r r rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name SBUF.7 SBUF.6 SBUF.5 SBUF.4 SBUF.3 SBUF.2 SBUF.1 SBUF.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name PR.15 PR.14 PR.13 PR.12 PR.11 PR.10 PR.9 PR.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name PR.7 PR.6 PR.5 PR.4 PR.3 PR.2 PR.1 PR.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

11-1

MAXQ Family User’s Guide

SECTION 11: SERIAL PERIPHERAL INTERFACE (SPI) MODULE

This section contains the following information:

11.1 SPI Transfer Formats .11-3

11.2 SPI Character Lengths .11-3

11.3 SPI Transfer Baud Rates .11-4

11.4 SPI System Errors .11-4

11.4.1 Mode Fault .11-4

11.4.2 Receive Overrun .11-4

11.4.3 Write Collision While Busy .11-5

11.5 SPI Master Operation .11-5

11.6 SPI Slave Operation .11-5

11.7 SPI Peripheral Registers .11-6

11.7.1 SPI Control Register (SPICN) .11-6

11.7.2 SPI Configuration Register (SPICF) .11-7

11.7.3 SPI Clock Register (SPICK) .11-7

11.7.4 SPI Data Buffer Register (SPIB) .11-8

LIST OF FIGURES
Figure 11-1. SPI Block Diagram .11-2

Figure 11-2. SPI Transfer Formats (CKPOL, CKPHA Control) .11-3

Maxim Integrated

11-2

MAXQ Family User’s Guide

SECTION 11: SERIAL PERIPHERAL INTERFACE (SPI) MODULE
The serial peripheral interface (SPI) module of the MAXQ microcontroller provides an independent serial communication channel to
communicate synchronously with peripheral devices in a multiple master or multiple slave system. The interface allows access to a
four-wire full-duplex serial bus that can be operated in either master mode or slave mode. The SPI functionality must be enabled by
setting the SPI Enable (SPIEN) bit of the SPI Control register to logic 1. The maximum data rate of the SPI interface is 1/2 the system
clock frequency for master mode operation and 1/8 the system clock frequency for slave mode operation. The four external interface
signals used by the SPI module are MISO, MOSI, SPICK, and SSEL. The function of each of these signals is as follows:

The block diagram in Figure 11-1 shows the SPI external interface signals, control unit, read buffer, and single shift register common
to the transmit and receive data path. Each time that an SPI transfer completes, the received character is transferred to the read buffer,
giving double buffering on the receive side. The CPU has read/write access to the control unit and the SPI data buffer (SPIB). Writes
to SPIB are always directed to the shift register while reads always come from the receive holding buffer.

EXTERNAL PIN SIGNAL MASTER MODE USE SLAVE MODE USE
MISO: Master In, Slave Out Input to serial shift register Output from serial shift register when selected
MOSI: Master Out, Slave In Ouput from serial shift register Input to serial shift register when selected

SPICK: SPI Clock Serial shift clock sourced to slave device(s) Serial shift clock from an external master

SSEL: Slave Select (Optional) Mode fault-detection input if enabled
(MODFE = 1)

Slave select input

SPIEN =�
SPICN.0

MSTM = SPICN.1

SHIFT REGISTER

MOSI

SPIB WRITES

RECEIVE DATA�
BUFFER

SPIB READS

0

0

1

15/7

15/7

MISO0

1

SPI STATUS & CONTROL UNIT

0

SPICK1

0

SSEL

Figure 11-1. SPI Block Diagram

Maxim Integrated

11.1 SPI Transfer Formats
During an SPI transfer, data is simultaneously transmitted and received over two serial data lines with respect to a single serial shift
clock. The polarity and phase of the serial shift clock are the primary components in defining the SPI data transfer format. The polari-
ty of the serial clock corresponds to the idle logic state of the clock line and therefore also defines which clock edge is the active edge.
To define a serial shift clock signal that idles in a logic low state (active clock edge = rising), the Clock Polarity Select (CKPOL; SPICF.0)
bit should be configured to a 0, while setting CKPOL = 1 will cause the shift clock to idle in a logic high state (active clock edge =
falling). The phase of the serial clock selects which edge is used to sample the serial shift data. The Clock Phase Select (CKPHA;
SPICF.1) bit controls whether the active or inactive clock edge is used to latch the data. When CKPHA is set to logic 1, data is sam-
pled on the inactive clock edge (clock returning to the idle state). When CKPHA is set to logic 0, data is sampled on the active clock
edge (clock transition to the active state). Together, the CKPOL and CKPHA bits allow the four possible SPI data transfer formats as
illustrated in Figure 11-2.

Anytime that the active clock edge is used for sampling (CKPHA = 0), the transfer cycle must be started with assertion of the SSEL
signal. This requirement necessitates that the SSEL signal be deasserted and reasserted between successive transfers. Conversely,
when the inactive edge is used for sampling (CKPHA = 1), the SSEL signal may remain low through successive transfers allowing the
active clock edge to signal the start of a new transfer.

11.2 SPI Character Lengths
To flexibly accommodate different SPI transfer data lengths, the character length for any transfer is user configurable through the
Character Length Bit (CHR) in the SPI Configuration Register. The CHR bit allows selection of either 8-bit or 16-bit transfers.

When loading 8-bit characters into the SPIB data buffer, the byte for transmission should be right-justified or placed in the least signif-
icant byte of the word. When a byte transfer completes, the received byte is right-justified and can be read from the least significant
byte of the SPIB word. The MSB of the SPIB data buffer is not significant when transmitting and receiving 8-bit characters.

11-3

MAXQ Family User’s Guide

SPICK

CKPOL = 0�
CKPHA = 0

CKPOL = 0�
CKPHA = 1

CKPOL = 1�
CKPHA = 0

CKPOL = 1�
CKPHA = 1

MOSI/MISO

SSEL

SAMPLING POINTS

TRANSFER CYCLE (CHARACTER LENGTH DEFINED BY CHR)

MSBIT LSBIT

Figure 11-2. SPI Transfer Formats (CKPOL, CKPHA Control)

Maxim Integrated

11-4

MAXQ Family User’s Guide

11.3 SPI Transfer Baud Rates
When operating as a slave device, an external master drives the SPI serial clock. For proper slave operation, the serial clock provid-
ed by the external master should not exceed the system clock frequency divided by 8.

When operating in the master mode, the SPI serial clock is sourced to the external slave device(s). The serial clock baud rate is deter-
mined by the clock-divide ratio specified in the SPI Clock Divider Ratio (SPICK) register. The SPI module supports 256 different clock-
divide ratio selections for serial clock generation. The SPICK clock rate is determined by the following formula:

SPI Baud Rate = System Clock Frequency / (2 x Clock Divider Ratio)

where Clock Divider Ratio = (SPICK.7:0) + 1

Since the SPI baud rate is a function of the System Clock Frequency, using any of the system clock divide modes (including Power
Management Mode) alters the baud rate. Attempts to invoke the Power Management Mode while an SPI transfer in is progress (STBY = 1)
are ignored.

Note, however, that once in Power Management Mode (PMME = 1), writes to SPIB in master mode and assertion of the SSEL pin in
slave mode both qualify as switchback sources if enabled (SWB = 1). The SPI module clocks are halted if the device is placed into
Stop mode.

11.4 SPI System Errors
The SPI module can detect three types of SPI system errors. A mode fault error arises in a multiple master system when more than one
SPI device simultaneously tries to be a master. A receive overrun error occurs when an SPI transfer completes before the previous
character has been read from the receive-holding buffer. The third kind of error, write collision, indicates that an attempted write to SPIB
was detected while a transfer was in progress (STBY = 1).

11.4.1 Mode Fault
When a SPI device is configured as a master and its Mode Fault Enable bit (SPICN.2: MODFE) is also set, a mode fault error occurs if
SSEL input signal is driven low by an external device. This error is typically caused when a second SPI device attempts to function as
a master in the system. In the condition where more than one device is configured as master concurrently, there is possibility of bus
contention that can cause permanent damage to push-pull CMOS drivers. The mode fault error detection is to provide protection from
such damage by disabling the bus drivers. When a mode fault is detected, the following actions are taken immediately:

1) The MSTM bit is forced to logic 0 to reconfigure the SPI device as a slave.

2) The SPIEN bit is forced to logic 0 to disable the SPI module.

3) The Mode Fault (SPICN.3: MODF) status flag is set. Setting the MODF bit can generate an interrupt if it is enabled.

The application software must correct the system conflict before resuming its normal operation. The MODF flag is set automatically by
hardware but must be cleared by software or a reset once set. Setting the MODF bit to logic 1 by software causes an interrupt if enabled.

Mode fault detection is optional and can be disabled by clearing the MODFE bit to logic 0. Disabling the mode fault detection disables
the function of the SSEL signal during master mode operation, allowing the associated port pin to be used as a general-purpose I/O.

Note that the mode fault mechanism does not provide full protection from bus contention in multiple master, multiple slave systems.
For example, if two devices are configured as master at the same time, the mode fault-detect circuitry offers protection only when one
of them selects the other as slave by asserting its SSEL signal. Also, if a master accidentally activates more than one slave and those
devices try to simultaneously drive their output pins, bus contention can occur without and a mode fault error being generated.

11.4.2 Receive Overrun
Since the receive direction of SPI is double buffered, there is no overrun condition as long as the received character in the read buffer
is read before the next character in the shift register ready to be transferred to the read buffer. However, if previous data in the read
buffer has not been read out when a transfer cycle is completed and the new character is loaded into the read buffer, a receive over-
run occurs and the Receive Overrun flag (SPICN.5: ROVR) is set. Setting the ROVR flag indicates that the oldest received character
has been overwritten and is lost. Setting the ROVR bit to logic 1 causes an interrupt if enabled. Once set, the ROVR bit is cleared only
by software or a reset.

Maxim Integrated

11.4.3 Write Collision While Busy
A write collision occurs if an attempt to write the SPIB data buffer is made during a transfer cycle (STBY = 1). Since the shift register
is single buffered in the transmit direction, writes to SPIB are made directly into the shift register. Allowing the write to SPIB while anoth-
er transfer is in progress could easily corrupt the transmit/receive data. When such a write attempt is made, the current transfer con-
tinues undisturbed, the attempted write data is not transferred to the shift register, and the control unit sets the Write Collision flag
(SPICN.4: WCOL). Setting the WCOL bit to logic 1 causes an interrupt if SPI interrupt sources are enabled. Once set, the WCOL bit is
cleared only by software or a reset.

Normally, write collisions are associated solely with slave devices since they do not control initiation of transfers and do not have access
to as much information about the SPICK clock as the master. As a master, write collisions are completely avoidable, however, the con-
trol unit detects write collisions for both master and slave modes.

11.5 SPI Master Operation
The SPI module is placed in master mode by setting the Master Mode Enable (MSTM) bit in the SPI Control register to logic 1. Only an
SPI master device can initiate a data transfer. The master is responsible for manually selecting/deselecting the desired slave devices.
This can be done using a general-purpose output pin. Writing a data character to the SPI shift register (SPIB) while in master mode starts
a data transfer. The SPI master immediately shifts out the data serially on the MOSI pin, most significant bit first, while providing the ser-
ial clock on SPICK output. New data is simultaneously received on the MISO pin into the least significant bit of the shift register. The data
transfer format (clock polarity and phase), character length, and baud rate are configurable as described earlier in the section. During
the transfer, the SPI Transfer Busy (SPICN.7:STBY) flag is set to indicate that a transfer is in process. At the end of the transfer, the data
contained in the shift register is moved into the receive data buffer, the STBY bit is cleared by hardware, and the SPI Transfer Complete
flag (SPICN.6: SPIC) is set. Setting the SPIC bit generates an interrupt request if SPI interrupt sources are enabled (ESPII = 1).

11.6 SPI Slave Operation
The SPI module operates in slave mode when the MSTM bit is cleared to logic 0. In slave mode, the SPI is dependent on the SPICK
sourced from the master to control the data transfer. The SPICK input frequency should be no greater than the system clock of the
slave device frequency divided by 8.

The Slave Select SSEL input must be externally asserted by a master before data exchange can take place. SSEL must be low before
data transaction begins and must remain low for the duration of the transaction. If data is to be transmitted by the slave device, it must
be written to its shift register before the beginning of a transfer cycle, otherwise the character already in the shift register will be trans-
ferred. The slave device considers a transfer to begin with the first clock edge or the falling edge of the SSEL, dependent on the data
transfer format.

The SPI slave receives data from the external master MOSI pin, most significant bit first, while simultaneously transferring the contents
of its shift register to the master on the MISO pin, also most significant bit first. Data received from the external master replaces data
in the internal shift register until the transfer completes. Just like in the master mode of operation, received data is loaded into the read
buffer and the SPI Transfer Complete flag is set at the end of transfer. The setting of the Transfer Complete flag generates an interrupt
request if enabled.

When SSEL is not asserted, the slave device ignores the SPICK clock and the shift register is disabled. Under this condition, the device
is basically idle, no data is shifted out from the shift register, and no data is sampled from the MOSI pin. The MISO pin is placed in an
input mode and is weakly pulled high to allow other devices on the bus to drive the bus. Deassertion of the SSEL signal by the mas-
ter during a transfer (before a full character, as defined by CHR, is received) aborts the current transfer. When the transfer is aborted,
no data is loaded into the read buffer, the SPIC flag is not set, and the slave logic and bit counter are reset.

In slave mode, the Clock Divider Ratio bits (CKR7:0) have no function since an external master supplies the serial clock. The transfer
format (CKPOL, CKPHA settings) and the character length selection (CHR) for the slave device, however, should match the master for
a proper communication.

11-5

MAXQ Family User’s Guide

Maxim Integrated

11.7 SPI Peripheral Registers

11.7.1 SPI Control Register (SPICN)

Bit 7: SPI Transfer Busy Flag (STBY). This bit is used to indicate the current transmit/receive activity of the SPI module. STBY is set
to 1 when an SPI transfer cycle starts and is cleared to 0 when the transfer cycle is completed. This bit is controlled by hardware and
is read-only for user software.

0 = SPI module is idle—no transfer in process

1 = SPI transfer in process

Bit 6: SPI Transfer Complete Flag (SPIC). This bit signals the completion of an SPI transfer cycle. This bit must be cleared to 0 by
software once set. Setting this bit to logic 1 causes an interrupt if enabled.

0 = No SPI transfers have completed since the bit was last cleared

1 = SPI transfer complete

Bit 5: Receive Overrun Flag (ROVR). This bit indicates when a receive overrun has occurred. A receive overrun results when a
received character is ready to be transferred to the SPI receive data buffer before the previous character in the data buffer is read. The
most recent receive data is lost. This bit must be cleared to 0 by software once set. Setting this bit to logic 1 causes an interrupt if
enabled.

0 = No receive overrun has occurred

1 = Receive overrun occurred

Bit 4: Write Collision Flag (WCOL). This bit signifies that an attempt was made by software to write the SPI Buffer (SPIB) while a trans-
fer was in progress (STBY = 1). Such attempts will always be blocked. This bit must be cleared to 0 by software once set. Setting this
bit to logic 1 causes an interrupt if enabled.

0 = No write collision has been detected

1 = Write collision detected

Bit 3: Mode Fault Flag (MODF). This bit is the mode fault flag for SPI master mode operation. When mode fault detection is enabled
(MODFE = 1) in master mode, detection of high-to-low transition on the SSEL pin signifies a mode fault causes MODF to be set to 1.
This bit must be cleared to 0 by software once set. Setting this bit to logic 1 causes an interrupt if enabled. This flag has no meaning
in slave mode.

0 = No mode fault has been detected

1 = Mode fault detected while operating as a master (MSTM = 1)

Bit 2: Mode Fault Enable (MODFE). When set to logic 1, the SSEL input pin is used for mode fault detection during SPI master mode
operation. When cleared to 0, the SSEL input has no function and its pin can be used for general-purposes I/O. In slave mode, the
SSEL pin always functions as a slave-select input signal to the SPI module, independent of the setting of the MODFE bit.

Bit 1: Master Mode Enable (MSTM). The MSTM bit functions as a master mode enable bit for the SPI module.

0 = SPI module operates in slave mode when enabled (SPIEN = 1)

1 = SPI module operates in master mode when enabled (SPIEN = 1)

Note that this bit can be set from 0 to 1 only when the SSEL signal is deasserted. This bit can be automatically cleared to 0 by hard-
ware if a mode fault is detected.

11-6

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN

Reset 0 0 0 0 0 0 0 0

Access r rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

11-7

MAXQ Family User’s Guide

Bit 0: SPI Enable (SPIEN)

0 = SPI module and its baud-rate generator are disabled

1 = SPI module and its baud-rate generator are enabled

11.7.2 SPI Configuration Register (SPICF)

Bit 7: SPI Interrupt Enable (ESPII). This bit enables any of the SPI interrupt source flags (MODF, WCOL, ROVR, SPIC) to generate
interrupt requests.

0 = SPI interrupt sources disabled

1 = SPI interrupt sources enabled

Bits 6 to 3: Reserved

Bit 2: Character Length Bit (CHR). This bit determines the character length for a SPI transfer cycle. A character can be 8 bits in length
or 16 bits in length.

0 = 8-bit character length specified

1 = 16-bit character length specified

Bit 1: Clock Phase Select (CKPHA). This bit selects the clock phase and is used with the CKPOL bit to define the SPI data transfer
format.

0 = Data sampled on the active clock edge

1 = Data sampled on the inactive clock edge

Bit 0: Clock Polarity Select (CKPOL). This bit selects the clock polarity and is used with the CKPHA bit to define the SPI data trans-
fer format.

0 = Clock idles in the logic 0 state (rising = active clock edge)

1 = Clock idles in the logic 1 state (falling = active clock edge)

11.7.3 SPI Clock Register (SPICK)

Bits 7 to 0: Clock Divider Ratio (CKR.[7:0]). This 8-bit value determines the system clock-divide ratio to be used for SPI master mode
baud-clock generation. This register has no function when operating in slave mode as the SPI clock generation circuitry is disabled.
The frequency of the SPI master mode baud rate is calculated using the following equation:

SPI Baud Rate = (0.5 x System Clock Frequency) / (CKR[7:0] + 1)

Bit # 7 6 5 4 3 2 1 0

Name ESPII — — — — CHR CKPHA CKPOL

Reset 0 0 0 0 0 0 0 0

Access rw r r r r rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name CKR.7 CKR.6 CKR.5 CKR.4 CKR.3 CKR.2 CKR.1 CKR.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

11.7.4 SPI Data Buffer Register (SPIB)

Bits 15 to 0: SPI Data Buffer (SPIB.[15:0]). Data for SPI is read from or written to this location. The serial transmit and receive buffers
are separate but both are addressed at this location. Write access is allowed only outside of the transfer cycle. When the STBY bit is
set, write attempts are blocked and cause a write collision error.

11-8

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name SPIB.15 SPIB.14 SPIB.13 SPIB.12 SPIB.11 SPIB.10 SPIB.9 SPIB.8

Reset 0 0 0 0 0 0 0 0

Access rs rs rs rs rs rs rs rs

Bit # 7 6 5 4 3 2 1 0

Name SPIB.7 SPIB.6 SPIB.5 SPIB.4 SPIB.3 SPIB.2 SPIB.1 SPIB.0

Reset 0 0 0 0 0 0 0 0

Access rs rs rs rs rs rs rs rs

r = read, s = special

Maxim Integrated

12-1

MAXQ Family User’s Guide

SECTION 12: HARDWARE MULTIPLIER MODULE

This section contains the following information:

12.1 Hardware Multiplier Organization .12-2

12.2 Hardware Multiplier Controls .12-3

12.3 Register Output Selection .12-3

12.3.1 Signed-Unsigned Operand Selection .12-3

12.3.2 Operand Count Selection .12-3

12.4 Hardware Multiplier Operations .12-3

12.4.1 Accessing the Multiplier .12-4

12.5 Hardware Multiplier Peripheral Registers .12-4

12.5.1 Hardware Multiplier Control Register (MCNT) .12-4

12.5.2 Multiplier Operand A Register (MA) .12-5

12.5.3 Multiplier Operand B Register (MB) .12-6

12.5.4 Multiplier Accumulator 2 Register (MC2) .12-6

12.5.5 Multiplier Accumulator 1 Register (MC1) .12-7

12.5.6 Multiplier Accumulator 0 Register (MC0) .12-7

12.5.7 Multiplier Read Register 1 (MC1R) .12-8

12.5.8 Multiplier Read Register 0 (MC0R) .12-8

12.6 Hardware Multiplier Examples .12-9

LIST OF FIGURES
Figure 12-1. Multiplier Organization .12-2

LIST OF TABLES
Table 12-1. Hardware Multiplier Operations .12-4

Maxim Integrated

12-2

MAXQ Family User’s Guide

SECTION 12: HARDWARE MULTIPLIER MODULE
The hardware multiplier module can be used by the MAXQ microcontroller to support high-speed multiplications. The hardware multi-
plier module is equipped with two 16-bit operand registers, a 32-bit read-only result register, and an accumulator of width between 32
bits and 48 bits, depending on the specific MAXQ device. The multiplier can complete a 16-bit x 16-bit multiply-and-accumulate/sub-
tract operation in a single cycle. The hardware multiplier module supports the following operations without interfering with the normal
core functions:

• Signed or unsigned Multiply (16 bit x 16 bit)

• Signed or unsigned Multiply-Accumulate (16 bit x 16 bit)

• Signed or unsigned Multiply-Subtract (16 bit x 16 bit)

• Signed Multiply and Negate (16 bit x 16 bit)

12.1 Hardware Multiplier Organization
The hardware multiplier consists of two 16-bit, parallel-load operand registers (MA, MB); a read-only result register formed by two paral-
lel 16-bit registers (MC1R and MC0R); an accumulator, which is formed by up to three 16-bit parallel registers (MC2, MC1, and MC0); and
a status/control register (MCNT). Note that the width and/or presence of the MC2 register depend on the specified accumulator size for
the given MAXQ device. Figure 12-1 shows a block diagram of the hardware multiplier.

MBMA

MC0MC1MC2

MULTIPLIER

0015 15

015015

OVERFLOW

SUS

MMAC

MSUB

OPCS

SQU

CLD
MCW

15015 150 0

MC1R MC0R

M
CN

T

Figure 12-1. Multiplier Organization

Maxim Integrated

12.2 Hardware Multiplier Controls
The selection of operation to be performed by the multiplier is determined by four control bits in the MCNT register: SUS, MSUB, MMAC,
and SQU. The number of operands that must be loaded to trigger the specified operation is dictated by the OPCS bit setting, except
when the square function is enabled (SQU = 1). Enabling the square function implicitly defines that only a single operand (either MA or
MB) needs to be loaded to trigger the square operation, independent of the OPCS bit setting. The MCNT register bits must be config-
ured to select the desired operation and operand count prior to loading the operand(s) to trigger the multiplier operation. Any write to
MCNT automatically resets the operand load counter of the multiplier, but does not affect the operand registers, unless such action is
requested using the Clear Data Registers (CLD) control bit. Once the desired operation has been specified via the MCNT register bits,
loading the prescribed number of operands triggers the respective multiply, multiply-accumulate/subtract or multiply-negate operation.

12.3 Register Output Selection
The Hardware Multiplier implements the MC Register Write Select (MCW) control bit so that writing of the result to the MC2:MC0 reg-
isters can be blocked to preserve the MC registers (accumulator). When the MCW bit is configured to logic 1, the result for the given
operation is not written to the MC registers. When the MCW bit is configured to logic 0, the MC registers are updated with the result of
the operation. The MC1R, MC0R read-only register pair are updated independent of the MCW bit setting. This register pair always
reflect the output that would normally be placed in MC1:MC0, given that MCW = 1 or MMAC = 0. When MCW = 0 and MMAC = 1, the
MC1R:MC0R content may not match the MC1:MC0 register content, but it will be predictable and may be useful in certain situations.
See Table 12-1 for details.

12.3.1 Signed-Unsigned Operand Selection
The operands can be either signed or unsigned numbers, but the data type must be defined by the user software via the Signed-
Unsigned (SUS) bit prior to triggering the operation. For an unsigned operation, the Signed-Unsigned bit (SUS) in the MCNT register
must be set to 1; for a signed operation, the SUS bit must be cleared to 0. The multiplier treats unsigned numbers as absolute magni-
tude. For a 16-bit positional binary number, this represents a value in the range 0 to 216 - 1 (xFFFFh). The signed number representa-
tion is a two's-complement value, where the most significant bit is defined as a sign bit. The range of a 16-bit two's-complement num-
ber is -2(16-1) (x8000h) to +2(16-1) - 1 (x7FFF). The product of any signed operation will be sign extended before being stored or accu-
mulated/subtracted into the MC registers. The SUS bit should always be configured to logic 0 (i.e., signed operands) for the multiply-
negate operation. Attempting an unsigned multiply-negate operation results in incorrect results and setting of the OF bit. Modifying the
operand data type selection via the SUS bit does not alter the contents of the MC registers. The MC registers are read/write accessi-
ble and can be modified by user code when necessary.

12.3.2 Operand Count Selection
The OPCS bit allows selection of single operand or two operands operation for the multiply and multiply-accumulate/subtract opera-
tions. When the OPCS bit is cleared to 0, the multiply or multiply-accumulate/subtract operation established by the SUS, MSUB, and
MMAC bits is triggered once two operands are loaded, one to each of the MA and MB registers. When OPCS is set to 1, the opera-
tion commences once data is loaded to either MA or MB. The OPCS bit is ignored when the square operation is enabled (SQU), since
loading of data to the MA or MB register actually writes to both registers.

12.4 Hardware Multiplier Operations
The control bits, which specify data type (SUS), operand count (OPCS or SQU), and destination control (MCW), have already been
described. However, there are two additional MCNT register bits that serve to define the Hardware Multiplier operation. The multiply-
accumulate/subtract and multiply-negate operations are enabled by the Multiply-Accumulate Enable (MMAC) and Multiply Negate
(MSUB) bits in the MCNT register. When the MMAC bit is set to 1, the multiplier performs a multiply-accumulate (if MSUB = 0) or a mul-
tiply-subtract (if MSUB = 1). If MMAC is configured to 0, the multiplier result is not accumulated or subtracted, but can be stored direct-
ly (if MSUB = 0) or negated (if MSUB = 1) before storage. The multiply-negate operation (MMAC = 0, MSUB = 1) is only allowable for
signed data operands (SUS = 0). For unsigned multiply-accumulate/subtract operations, the OF bit is set when a carry-out/borrow-in
from the most significant bit of the MC register occurs. For a signed two’s-complement multiply-accumulate/subtract operations, the
OF bit is set when the carry-out/borrow-in from the most significant magnitude position of the MC register is different from the carry-
out/borrow-in of the sign position of the MC register. Since there is no overflow condition for multiply and multiply-negate operations,
the OF bit is always cleared for these operations with one exception. The OF bit will be set to logic 1 if an unsigned multiply-negate
(invalid operation) is requested. Table 12-1 shows the operations supported by the multiplier and associated MCNT control bit settings.

12-3

MAXQ Family User’s Guide

Maxim Integrated

12.4.1 Accessing the Multiplier
There are no restrictions on how quickly data is entered into the operand registers or the order of data entry. The only requirement to
do a calculation is to perform the loading of MA and/or MB registers having specified data type and operation in the MCNT register.
The multiplier keeps track of the writes to the MA and MB registers, and starts calculation immediately after the prescribed number of
operands is loaded. If two operands are specified for the operation, the multiplier waits for the second operand to be loaded into the
other operand register before starting the actual calculation. If for any reason software needs to reload the first operand, it should either
reload that same operand register or use the CLD bit in the MCNT register to reinitialize the multiplier; otherwise, loading data to anoth-
er operand register triggers the calculation. The CLD bit is a self-clearing bit that can be used for multiplier initialization. When it is set,
it clears all data registers and the OF bit to zero and resets the multiplier operand write counter.

The specified hardware multiplier operation begins when the final operand(s) is loaded and will complete in a single cycle. The read-
only MC1R, MC0R result registers can be accessed in the very next cycle unless accumulation/subtraction with MC2:0 is requested
(MCW = 0 and MMAC = 1), in which case, one cycle is required so that stable data can be read. When MCW = 0, the MC2:0 regis-
ters always require one wait cycle before the operation result is accessible. The single wait cycle needed for updating the MC2:0 reg-
isters with a calculated result does not prevent initiating another calculation. Back-to-back operations can be triggered (independent
of data type and operand count) without the need of wait state between loading of operands.

Table 12-1. Hardware Multiplier Operations

12.5 Hardware Multiplier Peripheral Registers

12.5.1 Hardware Multiplier Control Register (MCNT)

Bit 7: Overflow Flag (OF). This bit is set to logic 1 when an overflow occurred for the last operation. This bit can be set for accumu-
lation/subtraction operations or unsigned multiply-negate attempts. This bit is automatically cleared to 0 following a reset, starting a
multiplier operation, or setting of the CLD bit to 0.

Bit 6: MC Register Write Select (MCW). The state of the MCW bit determines if an operation result will be placed into the accumula-
tor registers (MC).

0 = The result will be written to the MC registers.

1 = The result is not written to the MC registers (MC register content is unchanged).

Bit 5: Clear Data Registers (CLD). This bit initializes the operand registers and the accumulator of the multiplier. When it is set to 1,
the contents of all data registers and the OF bit are cleared to 0 and the operand load counter is reset immediately. This bit is cleared
by hardware automatically. Writing a 0 to this bit has no effect.

12-4

MAXQ Family User’s Guide

MCW:MSUB:MMAC OPERATION MC2 MC1 MC0 MC1R:MC0R
OF

STATUS

000 Multiply MA*MB MA*MB No

001 Multiply-Accumulate MC+(MA*MB) 32lsbits of (MC+2*(MA*MB)) Yes

010 Multiply-Negate (SUS = 0 only) -(MA*MB) -(MA*MB) No

011 Multiply-Subtract MC-(MA*MB) 32lsbits of (MC-2*(MA*MB)) Yes

100 Multiply MC2 MC1 MC0 MA*MB No

101 Multiply-Accumulate MC2 MC1 MC0 32lsbits of (MC+(MA*MB)) No

110 Multiply-Negate (SUS = 0 only) MC2 MC1 MC0 -(MA*MB) No

111 Multiply-Subtract MC2 MC1 MC0 32lsbits of (MC-(MA*MB)) No

Bit # 7 6 5 4 3 2 1 0

Name OF MCW CLD SQU OPCS MSUB MMAC SUS

Reset 0 0 0 0 0 0 0 0

Access r rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

Bit 4: Square Function Enable (SQU). This bit supports the hardware square function. When this bit is set to logic 1, a square oper-
ation is initiated after an operand is written to either the MA or the MB register. Writing data to either of the operand registers writes to
both registers and triggers the specified square or square-accumulate/subtract operation. Setting this bit to 1 also overrides the OPCS
bit setting. When SQU is cleared to logic 0, the hardware square function is disabled.

0 = Square function disabled

1 = Square function enabled

Bit 3: Operand Count Select (OPCS). This bit defines how many operands must be loaded to trigger a multiply or multiply-accumu-
late/subtract operation (except when SQU = 1 since this implicitly specifies a single operand). When this bit is cleared to logic 0, both
operands (MA and MB) must be written to trigger the operation. When this bit is set to 1, the specified operation is triggered once either
operand is written.

0 = Both operands (MA and MB) must be written to trigger the multiplier operation.

1 = Loading one operand (MA or MB) triggers the multiplier operation.

Bit 2: Multiply Negate (MSUB). Configuring this bit to logic 1 enables negation of the product for signed multiply operations and sub-
traction of the product from the accumulator (MC[2:0]) when MMAC = 1. When MSUB is configured to logic 0, the product of multiply
operations will not be negated and accumulation is selected when MMAC = 1.

Bit 1: Multiply-Accumulate Enable (MMAC). This bit enables the accumulate or subtract operation (as per MSUB) for the hardware
multiplier. When this bit is cleared to logic 0, the multiplier will perform only multiply operations. When this bit is set to logic 1, the mul-
tiplier will perform a multiply-accumulate or multiply-subtract operation based upon the MSUB bit.

0 = Accumulate/subtract operation disabled

1 = Accumulate/subtract operation enabled

Bit 0: Signed-Unsigned Select (SUS). This bit determines the data type of the operands. When this bit is cleared to logic 0, the
operands are treated as two’s-complement values and the multiplier performs a signed operation. When this bit is set to logic 1, the
operands are treated as absolute magnitudes and the multiplier performs an unsigned operation.

0 = Signed operands

1 = Unsigned operands

12.5.2 Multiplier Operand A Register (MA)

Bits 15 to 0: Multiplier Operand A Register (MA.[15:0]). This operand A register is used by the application code to load 16-bit val-
ues for multiplier operations.

12-5

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name MA.15 MA.14 MA.13 MA.12 MA.11 MA.10 MA.9 MA.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MA.7 MA.6 MA.5 MA.4 MA.3 MA.2 MA.1 MA.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

12-6

MAXQ Family User’s Guide

12.5.3 Multiplier Operand B Register (MB)

Bits 15 to 0: Multiplier Operand B Register (MB.[15:0]). This operand B register is used by the application code to load 16-bit val-
ues for multiplier operations.

12.5.4 Multiplier Accumulator 2 Register (MC2)

Bits 15 to 0: Multiplier Accumulator 2 Register (MC2.[15:0]). The MC2 register represents the two most significant bytes of the accu-
mulator register. The 48-bit accumulator is formed by MC2, MC1 and MC0. For a signed operation, the most significant bit of this reg-
ister is the sign bit. The MC2 register width is dependent upon the hardware multiplier accumulator width of the given MAXQ device.
For a MAXQ device having only a 32-bit accumulator, the MC2 register will not be present.

Bit # 15 14 13 12 11 10 9 8

Name MC2.15 MC2.14 MC2.13 MC2.12 MC2.11 MC2.10 MC2.9 MC2.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MC2.7 MC2.6 MC2.5 MC2.4 MC2.3 MC2.2 MC2.1 MC2.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name MB.15 MB.14 MB.13 MB.12 MB.11 MB.10 MB.9 MB.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MB.7 MB.6 MB.5 MB.4 MB.3 MB.2 MB.1 MB.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

12-7

MAXQ Family User’s Guide

12.5.5 Multiplier Accumulator 1 Register (MC1)

Bits 15 to 0: Multiplier Accumulator 1 Register (MC1.[15:0]). The MC1 register represents bytes 3 and 2 of the accumulator regis-
ter. The 48-bit accumulator is formed by MC2, MC1, and MC0.

12.5.6 Multiplier Accumulator 0 Register (MC0)

Bits 15 to 0: Multiplier Accumulator 0 Register (MC0.[15:0]). The MC0 register represents the two least significant bytes of the accu-
mulator register. The 48-bit accumulator is formed by MC2, MC1, and MC0.

Bit # 15 14 13 12 11 10 9 8

Name MC1.15 MC1.14 MC1.13 MC1.12 MC1.11 MC1.10 MC1.9 MC1.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MC1.7 MC1.6 MC1.5 MC1.4 MC1.3 MC1.2 MC1.1 MC1.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name MC0.15 MC0.14 MC0.13 MC0.12 MC0.11 MC0.10 MC0.9 MC0.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MC0.7 MC0.6 MC0.5 MC0.4 MC0.3 MC0.2 MC0.1 MC0.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

12.5.7 Multiplier Read Register 1 (MC1R)

Bits 15 to 0: Multiplier Read Register 1 (MC1R.[15:0]). The MC1R register represents bytes 3 and 2 result from the last operation
when MCW = 1 or the last operation was a multiply or multiply-negate. When MCW = 0 and the last operation was a multiply-accu-
mulate/subtract, the contents of this register may or may not agree with the contents of MC1 due to the combinatorial nature of the
adder. The content of this register may change if MCNT, MA, MB, or MC[2:0] is changed.

12.5.8 Multiplier Read Register 0 (MC0R)

Bits 15 to 0: Multiplier Read Register 0 (MC0R.[15:0]). The MC1R register represents bytes 1 and 0 result from the last operation
when MCW = 1 or the last operation was a multiply or multiply-negate. When MCW = 0 and the last operation was a multiply-accu-
mulate/subtract, the contents of this register may or may not agree with the contents of MC0 due to the combinatorial nature of the
adder. The content of this register may change if MCNT, MA, MB or MC[2:0] is changed.

12-8

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name MC1R.15 MC1R.14 MC1R.13 MC1R.12 MC1R.11 MC1R.10 MC1R.9 MC1R.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MC1R.7 MC1R.6 MC1R.5 MC1R.4 MC1R.3 MC1R.2 MC1R.1 MC1R.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read

Bit # 15 14 13 12 11 10 9 8

Name MC0R.15 MC0R.14 MC0R.13 MC0R.12 MC0R.11 MC0R.10 MC0R.9 MC0R.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MC0R.7 MC0R.6 MC0R.5 MC0R.4 MC0R.3 MC0R.2 MC0R.1 MC0R.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read

Maxim Integrated

12.6 Hardware Multiplier Examples
The following are code examples of multiplier operations.

;Unsigned Multiply 16-bit x 16-bit
move MCNT, #21h ; CLD=1, SUS=1 (unsigned)
move MA, #0FFFh ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R= 00FF_FFFFh

; MC2:0=0000_00FF_FFFFh

;Signed Multiply 16-bit x 16-bit
move MCNT, #20h ; CLD=1, SUS=0 (signed)
move MA, #F001h ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R= FF00_0001h

; MC2:0=FFFF_FF00_0001h

;Unsigned Multiply-Accumulate 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #03h ; MMAC=1, SUS=1 (unsigned)
move MA, #0FFFh ;
move MB, #1001h ;

; MC1R:MC0R=02FF_FFFFh
; MC2:0=0000_0200_0000h

;Signed Multiply-Accumulate 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #02h ; SUS=0 (signed)
move MA, #F001h ;
move MB, #1001h ;

; MC1R:MC0R= FF00_0003h
; MC2:0=0000_0000_0002h

;Unsigned Multiply-Subtract 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #07h ; MMAC=1, MSUB=1, SUS=1 (unsigned)
move MA, #0FFFh ;
move MB, #1001h ;

; MC1R:MC0R=FF00_0003h
; MC2:0=0000_0000_0002h

;Signed Multiply-Subtract 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #06h ; MMAC=1, MSUB=1, SUS=0 (signed)
move MA, #F001h ;
move MB, #1001h ;

; MC1R:MC0R= 02FF_FFFFh
; MC2:0=0000_0200_0000h

;Signed Multiply Negate 16-bit x 16-bit
move MCNT, #24h ; CLD=1, MSUB=1, SUS=0 (signed)
move MA, #F001h ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R =00FF_FFFFh

; MC2:0=0000_00FF_FFFFh

12-9

MAXQ Family User’s Guide

Maxim Integrated

13-1

MAXQ Family User’s Guide

SECTION 13: 1-Wire BUS MASTER

This section contains the following information:

13.1 1-Wire Peripheral Registers .13-3

13.1.1 1-Wire Address Register (OWA) .13-3

13.1.2 1-Wire Data Register (OWD) .13-3

13.2 1-Wire Clock Control .13-4

13.2.1 1-Wire Clock Divisor Register (OWA = 100b) .13-4

13.3 1-Wire Bus Master Control .13-5

13.3.1 1-Wire Control Register (OWA = 101b) .13-5

13.4 1-Wire Bus Master Commands .13-6

13.4.1 1-Wire Command Register (OWA = 000b) .13-6

13.5 Search Operation Using Search ROM Accelerator .13-6

13.5.1 Accelerated ROM Search Example .13-8

13.6 1-Wire Transmit and Receive Operations .13-9

13.6.1 1-Wire Transmit/Receive Buffer (OWA = 001b) .13-9

13.7 1-Wire Bus Master Interrupts .13-10

13.7.1 1-Wire Interrupt Flag Register (OWA = 010b) .13-10

13.7.2 1-Wire Interrupt Enable Register (OWA = 011b) .13-11

13.8 I/O Signaling .13-11

LIST OF FIGURES

LIST OF TABLES

Figure 13-1. 1-Wire Bus Master Functional Diagram .13-2

Figure 13-2. 1-Wire Bus Signaling in Standard Mode .13-12

Table 13-1. Clock Divisor Register Setting for Reference Clock Rates .13-4

Table 13-2. ROM ID Read Time Slot Possibilities .13-7

Table 13-3. Search ROM Accelerator Transmit/Receive Byte Sequence 13-7

Maxim Integrated

13-2

MAXQ Family User’s Guide

SECTION 13: 1-Wire BUS MASTER
The 1-Wire Bus Master can be used by the MAXQ microcontroller to support 1-Wire communication to external 1-Wire devices without
tying up valuable CPU resources. The Bus Master provides complete control of the 1-Wire bus, and transmit and receive activities. All tim-
ing and control sequences of the 1-Wire bus are generated within the Bus Master. Communication between the CPU and the Bus Master
is through read/write access of 1-Wire Master Address (OWA) and 1-Wire Master Data (OWD) peripheral registers. When bus activity has
generated a condition that requires CPU service, the Bus Master sets a status bit, allowing an interrupt to be generated if enabled. The
1-Wire Bus Master is operable for any system clock frequency between 4MHz and 25MHz, and supports the Bit Banging and Search ROM
Accelerator modes. Detailed operation of the 1-Wire bus is described in the Book of iButton Standards, available on the Maxim/Dallas
Semiconductor website at www.maxim-ic.com/iButtonbook. Figure 13-1 shows a functional block diagram of the 1-Wire Bus Master.

1-WIRE�
BUS�

TIMING�
AND�

CONTROL

INTERRUPT FLAG

INTERRUPT ENABLE

COMMAND

CONTROL

TRANSMIT BUFFER

Tx SHIFT REGISTER

Rx SHIFT REGISTER

RECEIVE BUFFER

CLOCK DIVIDER

BAUD GENERATION

INTERRUPT�
CONTROL�

LOGIC

CONTROL

RESET

OWD

OWA

1-WIRE MASTER

RESET

CLK

OWOUT

OWIN

MAXQ

Figure 13-1. 1-Wire Bus Master Functional Diagram

Maxim Integrated

13.1 1-Wire Peripheral Registers
The MAXQ microcontroller interfaces to the 1-Wire Bus Master through two peripheral registers: 1-Wire Master Address (OWA) and
1-Wire Master Data (OWD). These two registers allow read/write access of the six internal registers of the 1-Wire Bus Master. The inter-
nal registers provide a means for the CPU to configure and control transmit/receive activity through the Bus Master.

The three least significant bits (A[2:0]) of the OWA peripheral register specify the address of the internal register to be accessed. The
OWD SFR is used for read/write access to the implemented bits of the specified internal register. To access an internal 1-Wire regis-
ter, a valid address must be specified in the OWA peripheral register prior to performing a read/write operation to the OWD peripher-
al register. As long as a valid address is presented in OWA, read accesses of OWD will return data content from the internal target reg-
ister and writes to OWD will update the internal target register with the data provided via OWD (with exception of the interrupt flag
Register, which is read only). The following details the OWA and OWD registers.

13.1.1 1-Wire Address Register (OWA)

Bits 7 to 3: Reserved

Bits 2 to 0: 1-Wire Internal Register Address Bits (A[2:0]). These bits are used to select one of the 1-Wire Master internal registers
to be accessed via the OWD register. Prior to accessing any of the 1-Wire Master internal registers, the address for the target internal
register must be specified. Addresses where A[2:0] = 11xb are considered reserved addresses and are not supported by the Bus
Master. Read access to these addresses will return invalid data in OWD and write accesses will not change the content of any writable
registers.

13.1.2 1-Wire Data Register (OWD)

Bits 7 to 0: 1-Wire Data Register (OWD.[7:0]). This register contains the data value read from the target internal register as selected
by the A[2:0] bits in the OWA register when read. A write to the OWD causes the data to be written to the target internal register select-
ed by the A[2:0] bits of the OWA register (with exception of the interrupt flag register, which is read-only).

13-3

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name — — — — — A2 A1 A0

Reset 0 0 0 0 0 1 1 1

Access r r r r r rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name OWD.7 OWD.6 OWD.5 OWD.4 OWD.3 OWD.2 OWD.1 OWD.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

A2 A1 A0 INTERNAL REGISTER (READ/WRITE ACCESSIBILITY)

0 0 0 Command (Read/Write)

0 0 1 Transmit/Receive Buffer (Read/Write)

0 1 0 Interrupt Flag (Read)

0 1 1 Interrupt Enable (Read/Write)

1 0 0 Clock Divisor (Read/Write)

1 0 1 Control (Read/Write)

1 1 X Reserved

Maxim Integrated

13.2 1-Wire Clock Control
All 1-Wire timing patterns are generated using a base clock of 1.0MHz. To create this base clock frequency, the 1-Wire Bus Master
must internally divide down the microcontroller system clock. The Clock Divisor internal register implements bits to control this clock
division. The prescaler bits (PRE[1:0]) divide the microcontroller system clock by 1, 3, 5, or 7 for settings of 00b, 01b, 10b, and 11b,
respectively. The divider bits (DIV[2:0]) control circuitry to then divide the prescaler output clock by 1, 2, 4, 8, 16, 32, 64, or 128. The
CLK_EN bit (bit 7 of the Clock Divisor register) enables or disables the clock generation circuitry. Setting CLK_EN to logic 1 enables
the clock generation circuitry, while clearing the bit disables the clock generation circuitry. When cleared to 0, this bit essentially puts
the Bus Master into a power-saving mode that disables the clock divisor circuitry while not in use. Note that without the clock, the Bus
Master functionality is basically disabled. The following documents the internal clock divisor register.

13.2.1 1-Wire Clock Divisor Register (OWA = 100b)

Bit 7: Clock Enable (CLK_EN). The CLK_EN bit of the Clock Divisor register is used to control the clock generation circuitry in the Bus
Master. Setting the CLK_EN bit to logic 1 enables the clock generation circuitry according to the PRE[1:0] and DIV[2:0] settings.

Bits 6 and 5: Reserved

Bits 4, 3, 2: Divider Bits 2:0 (DIV[2:0]). These bits allow further division of the prescaled clock for generating a 1-Wire base clock:

Base Clock = Prescaled Clock / (2DIV2:0)

Bits 1 and 0: Clock Prescaler Bits 1:0 (PRE[1:0]). These prescaler bits define the initial clock division applied to the reference clock
input. The prescaled clock output will be according to the following equation:

Prescaled Clock = Reference Clock / (2 x PRE[1:0] + 1)

The Clock Divisor register must be configured properly before any 1-Wire communication can take place. The Bus Master clock divi-
sor settings currently allow reference clock input frequencies between 4MHz and 25MHz with ~50% duty cycle to be supported. Table
13-1 summarizes the proper division values, based upon the reference input clock range. Settings not listed in the table are reserved
and can result in improper operation if used. Note that providing a system clock frequency nearer the minimum of a given reference
clock frequency range yields base-clock frequencies closer to 1MHz and better timing margin.

Table 13-1. Clock Divisor Register Setting for Reference Clock Rates

13-4

MAXQ Family User’s Guide

REFERENCE CLOCK FREQUENCY (MHz)

MIN MAX
DIVIDER RATIO DIV2 DIV1 DIV0 PRE1 PRE0

4.0 < 5.0 4 0 1 0 0 0

5.0 < 6.0 5 0 0 0 1 0

6.0 < 7.0 6 0 0 1 0 1

7.0 < 8.0 7 0 0 0 1 1

8.0 < 10.0 8 0 1 1 0 0

10.0 < 12.0 10 0 0 1 1 0

12.0 < 14.0 12 0 1 0 0 1

14.0 < 16.0 14 0 0 1 1 1

16.0 < 20.0 16 1 0 0 0 0

20.0 < 24.0 20 0 1 0 1 0

24.0 ≤ 25.0 24 0 1 1 0 1

Bit # 7 6 5 4 3 2 1 0

Name CLK_EN — — DIV2 DIV1 DIV0 PRE1 PRE0

Reset 0 0 0 0 0 0 0 0

Access rw r r rw rw rw rw rw

r = read, w = write

Maxim Integrated

13.3 1-Wire Bus Master Control
The 1-Wire Bus Master can perform certain special functions to support OW line operation. These special functions can be set up through
the Control register that is documented below. The Control Register defaults to 00h on a reset, which disables all special functions.

13.3.1 1-Wire Control Register (OWA = 101b)

Bit 7: Enable 1-Wire Master Interrupts (EOWMI). Setting this bit to logic 1 enables the 1-Wire interrupt request to the CPU if any of
the interrupt flags in the Interrupt Flag register is set and its corresponding enable bit in the Interrupt Enable register is also set.
Clearing this bit to logic 0 disables 1-Wire interrupt request to the CPU.

Bits 6, 4, and 3: Reserved

Bit 5: Bit-Banging Mode Enable (BIT_CTL). Setting this bit to logic 1 places the master into bit-banging mode of operation, where
only the least significant bit of the transmit/receive register would be sent/received before enabling the interrupt that signals the end of
the transmission. Clearing this bit to logic 0 leaves the master operating in full byte boundaries. The Search ROM Accelerator Mode
(SRA = 1) overrides the bit-banging mode.

Bit 2: Enable Force OW (EN_FOW). To enable the force OW line command, the EN_FOW bit must be set to logic 1. Clearing this bit
to logic 0 disables the force OW line command in the command register.

Bit 1: Presence Pulse Masking (PPM). This bit is used to enable presence pulse masking function. Setting this bit to logic 1 causes
the master to initiate the beginning of a presence pulse during a 1-Wire reset. This enables the master to prevent the larger amount of
ringing caused by the slave devices when initiating a low on the OW line. If the PPM bit is set, the PDR result bit in the Interrupt Flag
Register is always set, which shows that a slave device was on the line even if there were none. Clearing this bit to logic 0 disables the
presence pulse-masking function.

Bit 0: Long Line Mode (LLM). This bit is used to enable the long line mode timing. Setting this bit to logic 1 effectively moves the write
one release and the data sample timing during standard mode communication out to 8µs and 22µs, respectively. The recovery time
will also be extended to 14ms. This provides a less strict environment for long line transmissions. Clearing this bit to logic 0 leaves the
write one release, data sampling, and recovery time during standard mode communication at 5ms, 15ms, and 10ms, respectively.

13-5

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name EOWMI — BIT_CTL — — EN_FOW PPM LLM

Reset 0 0 0 0 0 0 0 0

Access rw r rw r r rw rw rw

r = read, w = write

Maxim Integrated

13.4 1-Wire Bus Master Commands
The 1-Wire Bus Master can generate special commands on the 1-Wire bus in addition to transmitting and receiving data. The com-
mands are generated via the setting of a corresponding bit in the Command Register (A[2:0] = 000b), which is documented below.
These operational modes are defined in the Book of iButton Standards.

13.4.1 1-Wire Command Register (OWA = 000b)

Bits 7 to 4: Reserved

Bit 3: 1-Wire Input (OW_IN). This bit always reflects the current logic state of the OW_IN line.

Bit 2: Force 1-Wire (FOW). Setting this bit to logic 1 forces OW line to a low value if the EN_FOW bit in the 1-Wire internal control reg-
ister is also set to logic 1. The FOW bit has no effect on the OW line when the EN_FOW bit is cleared to logic 0.

Bit 1: Search ROM Accelerator (SRA). Setting this bit to logic 1 places the Bus Master into Search ROM Accelerator mode to expe-
dite the Search ROM process and prevent the CPU from having to perform single-bit manipulations of the bus during a Search ROM
operation. Note that the receive buffer must be empty before invoking SRA mode. This mode of operation is used to get either the
addresses of all devices connected to the 1-Wire bus or the serial number of one device and simultaneously address the device.
Clearing this bit to logic 0 disables the Search ROM accelerator.

Bit 0: 1-Wire Reset (1WR). Setting this bit to logic 1 causes a reset on the 1-Wire bus, which must precede any command given on
the bus. Setting this bit also automatically clears the SRA bit. The 1WR bit is automatically cleared as soon as the 1-Wire bus reset
completes. The Bus Master sets the presence-detect interrupt flag (PD) when the reset is completed and sufficient time for a 1-Wire
reset to occur has passed. The result of the 1-Wire reset is placed in the Interrupt Register bit PDR. If a presence-detect pulse was
received, PDR is cleared; otherwise, it is set. This bit is cleared to logic 0 when no reset action is required.

13.5 Search Operation Using Search ROM Accelerator
The 1-Wire Bus Master supports a Search ROM Accelerator Mode to expedite learning of ROM IDs for those devices connected to the bus.
The bus master must determine the ROM IDs of the slave devices on the 1-Wire bus before it can address each slave device individually.

The Search ROM command (F0h) is used by the Bus Master to signal external 1-Wire devices that a ROM ID search will be conduct-
ed. The Search ROM command can be issued immediately following a Reset sequence initiated by the master. Once the search ROM
command has been issued by the bus master, slave devices simultaneously transmit, bit-by-bit, their unique ROM IDs. There are three
1-Wire bus time slots associated with each ROM ID bit acquisition. These three time slots are as follows:

1) Read Time Slot 1: each slave transmits a single bit of its ROM ID (lsb first).

2) Read Time Slot 2: each slave transmits a complementary bit to that transmitted in 1.

3) Write Time Slot: bus master transmits discrepancy decision bit if needed.

The ROM ID acquisition and selection process listed starts with the least significant bit of each slave device. If the ROM ID bits match
for all currently selected slave devices, the two read time slots will reflect complementary data, and the bus master will not need to
deselect or remove any slave devices from the selection process. The bus master simply repeats the Read Time Slot 1 data as its Write
Time Slot data in the third time slot, and continues to the next higher ROM ID bit acquisition period. Since it is expected that all 1-Wire
devices have unique ROM IDs, the first two read time slots inevitably result in conflicting data being driven on the bus for at least one
bit position when multiple slaves are connected. When this occurs, the wired-AND line state yields a 0 for both read time slots. At this
point, the master has to send a bit value 1 or 0 to select the devices that remain in the search process. All deselected devices are idle
until they receive a Reset Pulse. Table 13-2 shows the four possible scenarios for slave ROM ID read time slots.

13-6

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name — — — — OW_IN FOW SRA 1WR

Reset 0 0 0 0 s 0 0 0

Access r r r r r rw rw rw

r = read, w = write, s = special

Maxim Integrated

Table 13-2. ROM ID Read Time Slot Possibilities

The general principle of this search process is to deselect slave devices at every conflicting bit position. At the end of each ROM
Search process, the master has learned another ROM ID. A pass of search process takes 64 reading/selection cycles for the master
to learn one device's ROM ID. Each reading/selection cycle, as noted above, consists of two Read time slots and a Write time slot.
Subsequent search passes are performed identically to the last up until the point of the last decision. For details of Search ROM algo-
rithm in the 1-Wire system, refer to the Book of iButton Standards.

To speed up this ROM ID Search process, the 1-Wire Bus Master incorporates a Search ROM Accelerator. To enable the Search ROM
accelerator, the SRA bit in the Command Register must be set immediately following the Reset sequence and issuance of the Search ROM
command. Note that the receive buffer must empty before invoking SRA mode. After the bus master is placed in Search ROM Accelerator
mode, each byte loaded into the transmit buffer contains one nibble (4 bits) worth of discrepancy decision data. The two slave read time
slots are automatically generated by the bus master as a part of the transmit sequence. After four reading/selection cycles, the receive
buffer data will reflect four newly acquired bits of the ROM ID and four corresponding bits flagging whether a discrepancy existed in a
given bit position. Table 13-3 details the format for the transmit and receive data (when in Search ROM Accelerator mode).

Table 13-3. Search ROM Accelerator Transmit/Receive Byte Sequence

The CPU must send and receive 16 bytes of data to complete a single Search ROM pass on the 1-Wire bus. To perform a Search ROM
sequence one starts with all decision discrepancy bits (rn) being 0. In case of bus error, all subsequent response bits IDn are 1s until
the Search Accelerator is deactivated by clearing the SRA bit in the Command Register. Thus if ID63 and d63 are both 1, an error has
occurred during the search process and the last sequence has to be repeated. Otherwise, ID63:0 is the ROM code of the device that
has been found and addressed. For the next Search ROM sequence one reuses the previous set rn (for n = 0:63), changing to 1 only
that bit position where the highest discrepancy was detected (dn flags). This process is repeated until the highest discrepancy occurs
in the same bit position for two passes, then the next lower discrepancy flag is used for next search. When the Search ROM process
is completed, the SRA bit should be cleared in order to release the 1-Wire Master from Search ROM Accelerator mode.

13-7

MAXQ Family User’s Guide

READ TIME
SLOT 1 (SLAVE)

READ TIME
SLOT 2 (SLAVE)

WRITE TIME
SLOT (MASTER) DESCRIPTION

0 1 0 All slave devices remaining in the selection process have a 0 in this ROM ID bit position.
1 0 1 All slave devices remaining in the selection process have a 1 in this ROM ID bit position.

0 0 0 or 1
ID Discrepancy—Slave devices remaining in the selection process have both 0 and
1 in this ROM ID bit position. The Bus Master write time slot dictates which devices
remain in the selection process.

1 1 1 Error—No slave devices responded during the read time slots.

BYTE
SEQUENCE BUFFER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Transmit r3 x r2 x r1 x r0 x
Byte 1

Receive ID3 d3 ID2 d2 ID1 d1 ID0 d0

Transmit r7 x r6 x r5 x r4 x
Byte 2

Receive ID7 d 7 ID6 d6 ID5 d5 ID4 d4

• • •
Transmit r63 x r62 x r61 x r60 x

Byte 16
Receive ID63 d63 ID62 d62 ID61 d61 ID60 d60

rn = decision discrepancy data (write time slot selection data if ID discrepancy)
IDn = selected ROM ID bit (rn if discrepancy occurred, otherwise read time slot 1)
dn = discrepancy detected flag (ID discrepancy or no response)
x = don't care data

Maxim Integrated

13.5.1 Accelerated ROM Search Example
The following example should provide a better understanding of how the Search ROM Accelerator functionality allows the 1-Wire
Master to identify four different devices on the 1-Wire bus with ROM IDs as shown (least significant bit first):

ROM1 = 00110101....

ROM2 = 10101010....

ROM3 = 11110101....

ROM4 = 00010001....

1) The host issues a reset pulse by writing 01h to the Command Register. All slave devices respond simultaneously with a presence
detect.

2) The host issues a Search ROM command by writing F0h to the Transmit Buffer. The host must wait for RBF flag and read (empty)
the Receive Buffer.

3) The host places the 1-Wire Master in Search ROM Accelerator mode by writing 02h to the Command Register.

4) The host writes 00h to Transmit Buffer and reads the return data from the Receive Buffer. This process is repeated for total of 16
bytes. The data read contains ROM4 in the ID bit locations and the discrepancy flags d0 and d2 are set. This can easily be seen
by examining the ROM IDs bit by bit. The first discrepancy occurs in bit position 0 (d0). The bus master write time slot contains a
0, thus deselecting ROM2 and ROM3. A discrepancy between ROM1 and ROM4 then occurs in bit position 2 (d2), leaving only
ROM4 in the search. The receive data is as follows (d0ID0 d1ID1 d2ID2 d3ID3 d4ID4 d5ID5 d6ID6 d7ID7):

Receive Data = 10 00 10 01 00 00 00 01....

5) The host then deinterleaves the data to arrive at a ROM ID of 00010001... and discrepancy data (bold) of 10100000....with the last
discrepancy at location d2.

6) The host writes 0x00h to the Command Register to exit accelerator mode. The host is now free to send a command or read data
directly from this device.

7) Steps 1 to 6 are now repeated to find the next device on the bus. The 16 bytes of data transmitted this time are identical to ROM4
up until the last discrepancy flag (d2 in this case), which is inverted, and all higher order decision discrepancy data bits are set to
0 as shown: r0r1r2r3r4r5....= 001000..... For this search iteration, the receive data contains ROM1 in the ID bit locations, again with
discrepancy flags d0 and d2 set.

Receive Data = 10 00 11 01 00 01 00 01....

8) Since the most significant discrepancy (d2) did not change, the next highest discrepancy (d0) is used for the next search
r0r1r2r3r4r5....=100000.....

Receive Data = 11 10 01 00 01 00 01 00....

Deinterleaving yields a ROM ID of 10101010.. (ROM2) and discrepancy flags of 11000000.. (d1 is the most significant flag).

9) The next search uses the ROM ID acquired in the previous search up until the most significant discrepancy:
r0r1r2r3r4r5....=110000...

Receive Data = 11 11 01 01 00 01 00 01....

Deinterleaving yields a ROM ID of 11110101.. (ROM3) and discrepancy flags of 11000000.. (d1 is the most significant flag).

10) At this point, the most significant discrepancy (d1) did not change so the next highest discrepancy (d0) should be used. However,
d0 has now been reached for the second time, and since there are no lesser significant discrepancies possible, the search is com-
pleted and all four devices are identified.

13-8

MAXQ Family User’s Guide

Maxim Integrated

13.6 1-Wire Transmit and Receive Operations
All data transmitted and received by the 1-Wire Bus Master passes through the transmit/receive data buffer (internal register address
A[2:0] = 001b).

The data buffer combination for the transmit interface is composed of the Transmit Buffer and Transmit Shift Register. Each of these
registers has a flag that can be used as an interrupt source. The Transmit Buffer Empty (TBE) flag is set when the Transmit Buffer is
empty and ready to accept a new byte of data from the user. As soon as the data byte is written into the Transmit Buffer, TBE is cleared.
The Transmit Shift Register Empty (TEMT) flag is set when the shift register has no data and is ready to load a new data byte from the
Transmit Buffer. When a byte of data is transferred into the Transmit Shift Register, TEMT is cleared and TBE becomes set.

To send a byte of data on the 1-Wire bus, the user writes the desired data to the Transmit Buffer. The data is moved to the Transmit
Shift Register, where it is shifted serially onto the 1-Wire bus, least significant bit first. When the Transmit Shift Register is empty, new
data will be transferred from the Transmit Buffer (if available) and the serial process repeats. Note that the 1-Wire protocol requires a
reset before any bus communication.

The data buffer combination for the receive interface is composed of the Receive Buffer and the Receive Shift Register. The receive
registers can also generate interrupts. The Receive Shift Register Full (RSRF) flag is set at the start of data being shifted into the reg-
ister, and is cleared when the Receive Shift Register is empty. The Receive Buffer Full (RBF) flag is set when data is transferred from
the Receive Shift Register into the Receive Buffer and is cleared after the CPU reads the register. If RBF is set, and another byte of
data is received in the Receive Shift Register, the Receive Shift Register will hold the new byte and wait until the user reads the Receive
Buffer, clearing the RBF flag. Thus, if both RSRF and RBF are set, no further transmissions should be made on the 1-Wire bus, or else
data may be lost, as the byte in the Receive Shift Register will be overwritten by the next received data.

To read data from a slave device, the Bus Master must first be ready to transmit data depending on commands in the Command
Register already set up by the CPU. Data is retrieved from the bus in a similar fashion to a write operation. The CPU initiates a read
operation by writing FFh data to the Transmit buffer. The data that will then be shifted into the Receive Shift Register is the wired-AND
of the Bus Master write data (FFh) and the data from the slave device. When the Receive Shift Register is full, the data is transferred
to the Receive Buffer (if RBF = 0), where the CPU can read it. Additional bytes can be read by sending FFh again. If the slave device
is not ready to respond to read request, the data received the by the Bus Master will be identical to that which was transmitted (FFh).

13.6.1 1-Wire Transmit/Receive Buffer (OWA = 001b)

Bits 7 to 0: 1-Wire Transmit/Receive Buffer (OWA = 001b.[7:0]). All data transmit and receive activity of the 1-Wire Bus Master pass-
es through the transmit/receive data buffer. The data buffer is double buffered with separate transmit and receive buffers. Double
buffering of the transmit buffer and receive buffer does not work when SRA (Search ROM Accelerator) mode is active. Writing to the
data buffer connects the Transmit Buffer to the data bus while reading connects the Receive Buffer to the data bus.

13-9

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name Input/Output Buffer (8 Bits)

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

13.7 1-Wire Bus Master Interrupts
The 1-Wire Bus Master can be configured to generate an interrupt request to the CPU on the occurrence of a number of 1-Wire relat-
ed events or conditions. These include the following: Presence Detect, Transmit Buffer Empty, Transmit Shift Register Empty, Receive
Buffer Full, Receive Shift Register Full, 1-Wire Short, and 1-Wire Low. Each of these potential 1-Wire interrupt sources has a corre-
sponding enable bit and flag bit. Each flag bit in the Interrupt Flag register (A2:A0 = 010b) is set, independent of the interrupt enable
bit, when the associated event or condition occurs. For the interrupt flag to generate an interrupt request to the CPU, the individual
enable bit for the source along with the 1-Wire Bus Master interrupt enable bit (EOWMI; Control Register bit 7) must be set to a logic
1 as well as having interrupts enabled modularly and globally. To clear the 1-Wire Bus Master Interrupt, a read of the Interrupt Flag
Register must always be performed by software. The Interrupt Enable and Interrupt Flag registers are documented below.

13.7.1 1-Wire Interrupt Flag Register (OWA = 010b)

Bit 7: 1-Wire Low Interrupt (OW_LOW). This flag is set to 1 when the OW line is low while the master is in idle, signaling that a slave
device has issued a presence pulse on the OW line. When this bit is 0, it shows that the OW line is high while the master is in idle. A
read to the Interrupt Flag register clears this bit if OW is no longer a low while the master is idle.

Bit 6: 1-Wire Short Interrupt (OW_SHORT). This flag is set to 1 when the OW line was low before the master was able to send out
the beginning of a reset or a time slot. When this flag is 0, it indicates that the OW line was high prior to all resets and time slots. A read
to the Interrupt Flag register clears this bit.

Bit 5: Receive Shift Register Full (RSRF). This flag is set to 1 when there is a byte of data waiting in the Receive Shift register. When
this bit is 0, it indicates that the Receive Shift register either empty or currently receiving data. This bit is cleared by the hardware when
data in the Receive Shift register is transferred to the Receive Buffer. A read to the Interrupt Flag register has no effect on this bit.

Bit 4: Receive Buffer Full (RBF). This flag is set to 1 when there is a byte of data waiting to be read in the Receive Buffer. When this
bit is 0, it indicates that the Receive Buffer has no new data to be read. This bit is cleared when the byte is read from the Receive Buffer.
A read to the Interrupt Flag register has no effect on this bit. However, following a read of the Interrupt Flag register while Enable
Receive Buffer Full Interrupt (ERBF) is set to 1, if the ERBF is not cleared and the value is not read from the Receive Buffer, the inter-
rupt will fire again.

Bit 3: Transmit Shift Register Empty (TEMT). This flag is set to 1 when there is nothing in the Transmit Shift register and is ready to
receive the next byte of data to be transmitted from the Transmit Buffer.

When this bit is 0, it indicates that the Transmit Shift Register is busy sending out data. This bit is cleared when data is transferred from
the Transmit Buffer to the Transmit Shift register. A read to the Interrupt Flag Register has no effect on this bit.

Bit 2: Transmit Buffer Empty (TBE). This flag is set to 1 when there is nothing in the Transmit Buffer and is ready to receive the next
byte of data. When it is 0, it indicates that the transmit buffer is waiting for the transmit shift register to finish sending its current data
before updating it. This bit is cleared when data is written to the Transmit Buffer. A read to the Interrupt Flag register has no effect on
this bit.

Bit 1: Presence-Detect Result (PDR). When a presence-detect interrupt occurs, this bit reflects the result of the presence detect read.
The bit is 0 if a slave device was found, or 1 if no device was found. Reading the Interrupt Flag register does not affect the state of this
bit.

Bit 0: Presence Detect (PD). After a 1-Wire reset has been issued, this flag is set to 1 after the appropriate time for a presence-detect
pulse to have occurred. This flag is 0 when the master has not recently issued a presence detect. This bit is cleared when the Interrupt
Flag register is read.

13-10

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name OW_LOW OW_SHORT RSRF RBF TEMT TBE PDR PD

Reset 0 0 0 0 1 1 1 0

Access r r r r r r r r

r = read, w = write

Maxim Integrated

13-11

MAXQ Family User’s Guide

13.7.2 1-Wire Interrupt Enable Register (OWA = 011b)

Bit 7: Enable 1-Wire Low Interrupt (EOWL). Setting this bit to logic 1 enables the 1-Wire low interrupt. If both EOWMI and EOWL are
set, OWMI is asserted when OW_LOW flag is set. Clearing this bit disables OW_LOW as an active interrupt source.

Bit 6: Enable 1-Wire Short Interrupt (EOWSH). Setting this bit to logic 1 enables the 1-Wire short interrupt. If both EOWMI and
EOWSH are set, OWMI is asserted when OW_SHORT flag is set. Clearing this bit disables OW_SHORT as an active interrupt source.

Bit 5: Enable Receive Shift Register Full Interrupt (ERSF). Setting this bit to logic 1 enables the receive shift register full interrupt.
If both EOWMI and ERSF are set, OWMI is asserted when RSRF flag is set. Clearing this bit disables RSRF as an active interrupt source.

Bit 4: Enable Receive Buffer Full Interrupt (ERBF). Setting this bit to logic 1 enables the receive buffer full interrupt. If both EOWMI
and ERBF are set, OWMI is asserted when RBF flag is set. Clearing this bit disables RBF as an active interrupt source.

Bit 3: Enable Transmit Shift Register Empty Interrupt (ETMT). Setting this bit to logic 1 enables the transmit shift register empty
interrupt. If both EOWMI and ETMT are set, OWMI is asserted when TEMT flag is set. Clearing this bit disables TEMT as an active inter-
rupt source.

Bit 2: Enable Transmit Buffer Empty Interrupt (ETBE). Setting this bit to logic 1 enables the transmit buffer empty interrupt. If both
EOWMI and ETBE are set, OWMI is asserted when TBE flag is set. Clearing this bit disables TBE as an active interrupt source.

Bit 1: Reserved

Bit 0: Enable Presence Detect Interrupt (EPD). Setting this bit to a logic 1 enables the presence detect interrupt. If both EOWMI and
EPD are set, OWMI will be asserted after an appropriate amount of time has passed for a presence-detect pulse to have occurred,
whenever a 1-Wire Reset is sent while the presence-detect flag (PD) is also set. Clearing this bit disables the presence detect as an
active interrupt source.

13.8 I/O Signaling
The 1-Wire bus requires strict signaling protocols to ensure integrity. The five protocols used by the 1-Wire Bus Master are initialization
sequence (Reset Pulse followed by Presence Pulse), Write 0, Write 1, Read 0, and Read 1. The Bus Master initiates all of these types
of signaling except the presence pulse. Figure 13-2 illustrates the details of these signaling protocols.

The initialization sequence is required to begin any communication with the bus slave devices. The 1-Wire Bus Master transmits a reset
pulse for tRSTL. The 1-Wire bus line is then pulled high by the pullup resistor. After detecting the rising edge on the OWOUT pin, the
slave device waits for tPDH and then transmits the Presence Pulse for tPDL. A Presence Pulse following a Reset Pulse indicates the
slave device is ready to accept a ROM command. The Bus Master samples the bus at tPDS after the slave device responds to test for
a valid presence pulse. The result of this sample is stored in the PDR bit of the Interrupt Flag Register. The reset time slot ends tRSTH
after the Bus Master releases the bus.

A write time slot is initiated when the 1-Wire Bus Master pulls the 1-Wire bus line from a logic high (inactive) level to a logic low level.
The Bus Master generates a Write 1 time slot by releasing the line at tLOW1 and allowing the line to pullup to logic high level. On the
other hand, the line is held low for tLOW0 to generate a Write 0 time slot. A slave device samples the 1-Wire bus line between 15µs and
60µs after the line falls. If the line is high when sampled, a Write 1 occurs. If the line is low when sampled, a Write 0 occurs.

A read time slot is initiated when the 1-Wire Master pulls the bus low for at least 1(s and then releases it. The slave device continues
to hold the line low for up to 60µs if it is responding with a 0, otherwise it releases it immediately. The Bus Master samples the data
tRDV from the start of the read time slot. If the line is high when sampled, a Read 1 occurs. If the line is low when sampled, a Read 0
occurs. The Bus Master ends the read slot after tSLOT.

Bit # 7 6 5 4 3 2 1 0

Name EOWL EOWSH ERSF ERBF ETMT ETBE — EPD

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw r rw

r = read, w = write

Maxim Integrated

13-12

MAXQ Family User’s Guide

VDD

GND

OWOUT

INITIALIZATION SEQUENCE

OWOUT

VDD

GND

OWIN

VDD

GND

tRSTL tRSTH

tPDH tPDL

tPDS

tWRITE 0 SLOT tWRITE 1 SLOT

tLOW1 >1µstLOW0

15µs 15µs

SLAVE SAMPLING

15µs 15µs

SLAVE SAMPLING

30µs 30µs

tREAD 0 SLOT tREAD 1 SLOT

tRDV BUS MASTER�
SAMPLING

BUS MASTER�
SAMPLING

1µs 1µs

tRDV

WRITE TIME SLOT

READ TIME SLOT

MASTER ACTIVE LOW

SLAVE ACTIVE LOW

MASTER AND SLAVE ACTIVE LOW

RESISTOR PULLUP

Figure 13-2. 1-Wire Bus Signaling in Standard Mode

Maxim Integrated

14-1

MAXQ Family User’s Guide

SECTION 14: REAL-TIME CLOCK MODULE

This section contains the following information:

14.1 RTC Alarm Functions .14-3

14.1.1 Time-of-Day Alarm .14-3

14.1.2 Sub-Second Alarm .14-3

14.1.3 System Wakeup by Time-of-Day or Sub-Second Interval Alarm 14-3

14.2 RTC Trim Function .14-3

14.3 RTC Register Access .14-5

14.3.1 Busy Bit Write Signaling .14-5

14.3.2 Ready Bit Read Signaling .14-5

14.3.3 RTC Count Register Access .14-5

14.3.4 RTC Alarm Register Access .14-5

14.3.5 RTC Trim Register Access .14-5

14.4 RTC Peripheral Registers .14-6

14.4.1 RTC Control Register (RCNT) .14-6

14.4.2 RTC Seconds High Register (RTSH) .14-7

14.4.3 RTC Seconds Low Register (RTSL) .14-8

14.4.4 RTC Sub-Seconds Register (RTSS) .14-8

14.4.5 RTC Alarm Seconds High Register (RASH) .14-9

14.4.6 RTC Alarm Seconds Low Register (RASL) .14-9

14.4.7 RTC Sub-Second Alarm Register (RSSA) .14-10

14.4.8 RTC Trim Register (RTRM) .14-10

LIST OF FIGURES
Figure 14-1. RTC Functional Block Diagram .14-2

Figure 14-2. RTC Digital-Trim Facility Block Diagram .14-4

Figure 14-3. Digital Trim Pulse Calibration Diagram .14-4

Maxim Integrated

14-2

MAXQ Family User’s Guide

SECTION 14: REAL-TIME CLOCK MODULE
The real-time clock (RTC) is a binary timer that keeps the time of day and provides time-of-day and sub-second alarm functionality in
the form of system interrupts. The RTC consists of cascaded 32-bit and 8-bit ripple counters that respectively represent absolute sec-
onds (~136 years) and sub-seconds (in 1/256 second resolution). The 8-bit sub-second counter increments with each 256Hz clock tick
derived from the 32.768kHz oscillator. A separate auto-reload sub-second alarm counter can be used to generate interval alarms with
granularity of 1/256 seconds. The 32-bit seconds counter increments with each rollover of the 8-bit sub-second counter. The 32-bit
counter can be used with the programmable time-of-day comparison alarm to provide a single event timer. The RTC must be stopped
for the counter registers to initially be written, but once enabled, the RTC counts continuously as long as it is enabled and does not stop
for reads of the counter registers. The RTC also supports a digital trim facility for those applications requiring high accuracy.

User-application code accesses the RTC via eight peripheral registers. The 16-bit RTC Control register (RCNT) provides the control
and status for RTC functions, including RTC read/write access controls, clock selection/control, RTC enable, square-wave output
enable, alarm enables, and their interrupt flags. The seconds count information is set or initialized only by writing to the 16-bit RTC
Second High and the 16-bit RTC Second Low register (RTSH and RTSL registers). Similarly, the 8-bit RTC Sub-Second register (RTSS)
can be used to establish and access the sub-second counter. The Time-of-Day alarm is composed of the RASH:RASL register pair
and the interval alarm is programmable via the RSSA register. The digital trim value is held in the RTRM register.

Figure 14-1 shows a functional diagram of a full-featured RTC. Certain MAXQ microcontroller devices may be equipped with a subset
of the RTC functionality described. Refer to the individual device data sheet or supplemental user guide for more information.

DIGITAL
TRIM

DIVIDE BY 128(27)
1/256Hz

32kHz CLK 1/512Hz

1Hz

1/512Hz

RTRM

RTSS

RSSA

RTSL RTSH

RASL RASH

COMPARE

RCNT

ADE

ALDF

ALSF

RTCE

ASETSGN, TRM4: 0

SQEFT

SQUARE-
WAVE OUT

Figure 14-1. RTC Functional Block Diagram

Maxim Integrated

14.1 RTC Alarm Functions
The RTC provides time-of-day and sub-second interval alarm functions. The time-of-day alarm, when enabled, occurs based upon
matching of the least significant 20 bits of the RTC seconds counter information (RTSH:RTSL) with the least significant 20 bits of the
alarm register values (RASH:RASL) defined by the user. The sub-second interval alarm provides an auto-reload timer that is driven by
the untrimmed 256Hz clock source.

14.1.1 Time-of-Day Alarm
The RTC Alarm Second High and RTC Alarm Second Low registers (RASH and RASL) provide a programmable, 20-bit time-of-day
alarm function. The 20 bits of the time-of-day alarm should be programmed with the desired value to match with the least significant
20 bits of the RTC seconds counter for the purpose of triggering an alarm. The least significant 16 bits of the time-of-day alarm are
programmable in the RASL register, while the most significant 4 bits of the alarm value are programmable in the lowest 4 bits of the
RASH register. The time-of-day alarm can be programmed to any future value between 1 second and 12 days relative to the current
time with a resolution of 1 second. The time-of-day alarm must be disabled before the changing the time-of-day alarm registers. The
time-of-day alarm is a single event alarm that sets the ALDF flag to 1 when an RTSS rollover occurs and the contents of RTSH and
RTSL counter registers match the 20-bit value set in the RASH and RASL alarm registers. Setting the ALDF bit causes an interrupt
request to the processor if the ADE bit and the system interrupt enable are set.

14.1.2 Sub-Second Alarm
The RTC Sub-Second Alarm (RSSA) register is used to store the sub-second interval alarm value for the sub-second alarm function.
The RSSA register is independent of the RTC counter value and is configurable per MAXQ device as necessary to 16 bits to achieve
sub-second interval alarms needed by various applications. The default RSSA register size is 8 bits wide, allowing a maximum inter-
val alarm of 1 second and a programming resolution of ~3.9 milliseconds (1/256Hz). The sub-second interval alarm must be disabled
(ASE = 0 and BUSY = 0) before changing the interval alarm value.

The delay (uncertainty) associated with the enabling of the interval sub-second alarm is up to one period of the sub-second clock
(1/256Hz = ~3.9ms). Thus, the same uncertainty is associated with the first interval alarm. Thereafter, if the interval alarm remains
enabled, the alarm triggers after each RSSA defined sub-second interval. This is due to the fact that the sub-second alarm is con-
structed as an auto-reload counter such that the RSSA alarm value is reloaded to the counter only on a rollover. Note that enabling the
sub-second alarm (ASE = 1) with sub-second interval alarm register programmed to 0's results in the maximum sub-second alarm
interval (1 second if RSSA = 8 bits wide).

The sub-second interval counter sources its clock from the 32kHz/128 counter before the possible insertion of pulses by the digital-
trim facility. This is done to keep the alarm interval consistent and avoid deviations in the interval that would automatically be created
each time the digital-trim facility were to add/subtract clock pulses.

14.1.3 System Wakeup by Time-of-Day or Sub-Second Interval Alarm
The time-of-day alarm or interval alarm can wake up the system from Stop mode if not already awake. The wakeup function is allowed
only when these interrupts have not been masked at all levels. The time-of-day and interval alarms also qualify as valid Power
Management Mode switchback sources.

14.2 RTC Trim Function
The uncompensated accuracy of the RTC is a function of the attached crystal (and its respective temperature drift characteristics with-
in the end system). To accommodate those applications requiring high accuracy, a digital-trim facility is made accessible to the user.
The trim facility allows extra clocks to be inserted or removed at the 256Hz stage of the divider chain. Five trim bits (TRM4:0) are used
to control the trim adjustment, and the sign bit (TSGN) designates whether pulses should be inserted (TSGN = 0) or deleted
(TSGN = 1). Every 16 seconds, the five trim bits are added to the previous phase accumulator value. Whenever the phase accumula-
tor generates a carry-out from the addition, the output of the 512Hz stage is selected instead of the 256Hz stage if positive trim is
selected, effectively adding 128 extra 32kHz clocks. If negative trim is selected, the 256Hz stage output pulse is masked in order to
effectively subtract 128 32kHz clocks. The 512Hz or 1Hz output can be made accessible on an external pin as controlled by the FT
and SQE bits. Figure 14-2 shows a block diagram illustrating the digital-trim facility. Figure 14-3 shows a representative timing diagram.

The minimum adjustment (00001h) would result in a phase accumulator carry-out every 32 x 16 seconds = 512 seconds or adding/sub-
tracting 1 pulse (=128 cycles of 32.768kHz) every 512 seconds. This would be an adjustment of 128 / (32,768Hz x 512s) = ±7.63ppm.
The maximum adjustment would be achieved by programming TRM4:0 = 11111b. This would result in an adjustment of 31 extra puls-
es per 512-second interval or (31 x 128) / (32,768Hz x 512s) = ±236.5ppm. This range of adjustment should be satisfactory to cover
the temperature drift characteristics of most 32kHz crystals over the industrial temperature range.

14-3

MAXQ Family User’s Guide

Maxim Integrated

14-4

MAXQ Family User’s Guide

VALID FOR ONE 256Hz
CYCLE EVERY 16SEC.
THEN CLEARED TO 0.

5-BIT PHASE
ACCUMULATOR

256Hz
MUX

256Hz

512Hz

CARRY-OUT

TSGN

16-SECOND CLOCK

TRM4:0

Figure 14-2. RTC Digital-Trim Facility Block Diagram

16SEC CLOCK

256Hz CLOCK

1

1

512Hz CLOCK

256Hz MUX SELECT

NEGATIVE CAL (S = 1)
256Hz OUTPUT

ACCUMULATOR
CARRY-OUT (CO)

POSITIVE CAL (S = 0)
256Hz OUTPUT

POSITIVE CAL (S = 0)
128Hz OUTPUT

NEGATIVE CAL (S = 1)
128Hz OUTPUT

Figure 14-3. Digital Trim Pulse Calibration Diagram

Maxim Integrated

14.3 RTC Register Access
Since RTC registers and register bits must be used in the 32kHz clock domain and also be accessible in the system clock domain, a
handshaking or signaling protocol is implemented to simplify user access.

14.3.1 Busy Bit Write Signaling
The BUSY bit of the RTC Control (RCNT) register is a read-only status bit. Hardware sets the BUSY bit when any of the following con-
ditions occur: 1) system reset; 2) software changes the state of any the following RTC bits (RTCE, ASE, ADE); 3) software writes to any
RTC count register (RTSS, RTSL, RTSH). When the BUSY bit is set by hardware, writes to the referenced RTC control bits and count
registers are blocked by hardware. The BUSY bit remains active until a synchronized 32kHz version of the register (or bit) is in place.
This takes place when the next rising edge of the 32kHz clock occurs, which means that the BUSY bit is set for a duration no longer
than one 32kHz clock = ~30.5µs. Once the BUSY bit is cleared to 0, additional writes can be performed as permitted by individual
count or alarm-enable bits.

14.3.2 Ready Bit Read Signaling
The Ready (RDY) bit of the RTC Control (RCNT) register provides a mechanism for determining when the RTC count registers are stable
and may be reliably read. The RDY bit is cleared by hardware approximately one 32kHz clock before the ripple occurs through the RTC
counter chain (RTSS, RTSL, RTSH) and is set once again immediately after the ripple occurs. The period of the RDY bit set/clear activity
(as controlled by hardware) is therefore 1/256Hz = 3.9ms, providing a very large window during which the RTC count registers may be
read. The RDY bit can be cleared by software at any time and remains clear until set by hardware again. A separate Ready Enable (RDYE)
bit is provided in the RCNT register for the purpose of generating an interrupt whenever the RDY bit is set by hardware. This interrupt can
be used to signal the start of a new RTC read window. When RDYE is set to a 1 and RDY becomes set, an interrupt request is generated
if enabled globally and modularly. When RDYE is cleared to 0, the setting of the RDY bit does not generate an interrupt.

14.3.3 RTC Count Register Access
The RTC Count registers (RTSS, RTSL, RTSH) should only be read when RDY = 1. Data read from these registers when RDY = 0 should
be considered as invalid. To write the RTC count registers, the RTC Enable (RTCE) bit must be cleared to 0. Clearing of the RTCE bit
is permitted only when the Write Enable (WE) bit is set to 1 and is governed by the BUSY bit signaling process (i.e., the BUSY bit is
deasserted once a synchronized 32kHz version of the bit is in place). Writes to each RTC count register should also obey the rules
associated with BUSY bit signaling.

14.3.4 RTC Alarm Register Access
The RTC Alarm registers (RSSA, RASL, RASH) are read-accessible at any time. To write the RTC alarm register, the respective alarm
enable (ASE or ADE) bit must be cleared to 0. Clearing these bits requires monitoring the BUSY bit to assess completion of the write.
Once the respective alarm enable is cleared, the associated RTC alarm register(s) can be freely written by user code.

14.3.5 RTC Trim Register Access
These RTC Trim bits (TSGN, TRM4:0) are read-accessible at any time. Write access to these bits requires that the Write Enable (WE)
bit be set to logic 1 and is governed by the BUSY bit signaling process.

14-5

MAXQ Family User’s Guide

Maxim Integrated

14.4 RTC Peripheral Registers

14.4.1 RTC Control Register (RCNT)

Bit 15: RTC Write Enable (WE). This register bit serves as an additional protection mechanism against unintentional writes to the RTC
enable bit (RTCE). This bit must be set to logic 1 to gain write access to the RTCE bit. When this bit is configured to logic 0, the RTCE
bit is read-only.

Bit 14: 32kHz Crystal Oscillator Disable (X32D). Setting this bit to logic 1 disables the internal oscillator circuitry connected between
the 32kHz crystal pins. In this configuration, the RTC can be driven directly by an external clock signal provided on 32KIN or CX1 pin.
Clearing this bit to logic 0 enables the internal crystal oscillator circuitry. When the internal oscillator circuitry is enabled, a warmup
delay could be required before the 32kHz oscillator begins running. The exact length of this warmup delay can vary from among
devices. Refer to the data sheet and user’s guide supplement for the specific MAXQ device for details.

Bit 13: Alternate Clock Select (ACS). This bit enables the HFClk/128 clock to drive the RTC in place of the 32kHz clock. This bit is
provided for those applications where a 32kHz clock may not be present. This bit may only be changed when RTCE = 0. When ACS
= 1, the RTC is effectively halted anytime the high-frequency oscillator is disabled (e.g., stop mode).

Bits 12, 11, 10: Reserved

Bit 9: RTC Frequency Test (FT). This register bit selects the frequency output that is possible on the SQW pin if the square-wave out-
put is enabled. Setting FT = 1 selects the 512Hz output (when SQE = 1), while FT = 0 selects the 1Hz output (when SQE = 1). This bit
has no function if the square-wave output is disabled.

Bit 8: RTC Square-Wave Output Enable (SQE). Setting this bit to logic 1 enables either the 1Hz tap or the 512Hz tap of the RTC to
the SQW pin. When cleared to 0, the SQW pin is not driven by the RTC.

Bit 7: Alarm Sub-Second Flag (ALSF). This bit is set when the subsecond timer has been reloaded by the RSSA register. Setting the
ALSF causes an interrupt request to the CPU if ASE = 1 and interrupts are enabled at the system level.

Bit 6: Alarm Time-of-Day Flag (ALDF). This bit is set when the contents of RTSH and RTSL counter registers match the 20-bit value
in the RASH and RASL alarm registers. Setting the ALDF will cause an interrupt request to the CPU if the ADE is set and interrupts are
allowed at the system level. This alarm is qualified as a stop mode wakeup source and a potential switchback function if the interrupt
has not been masked.

Bit 5: RTC Ready Enable (RDYE). Setting this bit to 1 allows a system interrupt to be generated when RDY becomes active (if inter-
rupts are enabled globally and modularly). Clearing this bit to 0 disables the RDY interrupt.

Bit 4: RTC Ready (RDY). This bit is set to 1 by hardware when the RTC count registers have updated. It can be cleared to 0 by soft-
ware at any time. It is also cleared to 0 by hardware just prior to an update of the RTC count register. This bit can generate an inter-
rupt if the RDYE bit is set to 1.

14-6

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name WE X32D ACS — — — FT SQE

Power-On Reset 0 1 0 0 0 0 0 0

System Reset 0 u u 0 0 0 0 0

Access rw rs rs r r r rw rw

Bit # 7 6 5 4 3 2 1 0

Name ALSF ALDF RDYE RDY BUSY ASE ADE RTCE

Power-On Reset 0 0 0 0 1 0 0 0

System Reset u u 0 0 1 u u u

Access rw rw rw rw r rw rw rs

r = read, w = write, s = special, u = unaffected

Maxim Integrated

14-7

MAXQ Family User’s Guide

Bit 3: RTC Busy (BUSY). This bit is set to 1 by hardware when any of the following conditions occur: 1) system reset, 2) software writes
to RTC count registers, or 3) software changes RTCE, ASE, or ADE. For conditions 2 and 3, the write or change should not be con-
sidered complete until hardware clears the BUSY bit. This is an indication that 32kHz synchronized version of the register bit(s) is in
place.

Bit 2: Alarm Sub-Second Enable (ASE). The ASE bit is the RTC’s subsecond timer enable and must be set to logic 1 for the sub-sec-
ond alarm to generate a system interrupt request. When the ASE is cleared to logic 0, the sub-second alarm is disabled, and no inter-
rupt is generated even if the alarm is set.

Bit 1: Alarm Time-of-Day Enable (ADE). The ADE bit is the RTC’s time-of-day alarm enable and must be set to logic 1 for the alarm
to generate a system interrupt request. When the ADE is cleared to logic 0, the time-of-day alarm is disabled and no interrupt is gen-
erated on a time-of-day alarm (RASH:RASL) match.

Bit 0: Real-Time Clock Enable (RTCE). Setting this bit to logic 1 activates the RTC by allowing the 256Hz clock to the ripple coun-
ters. Clearing this bit to logic 0 disables the clock. This bit is writable only when WE (RCNT.15) = 1.

14.4.2 RTC Seconds High Register (RTSH)

Bits 15 to 0: RTC Seconds High (RTSH.[15:0]). This register contains the most significant bits for the 32-bit second counter. The RTC
is a ripple counter that consists of a cascaded 32-bit second counter (RTSH, RTSL) and an 8-bit sub-second counter (RTSS). This reg-
ister is write-accessible when RTCE = 0 and BUSY = 0, and should be read-only when RDY = 1.

Bit # 15 14 13 12 11 10 9 8

Name RTSH.15 RTSH.14 RTSH.13 RTSH.12 RTSH.11 RTSH.10 RTSH.9 RTSH.8

Power-On Reset 0 0 0 0 0 0 0 0

System Reset u u u u u u u u

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name RTSH.7 RTSH.6 RTSH.5 RTSH.4 RTSH.3 RTSH.2 RTSH.1 RTSH.0

Power-On Reset 0 0 0 0 0 0 0 0

System Reset u u u u u u u u

Access s s s s s s s s

s = special, u = unaffected

Maxim Integrated

14-8

MAXQ Family User’s Guide

14.4.3 RTC Seconds Low Register (RTSL)

Bits 15 to 0: RTC Seconds Low (RTSL.[15:0]). This register contains the least significant bits for the 32-bit second counter. The RTC
is a ripple counter that consists of a cascaded 32-bit second counter (RTSH, RTSL) and an 8-bit sub-second counter (RTSS). This reg-
ister is write-accessible when RTCE = 0 and BUSY = 0, and should be read-only when RDY = 1.

14.4.4 RTC Sub-Seconds Register (RTSS)

Bits 7 to 0: RTC Sub-Seconds (RTSS.[7:0]). This ripple counter represents 1/256 second resolution for the RTC, and its content is
incremented with each 256Hz clock tick derived from the 32.768 kHz oscillator (or alternate clock source if ACS = 1). When the RTSS
counter rolls over, its output is used to drive the 32-bit seconds counter. This register is write-accessible when RTCE = 0 and BUSY =
0, and should be read-only when RDY = 1.

Bit # 15 14 13 12 11 10 9 8

Name RTSL.15 RTSL.14 RTSL.13 RTSL.12 RTSL.11 RTSL.10 RTSL.9 RTSL.8

Power-On Reset 0 0 0 0 0 0 0 0

Reset u u u u u u u u

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name RTSL.7 RTSL.6 RTSL.5 RTSL.4 RTSL.3 RTSL.2 RTSL.1 RTSL.0

Power-On Reset 0 0 0 0 0 0 0 0

Reset u u u u u u u u

Access s s s s s s s s

s = special, u = unaffected

Bit # 7 6 5 4 3 2 1 0

Name RTSS.7 RTSS.6 RTSS.5 RTSS.4 RTSS.3 RTSS.2 RTSS.1 RTSS.0

Power-On Reset 0 0 0 0 0 0 0 0

Reset u u u u u u u u

Access s s s s s s s s

s = special, u = unaffected

Maxim Integrated

14-9

MAXQ Family User’s Guide

14.4.5 RTC Alarm Seconds High Register (RASH)

Bits 7 to 4: Reserved

Bits 3 to 0: RTC Alarm Seconds High (RASH.[3:0]). This register contains the most significant bits for the 20-bit time-of-day alarm.
The time-of-day alarm is formed by the RASH and the RASL registers. The 20 bits of the RASH:RASL value are compared against the
least significant 20 bits of the RTSH:RTSL seconds value for generating a time-of-day alarm. This register is write-accessible only when
ADE = 0 and BUSY = 0.

14.4.6 RTC Alarm Seconds Low Register (RASL)

Bits 15 to 0: RTC Alarm Seconds Low (RASL.[15:0]). This register contains the least significant bits for the 24-bit time-of-day alarm.
The time-of-day alarm is formed by the RASH and the RASL registers, and only the lower 20 bits are meaningful for the alarm function.
The lower 20 bits of the 24-bit RASH:RASL value are compared against the least significant 20 bits of the RTSH:RTSL seconds value
for generating a time-of-day alarm. This register is write-accessible only when ADE = 0 and BUSY = 0.

Bit # 7 6 5 4 3 2 1 0

Name — — — — RASH.3 RASH.2 RASH.1 RASH.0

Reset 0 0 0 0 0 0 0 0

Access r r r r rs rs rs rs

r = read, s = special

Bit # 15 14 13 12 11 10 9 8

Name RASL.15 RASL.14 RASL.13 RASL.12 RASL.11 RASL.10 RASL.9 RASL.8

Reset 0 0 0 0 0 0 0 0

Access rs rs rs rs rs rs rs rs

Bit # 7 6 5 4 3 2 1 0

Name RASL.7 RASL.6 RASL.5 RASL.4 RASL.3 RASL.2 RASL.1 RASL.0

Reset 0 0 0 0 0 0 0 0

Access rs rs rs rs rs rs rs rs

r = read, s = special

Maxim Integrated

14.4.7 RTC Sub-Second Alarm Register (RSSA)

Bits 15 to 0: RTC Sub-Second Alarm (RSSA.[15:0]). This register contains the reload value for the sub-second alarm. The ALSF bit
is set when an auto-reload occurs. The width of the RSSA register for any given MAXQ microcontroller and hence, the longest pro-
grammable interval, is device dependent. This register is write-accessible only when ASE = 0 and BUSY = 0.

14.4.8 RTC Trim Register (RTRM)

Bits 7 and 6: Reserved

Bit 5: Trim Sign Bit (TSGN). This register bit selects whether the trim calibration for the RTC is positive (TSGN = 0) or negative
(TSGN = 1). The trim bits are always readable, but are write-accessible only when WE = 1.

Bits 4 to 0: Trim Calibration Bits (TRM[4:0]). These register bits provide a binary value between 0b–31b, which is used for accu-
mulation every 16 seconds. The carry-out of the accumulation determines when an additional 128 32kHz-input clock cycles are
added/subtracted to the RTC counter chain. The trim bits are always readable, but are write-accessible only when WE = 1.

14-10

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name RSSA.15 RSSA.14 RSSA.13 RSSA.12 RSSA.11 RSSA.10 RSSA.9 RSSA.8

Reset 0 0 0 0 0 0 0 0

Access rs rs rs rs rs rs rs rs

Bit # 7 6 5 4 3 2 1 0

Name RSSA.7 RSSA.6 RSSA.5 RSSA.4 RSSA.3 RSSA.2 RSSA.1 RSSA.0

Reset 0 0 0 0 0 0 0 0

Access rs rs rs rs rs rs rs rs

r = read, s = special

Bit # 7 6 5 4 3 2 1 0

Name — — TSGN TRM4 TRM3 TRM2 TRM1 TRM0

Power-On Reset 0 0 0 0 0 0 0 0

Reset 0 0 u u u u u u

Access r r rs rs rs rs rs rs

r = read, s = special, u = unaffected

Maxim Integrated

15-1

MAXQ Family User’s Guide

SECTION 15: TEST ACCESS PORT (TAP)

This section contains the following information:

15.1 TAP Controller .15-2

15.2 TAP State Control .15-2

15.2.1 Test-Logic-Reset .15-2

15.2.2 Run-Test-Idle .15-2

15.2.3 IR-Scan Sequence .15-3

15.2.4 DR-Scan Sequence .15-4

15.3 Communication via TAP .15-5

15.3.1 TAP Communication Examples—IR-Scan and DR-Scan .15-5

LIST OF FIGURES

LIST OF TABLES

Figure 15-1. TAP Controller State Diagram .15-3

Figure 15-2. TAP and TAP Controller .15-5

Figure 15-3. TAP Controller Debug Mode IR-Scan Example .15-6

Figure 15-4. TAP Controller Debug Mode DR-Scan Example .15-7

Table 15-1. Instruction Register Content vs. TAP Controller State .15-3

Table 15-2. Instruction Register (IR2:0) Encodings .15-4

Maxim Integrated

15-2

MAXQ Family User’s Guide

SECTION 15: TEST ACCESS PORT (TAP)
The MAXQ microcontroller incorporates a Test Access Port (TAP) and TAP controller for communication with a host device across a
4-wire synchronous serial interface. The TAP can be used by MAXQ microcontrollers to support in-system programming and/or in-cir-
cuit debug. The TAP is compatible with the JTAG IEEE standard 1149, and is formed by four interface signals, as described in the fol-
lowing table. For detailed information on the TAP and TAP controller, refer to IEEE STD 1149.1 "IEEE Standard Test Access Port and
Boundary-Scan Architecture."

15.1 TAP Controller
The TAP controller is a synchronous state machine that responds to changes at the TMS and TCK signals. Based on its state transi-
tion, the controller provides the clock and control sequence for TAP operation. The performance of the TAP is dependent on the TCK
clock frequency. The maximum TCK clock frequency should be limited to 1/8 the system clock frequency. This section provides a brief
description of the state machine and its state transitions. The state diagram in Figure 15-1 summarizes the transitions caused by the
TMS signal sampling on the rising edge at TCK. The TMS signal value is presented adjacent to each state transition in the figure.

15.2 TAP State Control
The TAP provides an independent serial channel to communicate synchronously with the host system. The TAP state control is achieved
through host manipulation of the Test Mode Select (TMS) and Test Clock (TCK) signals. The TMS signal is sampled at the rising edge
of TCK and decoded by the TAP controller to control movement between the TAP states. The TDI input and TDO output are meaning-
ful once the TAP is in a serial shift state (i.e., Shift-IR or Shift-DR).

15.2.1 Test-Logic-Reset
On a power-on reset, the TAP controller is initialized to the Test-Logic-Reset state and the instruction register (IR2:0) is initialized to the
By-Pass instruction so that it does not affect normal system operation. No matter what the state of the controller, it enters Test-Logic-
Reset when TMS is held high for at least five rising edges of TCK. The controller remains in the Test-Logic-Reset state if TMS remains
high. An erroneous low signal on the TMS can cause the controller to move into the Run-Test-Idle state, but no disturbance is caused
to system operation if the TMS signal is returned and kept at the intended logic high for three rising edges of TCK since this returns
the controller to the Test-Logic-Reset state.

15.2.2 Run-Test-Idle
As illustrated in Figure15-1, the Run-Test-Idle state is simply an intermediate state for getting to one of the two state sequences in which
the controller performs meaningful operations:

• Controller state sequence (IR-Scan), or

• Data register state sequence (DR-Scan)

EXTERNAL PIN
SIGNAL FUNCTION

TDO
(Test Data Output)

Serial-Data Output. This signal is used to serially transfer internal data to the external host. Data is transferred least significant bit
first. Data is driven out only on the falling edge of TCK, only during TAP Shift-IR or Shift-DR states and is otherwise inactive.

TDI
(Test Data Input)

Serial-Data Input. This signal is used to receive data serially transferred by the host. Data is received least significant bit first and
is sampled on the rising edge of TCK. TDI is weakly pulled high internally when TAP = 1.

TCK
(Test Clock Input)

Serial Shift Clock Provided by Host. When this signal is stopped at 0, storage elements in the TAP logic must retain their data
indefinitely. TCK is weakly pulled high internally when TAP = 1.

TMS
(Test Mode Select

Input)

Mode Select Input. This signal is sampled at the rising edge of TCK and controls movement between TAP states. TMS is weakly
pulled high internally when TAP = 1.

Maxim Integrated

15.2.3 IR-Scan Sequence
The controller state sequence allows instructions (e.g., 'Debug' and 'System Programming') to be shifted into the instruction register
starting from the Select-IR-Scan state. In the TAP, the instruction register is connected between the TDI input and the TDO output.
Inside the IR-Scan Sequence, the Capture-IR state loads a fixed binary pattern (001b) into the 3-bit shift register and the Shift-IR state
causes shifting of TDI data into the shift register and serial output to TDO, least significant bit first. Once the desired instruction is in
the shift register, the instruction can be latched into the parallel instruction register (IR2:0) on the falling edge of TCK in the Update-IR
state. The contents of the 3-bit instruction shift register and parallel instruction register (IR2:0) are summarized with respect to the TAP
controller states in Table 15-1.

Table 15-1. Instruction Register Content vs. TAP Controller State

15-3

MAXQ Family User’s Guide

TEST-LOGIC-RESET

RUN-TEST-IDLE SELECT-DR-SCAN

EXIT2-DR

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

UPDATE-DR

SELECT-IR-SCAN

EXIT2-IR

CAPTURE-IR

SHIFT-IR

EXIT1-IR

PAUSE-IR

UPDATE-IR

1

0

1 1 1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0 0

1 1

0 0

Figure 15-1. TAP Controller State Diagram

TAP CONTROLLER STATE INSTRUCTION SHIFT REGISTER PARALLEL (3-BIT) INSTRUCTION REGISTER (IR2:0)

Test-Logic-Reset Undefined Set to By-pass (011b) Instruction
Capture-IR Load 001b at the rising edge of TCK Retain last state

Shift-IR Input data via TDI and Shift towards TDO at the rising
edge of TCK Retain last state

Exit1-IR, Exit2-IR, Pause-IR Retain last state Retain last state
Update-IR Retain last state Load from shift register at the falling edge of TCK

All other states Undefined Retain last state

Maxim Integrated

When the parallel instruction register (IR2:0) is updated, the TAP controller decodes the instruction and performs any necessary oper-
ations, including activation of the data shift register to be used for the particular instruction during data register shift sequences (DR-
Scan). The length of the activated shift register depends upon the value loaded to the instruction register (IR2:0). The supported
instruction-register encodings and associated data-register selections are shown in Table 15-2.

Table 15-2. Instruction Register (IR2:0) Encodings

The Extest (IR2:0 = 000b) and Sample/Preload (IR2:0 = 001b) instructions are mandated by the JTAG standard, however, the MAXQ
microcontroller does not intend to make practical use of these instructions. Hence, these instructions are treated as no operations but
may be entered into the instruction register without affecting the on-chip system logic or pins and does not change the existing serial
data register selection between TDI and TDO.

The By-pass (IR2:0 = 011b, 101b, or 111b) instruction is also mandated by the JTAG standard. The By-pass instruction is fully implemented
by the MAXQ microcontroller to provide a minimum length serial data path between the TDI and the TDO pins. This is accomplished by
providing a single cell bypass shift register. When the instruction register is updated with the By-pass instruction, a single bypass register
bit is connected serially between TDI and TDO in the Shift-DR state. The instruction register automatically defaults to the By-pass instruc-
tion when the TAP is in the Test-Logic-Reset state. The By-pass instruction has no effect on the operation of the on-chip system logic.

The Debug (IR2:0 = 010b) and System Programming (IR2:0 = 100b) instructions are private instructions that are intended solely for in-
circuit debug and in-system programming operations respectively. If the instruction register is updated with the Debug instruction, a 10-
bit serial shift register is formed between the TDI and TDO pins in the Shift-DR state. If the System Programming instruction is entered
into the instruction register (IR2:0), a 3-bit serial data shift register is formed between the TDI and TDO pins in the Shift-DR state.

Instruction register (IR2:0) settings other than those listed and described above are reserved for internal use. As can be seen in
Figure 15-2, the instruction register serves to select the length of the serial data register between TDI and TDO during the Shift-DR
state.

15.2.4 DR-Scan Sequence
Once the instruction register has been configured to a desired state (mode), transactions are performed via a data buffer register asso-
ciated with that mode. These data transactions are executed serially in a manner analogous to the process used to load the instruc-
tion register and are grouped in the TAP Controller state sequence starting from the Select-DR-Scan state. In the TAP controller state
sequence, the Shift-DR state allows internal data to be shifted out through the TDO pin while the external data is shifted in simultane-
ously via the TDI pin. Once a complete data pattern is shifted in, input data can be latched into the parallel buffer of the selected reg-
ister on the falling edge of TCK in the Update-DR state. On the same TCK falling edge, in the Update-DR state, the internal parallel
buffer is loaded to the data shift register for output. This Shift-DR/Update-DR process serves as the basis for passing information
between the external host and the MAXQ microcontroller. These data register transactions occur in the data register portion of the TAP
controller state sequence diagram and have no effect on the instruction register.

15-4

MAXQ Family User’s Guide

IR2:0 INSTRUCTION FUNCTION SERIAL DATA SHIFT
REGISTER SELECTION

000 Extest No operation Unchanged (retain previous selection)
001 Sample/Preload No operation Unchanged (retain previous selection)
010 Debug In-circuit debug mode 10-bit shift register
011 By-pass No operation (default) 1-bit shift register
100 System Programming Bootstrap function 3-bit shift register
101 By-pass No operation (default) 1-bit shift register
110 Reserved
111 By-pass No operation (default) 1-bit shift register

Maxim Integrated

15.3 Communication via TAP
The TAP controller is in Test-Logic-Reset state after a power-on-reset. During this initial state, the instruction register contains By-pass
instruction and the serial path defined between the TDI and TDO pins for the Shift-DR state is the 1-bit bypass register. All TAP signals
(TCK, TMS, TDI, and TDO) default to being weakly pulled high internally on any reset. The TAP controller remains in the Test-Logic-
Reset state as long as TMS is held high. The TCK and TMS signals can be manipulated by the host to transition to other TAP states.
The TAP controller remains in a given state whenever TCK is held low.

For the host to establish a specific data communication link, a private instruction must be loaded into the IR2:0 register. Once the instruc-
tion is latched in the instruction parallel buffer at the Update-IR state, it is recognized by the TAP controller and the communication chan-
nel is established. In-Circuit Debug or In-System Programming commands and data can be exchanged between the host and the MAXQ
microcontroller by operating in the data register portion of the state sequence (i.e., DR-Scan). The TAP retains the private instruction that
was loaded into IR2:0 until a new instruction is shifted in or until the TAP controller returns to the Test-Logic-Reset state.

15.3.1 TAP Communication Examples—IR-Scan and DR-Scan
Figures 15-3 and 15-4 illustrate examples of communication between the host JTAG controller and the Test Access Port (TAP) of the
MAXQ microcontroller. The host controls the TCK and TMS signals to move through the desired TAP states while accessing the select-
ed shift register through the TDI input and TDO output pair.

15-5

MAXQ Family User’s Guide

TDOTDI

WRITE

TCK

DEBUG

UPDATE-DR

UPDATE-DR

VDD

TAP CONTROLLER
TMS

 SYSTEM PROGRAM

READ

POWER-ON
RESET

BY-PASS

INSTRUCTION REGISTER

7 6 5 4 3 2 1 0 s1 s0

2 1 0

2 1 0VDD

Figure 15-2. TAP and TAP Controller

Maxim Integrated

15-6

MAXQ Family User’s Guide

NEW INSTRUCTION

INSTRUCTION REGISTER

TCK

TMS

TDI

TDO

CONTROL�
STATE

IR SHIFT�
REGISTER

IR PARALLEL�
OUTPUT

REGISTER�
SELECTED

TDO�
ENABLE

BY-PASS

DON'T CARE OR UNDEFINEDDON'T CARE OR UNDEFINED

DON'T CARE OR UNDEFINED DON'T CARE OR UNDEFINED

TEST-LOGIC-RESET

RUN-TEST/IDLE

SELECT-DR-SCAN

SELECT-IR-SCAN

CAPTURE-IR

SHIFT-IR

SHIFT-IR

EXIT1-IR

EXIT1-IR

UPDATE-IR

RUN-TEST/IDLE

EXIT2-IR

PAUSE-IR

Figure 15-3. TAP Controller Debug Mode IR-Scan Example

Maxim Integrated

15-7

MAXQ Family User’s Guide

OLD DATA NEW DATA

DATA REGISTER

TCK

TMS

TDI

TDO

CONTROL�
STATE

SHIFT�
REGISTER

PARALLEL�
OUTPUT

INSTRUCTION�
REGISTER

TDO�
ENABLE

DON'T CARE OR UNDEFINED DON'T CARE OR UNDEFINED

DON'T CARE OR UNDEFINED

TEST-LOGIC-RESET

RUN-TEST/IDLE

SELECT-DR-SCAN

SELECT-DR-SCAN

SELECT-IR-SCAN

CAPTURE-DR

SHIFT-DR

SHIFT-DR

EXIT1-DR

EXIT1-DR

UPDATE-DR

RUN-TEST/IDLE

EXIT2-DR

PAUSE-DR

Figure 15-4. TAP Controller Debug Mode DR-Scan Example

Maxim Integrated

16-1

MAXQ Family User’s Guide

SECTION 16: IN-CIRCUIT DEBUG MODE

This section contains the following information:

16.1 Background Mode Operation .16-3
16.1.1 Breakpoint Registers .16-5

16.1.1.1 Breakpoint 0 Register (BP0) .16-5
16.1.1.2 Breakpoint 1 Register (BP1) .16-5
16.1.1.3 Breakpoint 2 Register (BP2) .16-6
16.1.1.4 Breakpoint 3 Register (BP3) .16-6
16.1.1.5 Breakpoint 4 Register (BP4) (REGE = 0) .16-7
16.1.1.6 Breakpoint 4 Register (BP4) (REGE = 1) .16-7
16.1.1.7 Breakpoint 5 Register (BP5) (REGE = 0) .16-8
16.1.1.8 Breakpoint 5 Register (BP5) (REGE = 1) .16-8

16.1.2 Using Breakpoints .16-9
16.2 Debug Mode .16-9

16.2.1 Debug Mode Commands .16-10
16.2.2 Read Register Map Command Host-ROM Interaction .16-12
16.2.3 Single-Step Operation (Trace) .16-12
16.2.4 Return .16-12
16.2.5 Debug Mode Special Considerations .16-12

16.3 In-Circuit Debug Peripheral Registers .16-13
16.3.1 In Circuit Debug Temp 0 Register (ICDT0) .16-13
16.3.2 In Circuit Debug Temp 1 Register (ICDT1) .16-14
16.3.3 In-Circuit Debug Control Register (ICDC) .16-14
16.3.4 In-Circuit Debug Flag Register (ICDF) .16-15
16.3.5 In-Circuit Debug Buffer Register (ICDB) .16-15
16.3.6 In Circuit Debug Data Register (ICDD) .16-16
16.3.7 In Circuit Debug Address Register (ICDA) .16-16

LIST OF FIGURES

LIST OF TABLES

Figure 16-1. In-Circuit Debugger .16-2

Table 16-1. Background Mode Commands .16-4
Table 16-2. Debug Mode Commands .16-11

Maxim Integrated

16-2

MAXQ Family User’s Guide

SECTION 16: IN-CIRCUIT DEBUG MODE
Most MAXQ microcontroller devices are equipped with embedded debug hardware and embedded ROM firmware developed for the
purpose of providing in-circuit debugging capability to the user application. The in-circuit debug mode uses the JTAG-compatible TAP
as its means of communication between the host and MAXQ microcontroller. Figure 16-1 shows a block diagram of the in-circuit debug-
ger. The in-circuit debug hardware and software features include:

• a debug engine

• a set of registers providing the ability to set breakpoints on register, code, or data

• a set of debug service routines stored in a ROM

Collectively, these hardware and software features allow two basic modes of in-circuit debugging:

• Background mode allows the host to configure and set up the in-circuit debugger while the CPU continues to execute the normal
program. Debug mode can be invoked from Background mode.

• Debug mode allows the debug engine to take control of the CPU, providing read-write access to internal registers and memory, and
single-step trace operation.

The embedded hardware debug engine is implemented as a stand-alone hardware block in the MAXQ microcontroller. The debug
engine can be enabled for monitoring internal activities and interacting with selected internal registers while the CPU is executing user
code. This capability allows the user to employ the embedded debug engine to debug the actual system, in place of the in-circuit emu-
lator that uses external hardware to duplicate operation of the microcontroller outside of the real application environment.

To enable a communication link between the host and the microcontroller debug engine, the Debug instruction (010b) must be loaded
into the TAP instruction register using the IR-Scan sequence. Once the instruction is latched in the instruction parallel buffer (IR2:0)
and is recognized by the TAP controller in the Update-IR state, the 10-bit data shift register is activated as the communication chan-
nel for DR-Scan sequences. The TAP instruction register retains the Debug instruction until a new instruction is shifted via an IR-Scan
or the TAP controller returns to the Test-Logic-Reset state.

TMS

TDO

TDI

TCK

CPU

ROM

DEBUG�
ENGINE

BREAKPOINT

BREAK

ICDB

ICDF

ICDC

COMPARATOR

COMPARATOR

COMPARATOR

CODE ADDR

DATA ADDR

REG DATA

IP

IR DATA

ADDR

ENABLE

ICDA

ICDD

ICDTn

TAP�
CONTROLLER

Figure 16-1. In-Circuit Debugger

Maxim Integrated

The host now can transmit and receive serial data through the 10-bit data shift register that exists between the TDI input and TDO out-
put during DR-Scan sequences. All background and debug mode communication (commands, data input/output, and status) occurs
via this serial channel. Each 10-bit exchange of data between the host and the MAXQ internal hardware is composed of two status bits
and a single byte of command or data. The 10-bit word is always transmitted least significant bit first with the format shown below.

The data byte portion of the 10-bit shift register is interfaced directly to the ICDB parallel register. The ICDB register functions as the hold-
ing data register for both transmit and receive operations. On the falling edge of TCK in the Update-DR state, the outgoing data is loaded
from the ICDB parallel register to the debug shift register and the incoming shift register data is latched in the ICDB parallel register.

16.1 Background Mode Operation
When the instruction register is loaded with the Debug instruction (IR2:0 = 010b), the host can communicate with the MAXQ micro-
controller in a background mode using TAP DR-Scan sequences without disturbing CPU operation. Note, however, that JTAG in-sys-
tem programming also requires use of the 10-bit debug shift register and, if enabled (SPE, PSS1:0 = 100b), takes precedence over
background mode communication. When operating in background mode, the status bits are always cleared to 00b (non-debug), which
indicates that the MAXQ microcontroller is ready to receive background mode commands.

The host can perform the following operations from background mode:

• read/write internal breakpoint registers (BP0-BP5)

• read/write internal in-circuit debug registers (ICDC, ICDF, ICDA, ICDD)

• monitor to determine when a breakpoint match has occurred

• directly invoke debug mode

16-3

MAXQ Family User’s Guide

MAXQ

9 0 9 0

x x TDI TDO

Host Command / Data Input MAXQ Data Output

s1:s0 Status/Condition

00 Non-Debug. Default condition,
Background mode, or debug
engine inactive.

01 Debug Idle. Debug engine is
ready to receive data from the
host (command, data).

10 Debug Busy. Debug engine is
busy without valid data (i.e. ROM
code execution, trace operations).

11 Debug Valid. Debug engine is
busy with valid data

Maxim Integrated

Table 16-1 shows the background mode commands supported by the MAXQ microcontroller. Encodings not listed in this table are not
supported in background mode and are treated as no operations.

Table 16-1. Background Mode Commands

16-4

MAXQ Family User’s Guide

OP CODE COMMAND OPERATION
0000-0000 No Operation No Operation. Default state for Debug Shift register.

0000-0001 Read ICDC Read Control Data from the ICDC. The contents of the ICDC register are loaded into the Debug Shift Register via
the ICDB register for host read. This command requires one follow-on transfer cycle.

0000-0010 Read ICDF Read Flags from the ICDF. The contents of the ICDF register (one byte) are loaded into the Debug Shift Register
via the ICDB register for host read. This command requires one follow-on transfer cycle.

0000-0011 Read ICDA Read Data from the ICDA. The contents of the ICDA register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0100 Read ICDD Read Data from the ICDD. The contents of the ICDD register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0101 Read BP0 Read Data from the BP0. The contents of the BP0 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0110 Read BP1 Read Data from the BP1. The contents of the BP1 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0111 Read BP2 Read Data from the BP2. The contents of the BP2 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-1000 Read BP3 Read Data from the BP3. The contents of the BP3 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-1001 Read BP4 Read Data from the BP4. The contents of the BP4 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-1010 Read BP5 Read Data from the BP5. The contents of the BP5 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0001-0001 Write ICDC Write Control Data to the ICDC. The contents of ICDB are loaded into the ICDC register by the debug engine at
the end of the data transfer cycle.

0001-0011 Write ICDA Write Data to the ICDA. The contents of ICDB are loaded into the ICDA register by the debug engine at the end
of the data transfer cycles. Data is transferred with the least significant byte first.

0001-0100 Write ICDD Write Data to the ICDD. The contents of ICDB are loaded into the ICDD register by the debug engine at the end
of data transfer cycles. Data is transferred with the least significant byte first.

0001-0101 Write BP0 Write Data to the BP0. The contents of ICDB are loaded into the BP0 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-0110 Write BP1 Write Data to the BP1. The contents of ICDB are loaded into the BP1 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-0111 Write BP2 Write Data to the BP2. The contents of ICDB are loaded into the BP2 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-1000 Write BP3 Write Data to the BP3. The contents of ICDB are loaded into the BP3 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-1001 Write BP4 Write Data to the BP4. The contents of ICDB are loaded into the BP4 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-1010 Write BP5 Write Data to the BP5. The contents of ICDB are loaded into the BP5 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-1111 Debug Debug Command. This command forces the debug engine into debug mode and halts the CPU operation at the
completion of the current instruction after the debug engine recognizes the debug command.

Maxim Integrated

16.1.1 Breakpoint Registers
The MAXQ microcontroller incorporates six breakpoint registers (BP0-BP5) that are configurable by the host for establishing different
types of breakpoint mechanisms. The first four breakpoint registers (BP0-BP3) are 16-bit registers that are configurable as program
memory address breakpoints. When enabled, the debug engine will force a break when a match between the breakpoint register and
the program memory execution address occurs. The final two 16-bit breakpoint registers (BP4, BP5) are configurable in one of two
possible capacities. They may be configured as data memory address breakpoints or may be configured to support register access
breakpoints. In either case, if breakpoints are enabled and the defined breakpoint match occurs, the debug engine will generate a
break condition. The six breakpoint registers are documented below.

16.1.1.1 Breakpoint 0 Register (BP0)

Bits 15 to 0: Breakpoint 0 (BP0.[15:0]). This register is accessible only via background mode read/write commands. Breakpoint reg-
isters BP0, BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the debug
engine monitors the program-address bus activity while the CPU is executing the user program. If an address match is detected, a
break occurs, allowing the debug engine to take control of the CPU and enter debug mode.

16.1.1.2 Breakpoint 1 Register (BP1)

Bits 15 to 0: Breakpoint 1 (BP1.[15:0]). This register is accessible only via background mode read/write commands. Breakpoint reg-
isters BP0, BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the debug
engine monitors the program-address bus activity while the CPU is executing the user program. If an address match is detected, a
break occurs, allowing the debug engine to take control of the CPU and enter debug mode.

16-5

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name BP0.15 BP0.14 BP0.13 BP0.12 BP0.11 BP0.10 BP0.9 BP0.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name BP0.7 BP0.6 BP0.5 BP0.4 BP0.3 BP0.2 BP0.1 BP0.0

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s S

s = special

Bit # 15 14 13 12 11 10 9 8

Name BP1.15 BP1.14 BP1.13 BP1.12 BP1.11 BP1.10 BP1.9 BP1.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name BP1.7 BP1.6 BP1.5 BP1.4 BP1.3 BP1.2 BP1.1 BP1.0

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s S

s = special

Maxim Integrated

16-6

MAXQ Family User’s Guide

16.1.1.3 Breakpoint 2 Register (BP2)

Bits 15 to 0: Breakpoint 2 (BP2.[15:0]). This register is accessible only via background mode read/write commands. Breakpoint reg-
isters BP0, BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the debug
engine monitors the program-address bus activity while the CPU is executing the user program. If an address match is detected, a
break occurs, allowing the debug engine to take control of the CPU and enter debug mode.

16.1.1.4 Breakpoint 3 Register (BP3)

Bits 15 to 0: Breakpoint 3 (BP3.[15:0]). This register is accessible only via background mode read/write commands. Breakpoint reg-
isters BP0, BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the debug
engine monitors the program-address bus activity while the CPU is executing the user program. If an address match is detected, a
break occurs, allowing the debug engine to take control of the CPU and enter debug mode.

Bit # 15 14 13 12 11 10 9 8

Name BP2.15 BP2.14 BP2.13 BP2.12 BP2.11 BP2.10 BP2.9 BP2.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name BP2.7 BP2.6 BP2.5 BP2.4 BP2.3 BP2.2 BP2.1 BP2.0

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s S

s = special

Bit # 15 14 13 12 11 10 9 8

Name BP3.15 BP3.14 BP3.13 BP3.12 BP3.11 BP3.10 BP3.9 BP3.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name BP3.7 BP3.6 BP3.5 BP3.4 BP3.3 BP3.2 BP3.1 BP3.0

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s S

s = special

Maxim Integrated

16.1.1.5 Breakpoint 4 Register (BP4) (REGE = 0)

Bits 15 to 0: Breakpoint 4 (BP4.[15:0]). This register is accessible only via background mode read/write commands.

When (REGE = 0): This register serves as one of the two data memory address breakpoints. When DME is set in background mode,
the debug engine will monitor the data memory address bus activity while the CPU is executing the user program. If an address match
is detected, a break occurs, allowing the debug engine to take over control of the CPU and enter debug mode.

16.1.1.6 Breakpoint 4 Register (BP4) (REGE = 1)

Bits 15 to 9: Reserved

Bits 8 to 0: Breakpoint 4 (BP4.[8:0]). This register is accessible only via background mode read/write commands.

When (REGE = 1): This register serves as one of the two register breakpoints. A break occurs when the destination register address
for the executed instruction matches with the specified module and index.

16-7

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name
(REGE = 0) BP4.15 BP4.14 BP4.13 BP4.12 BP4.11 BP4.10 BP4.9 BP4.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s*

Bit # 7 6 5 4 3 2 1 0

Name
(REGE = 0) BP4.7 BP4.6 BP4.5 BP4.4 BP4.3 BP4.2 BP4.1 BP4.0

Reset 1 1 1 1 1 1 1 1

Access s* s* s* s* s** s** s** s**

s = special, * = register index within module {0-31), ** = module specifier 3:0 {0-15}

Bit # 15 14 13 12 11 10 9 8

Name
(REGE = 1) — — — — — — — BP4.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s*

Bit # 7 6 5 4 3 2 1 0

Name
(REGE = 1) BP4.7 BP4.6 BP4.5 BP4.4 BP4.3 BP4.2 BP4.1 BP4.0

Reset 1 1 1 1 1 1 1 1

Access s* s* s* s* s** s** s** s**

s = special, * = register index within module {0-31), ** = module specifier 3:0 {0-15}

Maxim Integrated

16.1.1.7 Breakpoint 5 Register (BP5) (REGE = 0)

Bits 15 to 0: Breakpoint 5 (BP5.[15:0]). This register is accessible only via background mode read/write commands.

(REGE = 0) This register serves as one of the two data memory address breakpoints. When DME is set in background mode, the debug
engine will monitor the data memory address bus activity while the CPU is executing the user program. If an address match is detect-
ed, a break occurs, allowing the debug engine to take over control of the CPU and enter debug mode.

16.1.1.8 Breakpoint 5 Register (BP5) (REGE = 1)

Bits 15 to 9: Reserved

Bits 8 to 0: Breakpoint 5 (BP5.[8:0]). This register is accessible only via background mode read/write commands.

(REGE = 1) This register serves as one of the two register breakpoints. A break occurs when two conditions are met:

Condition 1: The destination register address for the executed instruction matches with the specified module and index.

Condition 2: The bit pattern written to the destination register matches those bits specified for comparison by the ICDD data register
and ICDA mask register. Only those ICDD data bits with their corresponding ICDA mask bits will be compared. When all bits in the
ICDA register are cleared, Condition 2 becomes a don’t care.

16-8

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name
(REGE = 0) BP5.15 BP5.14 BP5.13 BP5.12 BP5.11 BP5.10 BP5.9 BP5.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s*

Bit # 7 6 5 4 3 2 1 0

Name
(REGE = 0) BP5.7 BP5.6 BP5.5 BP5.4 BP5.3 BP5.2 BP5.1 BP5.0

Reset 1 1 1 1 1 1 1 1

Access s* s* s* s* s** s** s** s**

s = special, * = register index within module {0-31), ** = module specifier 3:0 {0-15}

Bit # 15 14 13 12 11 10 9 8

Name
(REGE = 1) — — — — — — — BP5.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s*

Bit # 7 6 5 4 3 2 1 0

Name
(REGE = 1) BP5.7 BP5.6 BP5.5 BP5.4 BP5.3 BP5.2 BP5.1 BP5.0

Reset 1 1 1 1 1 1 1 1

Access s* s* s* s* s** s** s** s**

s = special, * = register index within module {0-31), ** = module specifier 3:0 {0-15}

Maxim Integrated

16-9

MAXQ Family User’s Guide

16.1.2 Using Breakpoints
All breakpoint registers (BP0-BP5) default to the FFFFh state on power-on reset or when the Test-Logic-Reset TAP state is entered. The
breakpoint registers are accessible only with Background mode read/write commands issued over the TAP communication link. The
breakpoint registers are not read/write accessible to the CPU.

Setting the Debug Mode Enable (DME) bit in the ICDC register to logic 1 enables all six breakpoint registers for breakpoint match com-
parison. The state of the Break-On Register Enable (REGE) bit in the ICDC register determines whether the BP4 and BP5 breakpoints
should be used as data memory address breakpoints (REGE = 0) or as register breakpoints (REGE = 1).

When using the register matching breakpoints, it is important to realize that Debug mode operations (e.g., read data memory, write
data memory, etc.) require use of ICDA and ICDD for passing of information between the host and MAXQ microcontroller ROM rou-
tines. It is advised that these registers be saved and restored or be reconfigured before returning to the background mode if register
breakpoints are to remain enabled.

When a breakpoint match occurs, the debug engine forces a break and the MAXQ microcontroller enters Debug Mode. If a breakpoint
match occurs on an instruction that activates the PFX register, the break is held off until the prefixed operation completes. The host can
assess whether Debug mode has been entered by monitoring the status bits of the 10-bit word shifted out of the TDO pin. The status
bits will change from the Non-debug (00b) state associated with background mode to the Debug-Idle (01b) state when Debug Mode
is entered. Debug mode can also be manually invoked by host issuance of the 'Debug' background command.

16.2 Debug Mode
There are two ways to enter the Debug Mode from Background Mode:

• Issuance of the Debug command directly by the host via the TAP communication port, or

• Breakpoint matching mechanism.

The host can issue the Debug background command to the debug engine. This direct Debug Mode entry is indeterministic. The
response time varies dependent on system conditions when the command is issued. The breakpoint mechanism provides a more con-
trollable response, but requires that the breakpoints be initially configured in Background mode. No matter the method of entry, the
debug engine takes control of the CPU in the same manner. Debug mode entry is similar to the state machine flow of an interrupt except
that the target execution address is x8010h which resides in the Utility ROM instead of the address specified by the IV register that is
used for interrupts. On debug mode entry, the following actions occur:

1) block the next instruction fetch from program memory

2) push the return address onto the stack

3) set the contents of IP to x8010h

4) clear the IGE bit to 0 to disable interrupt handler if it is not already clear.

5) halt CPU operation

Once in Debug mode, further breakpoint matches or host issuance of the Debug command are treated as no operations and will not
disturb debug engine operation. Entering debug mode also stops the clocks to all timers, including the Watchdog Timer. Temporarily
disabling these functions allows debug mode operations without disrupting the relationship between the original user program code
and hardware timed functions. No interrupt request can be granted since the interrupt handler is also halted as a result of IGE = 0.

Maxim Integrated

16.2.1 Debug Mode Commands
The debug engine sets the data shift register status bits to 01b (debug-idle) to indicate that it is ready to accept debug commands
from the host.

The host can perform the following operations from debug mode:

• read register map

• read program stack

• read/write register

• read/write data memory

• single step of CPU (trace)

• return to background mode

• unlock password

The only operations directly controlled by the debug engine are single step and return. All other operations are assisted by debug ser-
vice routines contained in the Utility ROM. These operations require that multiple bytes be transmitted and/or received by the host,
however each operation always begins with host transmission of a command byte. This command byte is decoded by the debug
engine in order to determine the quantity, sequence, and destination for follow-on bytes received from the host. Even though there is
no timing window specified for receiving the complete command and follow-on data, the debug engine must receive the correct num-
ber of bytes for a particular command before executing that command. If command and follow-on data are transmitted out of byte order
or proper sequence, the only way to resolve this situation is to disable the debug engine by changing the instruction register (IR2:0)
and reloading the Debug instruction. Once the debug engine has received the proper number of command and follow-on bytes for a
given ROM assisted operation, it will respond with the following actions:

• update the Command bits (CMD3:0) in the ICDC register to reflect the host request,

• enable the ROM if it is not been enabled,

• force a jump to ROM address x8010h, and

• set the data shift register status bits to 10b (debug-busy)

The ROM code performs a read to the ICDC register CMD3:0 bits to determine its course of action. Some commands can be processed
by the ROM without receiving data from the host beyond the initially supplied follow-on bytes, while others (e.g., Unlock Password)
require additional data from the host. Some commands need only to provide an indication of completion to the host, while others (Read
register map) need to supply multiple bytes of output data. To accomplish data flow control between the host and ROM, the status bits
should be used by the host to assess when the ROM is ready for additional data and/or when the ROM is providing valid data output.
Internally, the ROM can ascertain when new data is available or when it may output the next data byte via the TXC flag. The TXC flag
is an important indicator between the debug engine and the Utility ROM debug routines. The Utility ROM firmware sets the TXC flag to
1 to indicate that valid data has been loaded to the ICDB register. The debug engine clears the TXC flag to 0 to indicate completion
of a data shift cycle, thus allowing the ROM to continue execution of a requested task that is still in progress. The Utility ROM signals
that it has completed a requested task by setting the ROM Operation Done (ROD) bit of the SC register to logic 1. The ROD bit is reset
by the debug engine when it recognizes the done condition.

Table 16-2 shows the debug mode commands supported by the MAXQ microcontroller. Note that background mode commands are
supported inside debug mode, however the documentation of these commands can be found in the Background mode section of the
document. Encodings not listed in this table are not supported in debug mode and are treated as no operations.

16-10

MAXQ Family User’s Guide

Maxim Integrated

16-11

MAXQ Family User’s Guide

Table 16-2. Debug Mode Commands
OP CODE COMMAND OPERATION

0010-0000 No Operation No Operation

0010-0001 Read Register Map

Read Data from Internal Registers. This command forces the debug engine to update the CMD3:0 bits in the
ICDC to 0001b and perform a jump to ROM code at x8010h. The ROM debug service routine will load register
data to ICDB for host capture/read, starting at the lowest register location in module 0, one byte at a time in a
successive order until all internal registers are read and output to the host.

0010-0010 Read Data Memory

Read Data from Data Memory. This command requires four follow-on transfer cycles, two for the starting
address and two for the word read count, starting with the LSB address and ending with the MSB read count.
The address is moved to the ICDA register and the word read count is moved to the ICDD register by the
debug engine. This information is directly accessible by the ROM code. At the completion of this command
period, the debug engine updates the CMD3:0 bits to 0010b and performs a jump to ROM code at x8010h.
The ROM debug service routine will load ICDB from data memory according to address and count information
provided by the host.

0010-0011 Read Program Stack

Read Data from Program Stack. This command requires four follow-on transfer cycles, two for the starting
address and two for the read count, starting with the LSB address and ending with the MSB read count. The
address is moved to the ICDA register and the read count is moved to the ICDD register by the debug engine.
This information is directly accessible by the ROM code. At the completion of this command period, the debug
engine updates the CMD3:0 bits to 0011b and performs a jump to ROM code at x8010h. The ROM Debug
service routine will pop data out from the stack according to the information received in the ICDA and ICDD
register. The stack pointer is pre-decremented for each pop operation.

0010-0100 Write Register

Write Data to a Selected Register. This command requires four follow-on transfer cycles, two for the register
address and two for the data, starting with the LSB address and ending with the MSB data. The address is
moved to the ICDA register and the data is moved to the ICDD register by the debug engine. This information
is directly accessible by the ROM code. At the completion of this command period, the debug engine updates
the CMD3:0 bits to 0100b and performs a jump to ROM code at x8010h. The ROM Debug service routine will
update the select register according to the information received in the ICDA and ICDD registers.

0010-0101 Write Data Memory

Write Data to a Selected Data Memory Location. This command requires four follow-on transfer cycles, two for
the memory address and two for the data, starting with the LSB address and ending with the MSB data. The
address is moved to the ICDA register and the data is moved to the ICDD register by the debug engine. This
information is directly accessible by the ROM code. At the completion of this command period, the debug
engine updates the CMD3:0 bits to 0101b and performs a jump to ROM code at x8010h. The ROM Debug
service routine will update the selected data memory location according to the information received in the
|ICDA and ICDD registers.

0010-0110 Trace Trace Command. This command allows single stepping the CPU and requires no follow-on transfer cycle. The
trace operation is a ‘debug mode exit, one cycle CPU execution, debug mode entry’ sequence.

0010-0111 Return Return Command. This command terminates the debug mode and returns the debug engine to background
mode. This allows the CPU to resume its normal operation at the point where it has been last interrupted.

0010-1000 Unlock Password

Unlock the Password Lock. This command requires 32 follow-on transfer cycles each containing a byte value
to be compared with the program memory password for the purpose of clearing the PWL bit and granting
access to protected debug and loader functions. When this command is received, the debug engine updates
the CMD3:0 bit to 1000b and performs a jump to ROM code at x8010h. Data is loaded to the ICDB register
when each byte of data is received, beginning with the LSB of the least significant word first and end with the
MSB of the most significant word.

0010-1001 Read Register

Read from a Selected Internal Register. This command requires two follow-on transfer cycles, starting with the
LSB address and ending with the MSB address. The address is moved to ICDA register by the debug engine.
This information is directly accessible by the ROM code. At the completion of this command period, the debug
engine updates the CMD3:0 bits to 1001b and performs a jump to ROM code at x8010h. The ROM Debug
service routine will always assume a 16-bit register length and return the requested data LSB first.

Maxim Integrated

16.2.2 Read Register Map Command Host-ROM Interaction
A read register map command reads out data contents for all implemented system and peripheral registers. The host does not specify
a target register but instead should expect register data output in successive order, starting with the lowest order register in register mod-
ule 0. Data is loaded by the ROM to the 8-bit ICDB register and is output one byte per transfer cycle. Thus, for a 16-bit register, two trans-
fer cycles are necessary. The host initiates each transfer cycle to shift out the data bytes and will find valid data output tagged with a
debug-valid (status = 11b). At the end of each transfer cycle, the debug engine clears the TXC flag to signal the ROM service routine
that another byte may be loaded to ICDB. The ROM service routine sets the TXC flag each time after loading data to the ICDB register.
This process is repeated until all registers have been read and output to the host. The host system recognizes the completion of the
register read when the status debug-idle is presented. This indicates that the debug engine is ready for another operation.

16.2.3 Single-Step Operation (Trace)
The debug engine supports single step operation in debug mode by executing a trace command from the host. The debug engine
allows the CPU to return to its normal program execution for one cycle and then forces a debug mode re-entry:

1) Set status to 10b (debug-busy).

2) Pop the return address from the stack.

3) Set the IGE bit to logic 1 if debug mode was activated when IGE = 1.

4) Supply the CPU with an instruction addressed by the return address.

5) Stall the CPU at the end of the instruction execution.

6) Block the next instruction fetch from program memory.

7) Push the return address onto the stack.

8) Set the contents of IP to x8010h.

9) Clear the IGE bit to 0 to disable the interrupt handler.

10) Halt CPU operation.

11) Set the status to debug-idle.

Note that the trace operation uses a return address from the stack as a legitimate address for program fetching. The host must main-
tain consistency of program flow during the debug process. The Instruction Pointer is automatically incremented after each trace oper-
ation, thus a new return address will be pushed onto the stack before returning the control to the debug engine. Also, note that the
interrupt handler is an essential part of the CPU and a pending interrupt could be granted during single step operation since the IGE
bit state present on debug mode entry is restored for the single step.

16.2.4 Return
To terminate the debug mode and return the debug engine to background mode, the host must issue a Return command to the debug
engine. This command causes the following actions:

1) Pop the return address from the stack.

2) Set the IGE bit to logic 1 if debug mode was activated when IGE = 1.

3) Supply the CPU with an instruction addressed by the return address.

4) Allow the CPU to execute the normal user program.

5) Set the status to 00b (non-debug).

To prevent a possible endless-breakpoint matching loop, no break occurs for a breakpoint match on the first instruction after returning
from debug mode to background mode. Returning to background mode also enables all internal timer functions.

16.2.5 Debug Mode Special Considerations
The following are special considerations when using Debug Mode.

• The debug engine cannot be operated reliably when the CPU is configured in the Power Management Mode (divide-by-256 system
clock mode). To allow for proper execution of debug mode commands when invoked during PMM, the Switchback enable (SWB)
bit should be configured to a logic 1. With SWB = 1, entering active debug mode (whether by breakpoint match or issuance of the
debug command) forces a switchback to the divide-by-1 system clock mode and allow the debug engine to function correctly. This

16-12

MAXQ Family User’s Guide

Maxim Integrated

allows user code to configure breakpoints that occur inside PMM, thus providing reliable use of debug commands. However, it does
not allow a good means for re-entering PMM.

• Special caution should be exercised when using the Write Register command on register bits that globally affect system operation
(e.g., IGE, STOP). If the write register command is used to invoke stop mode (setting STOP = 1), the RST pin may be asserted to
reset the debug engine and return to the background mode of operation.

• Single stepping ('Trace') through any IGE bit change operation results in the debug engine overriding the bit change since it retains
the IGE bit setting captured when active debug mode was entered.

• Single stepping ('Trace') into an operation that sets STOP = 1 when IGE = 1 effectively allows enabled interrupts normally capable
of causing exit from stop mode to do so.

• Single stepping ('Trace') through any memory read instruction that reads from the utility ROM (such as 'move Acc,' @DP[0] with
DP[0] set to 8000h) will cause the memory read to return an incorrect value.

• Single stepping ('Trace') cannot be used when executing code from the utility ROM.

• Data memory allocation is important during system development if in-circuit debug is planned. The top 32-byte memory location
may be used by the debug service routine during debug mode. The data contents in these locations may be altered and cannot be
recovered.

• One available stack location is needed for debug mode. If the stack is full when entering debug mode, the oldest data in the stack
will be overwritten.

• The crystal warmup counter is the only counter not disabled when active debug mode is entered. If the crystal warmup counter com-
pletes while in active debug mode, a glitchless switch will be made to selected clock source (which was being counted). It is impor-
tant that the user recognize that this action will occur since the TAP clock should be run no faster than 1/8 the system clock frequency.

• Any signal sampling that relies upon the internal system clock (e.g., counter inputs) can be unreliable since the system clock is
turned off inside active debug mode between debug mode commands.

• Power Management Mode cannot be invoked in the first instruction executed when returning from active debug mode. The PMME
bit will not be set if such an attempt is made.

16.3 In-Circuit Debug Peripheral Registers

16.3.1 In-Circuit Debug Temp 0 Register (ICDT0)

Bits 15 to 0: In-Circuit Debug Temp 0 (ICDT0.[15:0]). This register is read/write accessible by the CPU only in background mode or
debug mode. This register is intended for use by the utility ROM routines as temporary storage to save registers that might otherwise
have to be placed in the stack.

16-13

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name ICDT0.15 ICDT0.14 ICDT0.13 ICDT0.12 ICDT0.11 ICDT0.10 ICDT0.9 ICDT0.8

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name ICDT0.7 ICDT0.6 ICDT0.5 ICDT0.4 ICDT0.3 ICDT0.2 ICDT0.1 ICDT0.0

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

s = special

Maxim Integrated

16.3.2 In-Circuit Debug Temp 1 Register (ICDT1)

Bits 15 to 0: In-Circuit Debug Temp 1 (ICDT1.[15:0]). This register is read/write accessible by the CPU only in background mode or
debug mode. This register is intended for use by the utility ROM routines as temporary storage to save registers that might otherwise
have to be placed in the stack.

16.3.3 In-Circuit Debug Control Register (ICDC)

Bit 7: Debug Mode Enable (DME). When this bit is cleared to 0, background mode commands may be executed, but breakpoints are
disabled. When this bit is set to 1, breakpoints are enabled while background mode commands still may be entered. This bit may only
be set or cleared from background debug mode. This bit has no meaning for the ROM code.

Bits 6 and 4: Reserved

Bit 5: Break-On Register Enable (REGE). The REGE bit is used to enable the break-on register function. When REGE bit is set to 1,
BP4 and BP5 are used as register breakpoints. A break occurs when the content of BP4 is matched with the destination address of
the current instruction. For BP5, a break occurs only on a selected data pattern for a selected destination register addressed by BP5.
The data pattern is determined by the contents in the ICDA and ICDD register. The REGE bit alone does not enable register break-
points, but simply changes the manner in which BP4, BP5 are used. The DME bit still must be set to a logic 1 for any breakpoint to
occur. This bit has no meaning for the ROM code.

Bits 3 to 0: Command Bits (CMD[3:0]). These bits reflect the current host command in debug mode. These bits are set by the debug
engine and allow the ROM code to determine the course of action.

16-14

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name ICDT1.15 ICDT1.14 ICDT1.13 ICDT1.12 ICDT1.11 ICDT1.10 ICDT1.9 ICDT1.8

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name ICDT1.7 ICDT1.6 ICDT1.5 ICDT1.4 ICDT1.3 ICDT1.2 ICDT1.1 ICDT1.0

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

s = special

Bit # 7 6 5 4 3 2 1 0

Name DME — REGE — CMD3 CMD2 CMD1 CMD0

Reset 0 0 0 0 0 0 0 0

Access rs r rs r rs rs rs rs

r = read, s = special

CMD[3:0] ACTION

0000 No Operation

0001 Read Register Map

0010 Read Data Memory

0011 Read Stack Memory

0100 Write Register

0101 Write Data Memory

1000 Unlock Password

1001 Read Register

Other Reserved

Maxim Integrated

16.3.4 In-Circuit Debug Flag Register (ICDF)

Bits 7 to 4: Reserved

Bits 3 to 2: Programming Source Select Bits 1:0 (PSS[1:0]). These bits are used to select a programming interface during In-System
programming when SPE is set to logic 1. Otherwise, the logic values of these bits have no meaning. The logical states of these bits,
when read by the CPU, reflect the logical-OR of the PSS bits that are write accessible by the CPU and those in the System Programming
Buffer (SPB) register of the TAP module (which are accessible via JTAG). These bits are read/write accessible for the CPU and are
cleared to 0 by a power-on reset or Test-Logic-Reset. CPU writes to the PSS bits result in clearing of the JTAG PSS[1:0] bits.

Bit 1: System Program Enable (SPE). The SPE bit is used for in-system programming support and its logical state, when by the CPU,
always reflects the logical-OR of the SPE bit that is write accessible by the CPU and SPR bit of the System Programming Buffer (SPB)
Register in the TAP Module (which is accessible via JTAG.) The logical state of this bit determines the program flow after a reset. When
it is set to logic 1, in-system programming is executed by the Utility ROM. When it is cleared to 0, execution is transferred to user code.
This but allows read/write access by the SPU and is cleared to 0 only on a power-on reset or Test-Logic-Reset. The JTAG SPE bit is
cleared by hardware when the ROD bit is set. CPU writes to the SPE bit result in clearing the JTAG PSS[1:0] bits.

Bit 0: Serial Transfer Complete (TXC). This bit is set by hardware at the end of a transfer cycle at the TAP communication link. The
TXC bit helps the debug engine to recognize host requests, either command or data. This bit is normally set by ROM code to signify
or request the sending or receiving of data. The TXC bit is cleared by the debug engine once set. CPU writes to the TXC bit results in
clearing of the JTAG PSS[1:0] bits.

16.3.5 In-Circuit Debug Buffer Register (ICDB)

Bits 7 to 0: In-Circuit Debug Buffer Register (ICDB.[7:0]). This register serves as the parallel holding buffer for the debug shift reg-
ister of the TAP. Data is read from or written to ICDB for serial communication between the debug routines and the external host.

16-15

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name — — — — PSS1 PSS0 SPE TXC

Reset 0 0 0 0 0 0 0 0

Access r r r r rw rw rw rw

r = read, w = write

PSS1 PSS0 SOURCE SELECTION

0 0 JTAG

0 1 UART

1 0 SPI

1 1 Reserved

Bit # 7 6 5 4 3 2 1 0

Name ICDB.7 ICDB.6 ICDB.5 ICDB.4 ICDB.3 ICDB.2 ICDB.1 ICDB.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

16.3.6 In-Circuit Debug Data Register (ICDD)

Bits 15 to 0: In-Circuit Debug Data (ICDD.[15:0]). This register is used by the debug engine to store data/read count so that ROM
code can view that information. This register is also used by the debug engine as a data register for content matching when BP5 is
used as a register breakpoint. In this case, only data bits in this register with their corresponding mask bits in the ICDA register set will
be compared with the updated destination data to determine if a break should be generated.

16.3.7 In-Circuit Debug Address Register (ICDA)

Bits 15 to 0: In-Circuit Debug Address (ICDA.[15:0]). This register is used by the debug engine to addresses so that ROM code can
view that information. This register is also used by the debug engine as a mask register to mask out don’t care bits in the ICDD regis-
ter when BP5 is used as a register breakpoint. When a bit in this register is set to 1, the corresponding bit location in the ICDD regis-
ter will be compared to the data being written to the destination register to determine if a break should be generated. When a bit in this
register is cleared, the corresponding bit in the ICDD register becomes a don’t care and is not compared against the data being writ-
ten. When all bits in this register are cleared, any updated data pattern will cause a break when the BP5 register matches the desti-
nation register address of the current instruction.

16-16

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name ICDD.15 ICDD.14 ICDD.13 ICDD.12 ICDD.11 ICDD.10 ICDD.9 ICDD.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name ICDD.7 ICDD.6 ICDD.5 ICDD.4 ICDD.3 ICDD.2 ICDD.1 ICDD.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read

Bit # 15 14 13 12 11 10 9 8

Name ICDA.15 ICDA.14 ICDA.13 ICDA.12 ICDA.11 ICDA.10 ICDA.9 ICDA.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name ICDA.7 ICDA.6 ICDA.5 ICDA.4 ICDA.3 ICDA.2 ICDA.1 ICDA.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read

Maxim Integrated

17-1

MAXQ Family User’s Guide

SECTION 17: IN-SYSTEM PROGRAMMING (JTAG)

This section contains the following information:

17.1 JTAG Bootloader Operation .17-2

17.2 Password-Protected Access .17-3

17.2.1 Entering Password .17-3

Maxim Integrated

17-2

MAXQ Family User’s Guide

SECTION 17: IN-SYSTEM PROGRAMMING (JTAG)
Internal nonvolatile memory of MAXQ microcontrollers can be initialized via Bootstrap Loader mode. To enable the Bootstrap loader
and establish a desired communication channel, the System Programming instruction (100b) must be loaded into the TAP instruction
register using the IR-Scan sequence. Once the instruction is latched in the instruction parallel buffer (IR2:0) and is recognized by the
TAP controller in the Update-IR state, a 3-bit data shift register is activated as the communication channel for DR-Scan sequences. The
TAP retains the System Programming instruction until a new instruction is shifted in or the TAP controller returns to the Test-Logic-Reset
state. This 3-bit shift register formed between the TDI and TDO pins is directly interfaced to the 3-bit Serial Programming Buffer (SPB).
The System Programming Buffer (SPB) contains three bits with the following functions:

• SPB.0: System Programming Enable (SPE). Setting this bit to logic 1 denotes that system programming is desired upon exit-
ing reset. When it is cleared to logic 0, no system programming is needed. The logic state of SPE is examined by the reset
vector in the Utility ROM to determine the program flow after a reset. When SPE = 1, the Bootstrap Loader selected by the
PSS1:0 bits are activated to perform a Bootstrap Loader function. When SPE = 0, the Utility ROM transfers execution control
to the normal user program.

• SPB.2:1: Programming Source Select (PSS1:PSS0). These bits allow the host to select programming interface sources. The
PSS bits have no functions when the SPE bit is cleared.

The DR-Scan sequence is used to configure the SPB bits. The data content of the SPB register is reflected in the ICDF register and
allows read/write access by the CPU. These bits are cleared by power-on reset or Test-Logic-Reset of the TAP controller.

17.1 JTAG Bootloader Operation
Devices that support a JTAG bootloader have the benefit of using the same status bit handshaking hardware as is used for in-circuit
debugging. When the SPE bit of the System Programming Buffer (SPB) is set to 1 and JTAG is selected as the programming source
(PSS1:0 = 00b), the background and active debug mode state machines are disabled. Once the host loads the Debug instruction into
the TAP instruction register (IR2:0), the 10-bit shift register interface to ICDB and the status bits becomes available for host-to-ROM
bootloader communication. The status bits should be interpreted as follows for JTAG bootloader operation:

When the using the JTAG bootloader option (SPE = 1, PSS1:0 = 00b), the sole purpose of the debug hardware is to simultaneously
transfer the data byte shifted in from the host into the ICDB register and transfer the contents of an internal holding register (loaded by
ROM code writes of ICDB) into the shift register for output to the host. This transfer takes place on the falling edge of TCK at the Update-
DR state. The debug hardware additionally clears the TXC bit at this point in the state diagram. The ROM loader code controls the sta-
tus bit output to the host by asserting TXC = 1 when it has valid data to be shifted out. The ROM code may flexibly implement what-
ever communication protocol and command set it wishes within the data byte portion of the shifted 10-bit word.

PSS1 PSS0 PROGRAMMING
SOURCE

0 0 JTAG
0 1 UART
1 0 SPI
1 1 Reserved

BITS 1:0 STATUS CONDITION
00 Reserved Invalid condition.
01 Reserved Invalid condition

10 Loader-Busy ROM Loader is busy executing code
or processing the current command.

11 Loader-Valid ROM Loader is supplying valid output
data to the host in current shift operation.

Maxim Integrated

17.2 Password-Protected Access
Some applications require preventative measures to protect against simple access and viewing of program code memory. To address
this need for code protection, any MAXQ microcontroller equipped with a Utility ROM that permits in-system programming, in-appli-
cation programming, or in-circuit debugging grants full access to those utilities only after a password has been supplied. The pass-
word is defined as the 16 words of physical program memory at addresses x0010h to x001Fh. Note that using these memory locations
as a password does not exclude their usage for general code space if a unique password is not needed.

A single Password Lock bit (PWL) is implemented in the SC register. When the PWL is set to 1, a password is required to access the
in-circuit debug and in-system programming ROM routines that allow reading or writing of internal memory. When PWL is cleared to 0,
these utilities are fully accessible through the Utility ROM without a password.

The PWL bit defaults to 1 by a power-on reset. To access the ROM utilities, a correct password is needed; otherwise access to the
ROM utilities is denied. Once the correct password has been supplied by the user, the ROM clears the password lock. The PWL
remains clear until one of the following occurs:

• a power-on reset, or

• set to logic 1 by user software.

For devices with ROM program memory, the end user supplies the ROM code, thus the user always knows the password if needed. It
is expected that the password will rarely be needed since the utility of memory programming and/or in-circuit debug to the end user
will be minimal once the decision has been made to freeze the code in program ROM.

For devices with reprogrammable nonvolatile memory, the password is always known for a fully erased device since the unprogrammed
state of these memories will be fixed. Once the memory has been programmed, a password is established and can be used for access
protection. The Utility ROM code denies access to the protected routines when PWL indicates a locked state.

17.2.1 Entering Password
A password can be entered in one of two ways:

• Via the in-system programming interface established by the PSS1:PSS0 bits when SPE bit is set to logic 1; the ROM Bootstrap Loader
dictates the protocol for entering the password over the specified serial communication interface

• Via the TAP interface directly by issuing the Unlock Password debug mode command. The Unlock Password command requires 32
follow-on transfer cycles each containing a byte value to be compared with the program memory password.

17-3

MAXQ Family User’s Guide

Maxim Integrated

18-1

MAXQ Family User’s Guide

SECTION 18: MAXQ FAMILY INSTRUCTION SET SUMMARY

This section contains the following information:

ADD/ADDC src .18-5

AND src .18-6

AND Acc. .18-7

{L/S}CALL src .18-8

CMP src .18-9

CPL .18-9

CPL C .18-10

{L/S}DJNZ LC[n], src .18-10

{L/S} JUMP src .18-11

{L/S}JUMP C/{L/S}JUMP NC, src, L/S}JUMP Z/{L/S}JUMP NZ, src,
{{L/S}JUMP E/{L/S}JUMP NE, src, {L/S}JUMP S, src .18-12

MOVE dst, src .18-14

MOVE Acc., C .18-16

MOVE C, Acc. .18-17

MOVE C, src. .18-17

MOVE C, #0 .18-17

MOVE C, #1 .18-18

MOVE dst., #0 .18-18

MOVE dst., #1 .18-18

NEG .18-19

OR src .18-19

OR Acc. .18-20

POP dst .18-20

POPI dst .18-21

PUSH src .18-21

RET .18-22

RET C/RET NC, RET Z/RET NZ, RET S .18-22

RETI .18-24

RETI C/RETI NC, RETI Z/RETI NZ, RETI S .18-24

Maxim Integrated

RL/RLC .18-26

RR/RRC .18-28

SLA/SLA2/SLA4 .18-30

SR/SRA/SRA2/SRA4 .18-32

SUB/SUBB src .18-36

XCH .18-37

XCHN .18-37

XOR src .18-38

XOR Acc. .18-38

18-2

MAXQ Family User’s Guide

LIST OF TABLES
Table 18-1. Instruction Set Summary .18-3

Table 18-2. Source Specifier Codes .18-14

Table 18-3. Destination Specifier Codes .18-15

Maxim Integrated

18-3

MAXQ Family User’s Guide

MNEMONIC DESCRIPTION 16-BIT INSTRUCTION
WORD

STATUS BITS
AFFECTED

AP
INC/DEC NOTES

AND src Acc ← Acc AND src f001 1010 ssss ssss S, Z Y 1
OR src Acc ← Acc OR src f010 1010 ssss ssss S, Z Y 1
XOR src Acc ← Acc XOR src f011 1010 ssss ssss S, Z Y 1
CPL Acc ← ~Acc 1000 1010 0001 1010 S, Z Y

NEG Acc ← ~Acc + 1 1000 1010 1001 1010 S, Z Y
SLA Shift Acc left arithmetically 1000 1010 0010 1010 C, S, Z Y

SLA2 Shift Acc left arithmetically twice 1000 1010 0011 1010 C, S, Z Y
SLA4 Shift Acc left arithmetically four times 1000 1010 0110 1010 C, S, Z Y

RL Rotate Acc left (w/o C) 1000 1010 0100 1010 S Y
RLC Rotate Acc left (through C) 1000 1010 0101 1010 C, S, Z Y
SRA Shift Acc right arithmetically 1000 1010 1111 1010 C, Z Y

SRA2 Shift Acc right arithmetically twice 1000 1010 1110 1010 C, Z Y
SRA4 Shift Acc right arithmetically four times 1000 1010 1011 1010 C, Z Y

SR Shift Acc right (0 → msbit) 1000 1010 1010 1010 C, S, Z Y
RR Rotate Acc right (w/o C) 1000 1010 1100 1010 S Y

L
O

G
IC

A
L

O
P

E
R

A
T

IO
N

S

RRC Rotate Acc right (though C) 1000 1010 1101 1010 C, S, Z Y
MOVE C, Acc. C ← Acc. 1110 1010 bbbb 1010 C
MOVE C, #0 C ← 0 1101 1010 0000 1010 C
MOVE C, #1 C ← 1 1101 1010 0001 1010 C
CPL C C ← ~C 1101 1010 0010 1010 C
MOVE Acc., C Acc. ← C 1111 1010 bbbb 1010 S, Z
AND Acc. C ← C AND Acc. 1001 1010 bbbb 1010 C
OR Acc. C ← C OR Acc. 1010 1010 bbbb 1010 C
XOR Acc. C ← C XOR Acc. 1011 1010 bbbb 1010 C
MOVE dst., #1 dst. ← 1 1ddd dddd 1bbb 0111 C, S, E, Z 2
MOVE dst., #0 dst. ← 0 1ddd dddd 0bbb 0111 C, S, E, Z 2

B
IT

O
P

E
R

A
T

IO
N

S

MOVE C, src. C ← src. fbbb 0111 ssss ssss C
ADD src Acc ← Acc + src f100 1010 ssss ssss C, S, Z, OV Y 1
ADDC src Acc ← Acc + (src + C) f110 1010 ssss ssss C, S, Z, OV Y 1
SUB src Acc ← Acc – src f101 1010 ssss ssss C, S, Z, OV Y 1
SUBB src Acc ← Acc – (src + C) f111 1010 ssss ssss C, S, Z, OV Y 1M

A
T

H

SECTION 18: MAXQ FAMILY INSTRUCTION SET SUMMARY

Table 18-1. Instruction Set Summary

Maxim Integrated

18-4

MAXQ Family User’s Guide

MNEMONIC DESCRIPTION 16-BIT INSTRUCTION
WORD

STATUS BITS
AFFECTED

AP
INC/DEC NOTES

{L/S}JUMP src IP ← IP + src or src f000 1100 ssss ssss 6
{L/S}JUMP C, src If C=1, IP ← (IP + src) or src f010 1100 ssss ssss 6
{L/S}JUMP NC, src If C=0, IP ← (IP + src) or src f110 1100 ssss ssss 6
{L/S}JUMP Z, src If Z=1, IP ← (IP + src) or src f001 1100 ssss ssss 6
{L/S}JUMP NZ, src If Z=0, IP ← (IP + src) or src f101 1100 ssss ssss 6
{L/S}JUMP E, src If E=1, IP ← (IP + src) or src 0011 1100 ssss ssss 6
{L/S}JUMP NE, src If E=0, IP ← (IP + src) or src 0111 1100 ssss ssss 6
{L/S}JUMP S, src If S=1, IP ← (IP + src) or src f100 1100 ssss ssss 6
{L/S}DJNZ LC[n], src If --LC[n] <> 0, IP← (IP + src) or src f10n 1101 ssss ssss 6
{L/S}CALL src @++SP ← IP+1; IP ← (IP+src) or src f011 1101 ssss ssss 6,7
RET IP ← @SP-- 1000 1100 0000 1101
RET C If C=1, IP ← @SP-- 1010 1100 0000 1101
RET NC If C=0, IP ← @SP-- 1110 1100 0000 1101
RET Z If Z=1, IP ← @SP-- 1001 1100 0000 1101
RET NZ If Z=0, IP ← @SP-- 1101 1100 0000 1101
RET S If S=1, IP ← @SP-- 1100 1100 0000 1101
RETI IP ← @SP-- ; INS← 0 1000 1100 1000 1101
RETI C If C=1, IP ← @SP-- ; INS← 0 1010 1100 1000 1101
RETI NC If C=0, IP ← @SP-- ; INS← 0 1110 1100 1000 1101
RETI Z If Z=1, IP ← @SP-- ; INS← 0 1001 1100 1000 1101
RETI NZ If Z=0, IP ← @SP-- ; INS← 0 1101 1100 1000 1101

B
R

A
N

C
H

IN
G

RETI S If S=1, IP ← @SP-- ; INS← 0 1100 1100 1000 1101
XCH (MAXQ20 only) Swap Acc bytes 1000 1010 1000 1010 S Y

XCHN Swap nibbles in each Acc byte 1000 1010 0111 1010 S Y
MOVE dst, src dst ← src fddd dddd ssss ssss C, S, Z, E (Note 8) 7, 8
PUSH src @++SP ← src f000 1101 ssss ssss 7
POP dst dst ← @SP-- 1ddd dddd 0000 1101 C, S, Z, E 7

D
A

T
A

T
R

A
N

S
F

E
R

POPI dst dst ← @SP-- ; INS ← 0 1ddd dddd 1000 1101 C, S, Z, E 7
CMP src E ← (Acc = src) f111 1000 ssss ssss E
NOP No operation 1101 1010 0011 1010

Table 18-1. Instruction Set Summary (continued)

Note 1: The active accumulator (Acc) is not allowed as the src in operations where it is the implicit destination.

Note 2: Only module 8 and modules 0-5 (when implemented for a given product) are supported by these single-cycle bit operations.
Potentially affects C or E if PSF register is the destination. Potentially affects S and/or Z if AP or APC is the destination.

Note 3: The terms Acc and A[AP] can be used interchangeably to denote the active accumulator.
Note 4: Any index represented by or found inside [] brackets is considered variable, but required.
Note 5: The active accumulator (Acc) is not allowed as the dst if A[AP] is specified as the src.
Note 6: The '{L/S}' prefix is optional.
Note 7: Instructions that attempt to simultaneously push/pop the stack (e.g. PUSH @SP--, PUSH @SPI--, POP @++SP, POPI @++SP)

or modify SP in a conflicting manner (e.g., MOVE SP, @SP--) are invalid.

Note 8: Special cases: If ‘MOVE APC, Acc’ sets the APC.CLR bit, AP will be cleared, overriding any auto-inc/dec/modulo operation
specified for AP. If ‘MOVE AP, Acc’ causes an auto-inc/dec/modulo operation on AP, this overrides the specified data transfer
(i.e., Acc will not be transferred to AP).

Maxim Integrated

18-5

MAXQ Family User’s Guide

ADD/ADDC src Add/Add with Carry

Description: The ADD instruction sums the active accumulator (Acc or A[AP]) and the specified src data and stores the result
back to the active accumulator. The ADDC instruction additionally includes the Carry (C) Status Flag in the sum-
mation. For the complete list of src specifiers, reference the MOVE instruction. The MAXQ20 may use the PFX[n]
register to supply the high byte of data for 8-bit sources.

Status Flags: C, S, Z, OV

ADD Operation: Acc ← Acc + src

Encoding: 15 0

MAXQ10
Example(s): ;Acc = 45h for each example

ADD A[3] ; A[3]=0Fh

; → Acc =54h,C=0, Z=0, S=0;

ADD #0C0h ; → Acc =05h,C=1, Z=0, S=0;

ADD A[4] ; A[4]=40h

; → Acc = 85h, C=0, Z=0, S=1, OV=1

MAXQ20
Example(s): ;Acc = 2345h for each example

ADD A[3] ; A[3]=FF0Fh

; → Acc =2254h,C=1, Z=0, S=0, OV=0

ADD #0C0h ; → Acc =2405h,C=0, Z=0, S=0, OV=0

ADD A[4] ; A[4]=C000h

; → Acc = E345h, C=0, Z=0, S=1, OV=0

ADD A[5] ; A[5]=6789h

; → Acc = 8ACEh, C=0, Z=0, S=1, OV=1

ADDC Operation: Acc ← Acc + C + src

Encoding: 15 0

MAXQ10
Example(s): ; Acc = 45h for each example

ADDC A[3] ; A[3] = BAh, C=1

; → Acc = 00h, C=1, Z=1, S=0

ADDC @DP[0]-- ; @DP[0] = 0Eh, C=1

; → Acc = 54h, C=0, Z=0, S=0

f100 1010 ssss ssss

f110 1010 ssss ssss

Maxim Integrated

18-6

MAXQ Family User’s Guide

MAXQ20
Example(s): ; Acc = 2345h for each example

ADDC A[3] ; A[3] = DCBAh, C=1

; → Acc = 0000h, C=1, Z=1, S=0, OV=0

ADDC @DP[0]-- ; @DP[0] = 00EEh, C=1

; → Acc = 2434h, C=0, Z=0, S=0, OV=0

Special Notes: The active accumulator (Acc) is not allowed as the src for these operations.

AND src Logical AND

Description: Performs a logical-AND between the active accumulator (Acc) and the specified src data. For the complete list of
src specifiers, reference the MOVE instruction. The MAXQ20 may use the PFX[n] register to supply the high byte of
data for 8-bit sources.

Status Flags: S, Z

Operation: Acc ← Acc AND src

Encoding: 15 0

MAXQ10
Example(s): ; Acc = 45h for each example

AND A[3] ; A[3]=0Fh

; → Acc = 05h, S=0, Z=0

AND #33h ; → Acc = 01h, S=0, Z=0

MAXQ20
Example(s): ; Acc = 2345h for each example

AND A[3] ; A[3]=0F0Fh

; → Acc = 0305h, S=0, Z=0

AND #33h ; → Acc = 0001h

AND #2233h ; generates object code below

; MOVE PFX[0], #22h (smart-prefixing)

; AND #33h

; → Acc = 2201h

MOVE PFX[0], #0Fh

AND M0[8] ; M0[8]=0Fh (assume M0[8] is an 8-bit register)

; → Acc = 0305h

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

f001 1010 ssss ssss

Maxim Integrated

18-7

MAXQ Family User’s Guide

AND Acc. Logical AND Carry Flag with Accumulator Bit

Description: Performs a logical-AND between the Carry (C) status flag and a specified bit of the active accumulator (Acc.)
and returns the result to the Carry.

Status Flags: C

Operation: C ← C AND Acc.

Encoding: 15 0

MAXQ10
Example(s): ; Acc = 45h, C=1 at start

AND Acc.0 ; Acc.0=1 → C=1

AND Acc.1 ; Acc.1=0 → C=0

AND Acc.2 ; Acc.2=1 → C=0

MAXQ20
Example(s): ; Acc = 2345h, C=1 at start

AND Acc.0 ; Acc.0=1 → C=1

AND Acc.1 ; Acc.1=0 → C=0

AND C, Acc.8 ; Acc.8=1 → C=0

Special Notes: For the MAXQ10, the accumulator width is only 8 bits. Thus, only bit index encoding ('bbbb') for bits 0 ('0000')
through 7 ('0111') is supported.

1001 1010 bbbb 1010

Maxim Integrated

18-8

MAXQ Family User’s Guide

{L/S}CALL src {Long/Short} Call to Subroutine

Description: Performs a call to the subroutine destination specified by src. The CALL instruction uses an 8-bit immediate src to
perform a relative short call (IP +127/-128 words). The CALL instruction uses a 16-bit immediate src to perform an
absolute long CALL to the specified 16-bit address. The PFX[0] register is used to supply the high byte of a 16-bit
immediate address for the absolute long CALL. Using the optional 'L' prefix (i.e., LCALL) results in an absolute long
call and use of the PFX[0] register. Using the optional 'S' prefix (i.e., SCALL) attempts to generate a relative short call,
but is flagged by the assembler if the destination is out of range. Specifying an internal register src (no matter whether
8-bit or 16-bit) always produces an absolute CALL to a 16-bit address, thus the 'L' and 'S' prefixes should not be
used. The PFX[n] register value is used to supply the high address byte when an 8-bit register src is specified.

Status Flags: None

Operation: @++SP ← IP + 1 PUSH

IP ← src Absolute CALL

IP ← IP + src Relative CALL

Encoding: 15 0

Example(s): CALL label1 ; relative call to label1 (must be within IP +127/ -

; 128 address range)

CALL label1 ; absolute call to label1 = 0120h

; MOVE PFX[0], #01h

; CALL #20h.

CALL DP[0] ; DP[0] holds 16-bit address of subroutine

CALL M0[0] ; assume M0[0] is an 8-bit register

; absolute call to addr16

; high(addr16)=00h (PFX[0])

; low (addr16)=M0[0]

MOVE PFX[0], #22h ;

CALL M0[0] ; assume M0[0] is an 8-bit register

; high(addr16)=22h (PFX[0])

; low (addr16)=M0[0]

LCALL label1 ; label=0120h and is relative to this instruction

; absolute call is forced by use of 'L' prefix

; MOVE PFX[0], #01h

; CALL #20h

SCALL label1 ; relative offset for label1 calculated and used

; if label1 is not relative, assembler will generate an error

SCALL #10h ; relative offset of #10h is used directly by the CALL

f011 1101 ssss ssss

Maxim Integrated

18-9

MAXQ Family User’s Guide

CMP src Compare Accumulator

Description: Compare for equality between the active accumulator and the least significant byte of the specified src. The
MAXQ20 may use the PFX[n] register to supply the high byte of data for 8-bit sources.

Status Flags: E

Operation: Acc = src: E ← 1

Acc <> src: E ← 0

Encoding: 15 0

MAXQ10
Example(s): CMP A[1] ; Acc = 45h, A[1] = 10h, E=0

CMP #45h ; Acc = 45h, E=1

CMP DP[0] ; Acc = 45h, DP[0]=0345h, E=1

MAXQ20
Example(s): CMP #45h ; Acc = 0145h, E=0

CMP #145h ; PFX[0] register used

; MOVE PFX[0], #01h (smart-prefixing)

; CMP #45h E=1

CPL Complement Acc

Description: Performs a logical bitwise complement (1's complement) on the active accumulator (Acc or A[AP]) and returns the
result to the active accumulator.

Status Flags: S, Z

Operation: Acc ← ~Acc

Encoding: 15 0

MAXQ10
Example(s): ; Acc = FFh, S=1, Z=0

CPL ; Acc ← 00h, S=0, Z=1

; Acc = 09h, S=0, Z=0

CPL ; Acc ← F6h, S=1, Z=0

MAXQ20
Example(s): ; Acc = FFFFh, S=1, Z=0

CPL ; Acc ← 0000h, S=0, Z=1

; Acc = 0990h, S=0, Z=0

CPL ; Acc ← F66Fh, S=1, Z=0

f111 1000 ssss ssss

1000 1010 0001 1010

Maxim Integrated

18-10

MAXQ Family User’s Guide

CPL C Complement Carry Flag

Description: Logically complements the Carry (C) Flag.

Status Flags: C

Operation: C ← ~C

Encoding: 15 0

Example(s): ; C = 0

CPL C ; C ← 1

{L/S}DJNZ LC[n], src Decrement Counter, {Long/Short} Jump Not Zero

Description: The DJNZ LC[n], src instruction performs a conditional branch based upon the associated Loop Counter (LC[n]) reg-
ister. The DJNZ LC[n], src instruction decrements the LC[n] loop counter and branches to the address defined by
src if the decremented counter has not reached 0000h. Program branches can be relative or absolute depending
upon the src specifier and may be qualified by using the 'L' or 'S' prefixes as documented in the JUMP src op code.

Status Flags: None

Operation: LC[n] ← LC[n] -1

LC[n] <> 0: IP ← IP + src (relative) -or- src (absolute)

LC[n] = 0: IP ← IP + 1

Encoding: 15 0

Example(s): MOVE LC[1], #10h ; counter = 10h

Loop:

ADD @DP[0]++ ; add data memory contents to Acc, post-inc DP[0]

DJNZ LC[1], Loop ; 16 times before falling through

1101 1010 0010 1010

f10n 1101 ssss ssss

Maxim Integrated

18-11

MAXQ Family User’s Guide

{L/S} JUMP src Unconditional {Long/Short} Jump

Description: Performs an unconditional jump as determined by the src specifier. The JUMP instruction uses an 8-bit immediate
src to perform a relative jump (IP +127/-128 words). The JUMP instruction uses a 16-bit immediate src to perform
an absolute JUMP to the specified 16-bit address. The PFX[0] register is used to supply the high byte of a 16-bit
immediate address for the absolute JUMP. Using the optional 'L' prefix (i.e., LJUMP) results in an absolute long jump
and use of the PFX[0] register. Using the optional 'S' prefix (i.e., SJUMP) attempts to generate a relative short jump,
but is flagged by the assembler if the destination is out of range. Specifying an internal register src (no matter
whether 8-bit or 16-bit) always produces an absolute JUMP to a 16-bit address, thus the 'L' and 'S' prefixes should
not be used. The PFX[n] register value is used to supply the high address byte when an 8-bit register src is speci-
fied.

Status Flags: None

Operation: IP ← src Absolute JUMP

IP ← IP + src Relative JUMP

Encoding: 15 0

Example(s): JUMP label1 ; relative jump to label1 (must be within range

; IP +127/-128 words)

JUMP label1 ; absolute jump to label1= 0400h

; MOVE PFX[0], #04h

; JUMP #00h

JUMP DP[0] ; absolute jump to addr16 DP[0]

JUMP M0[0] ; assume M0[0] is an 8-bit register

; absolute jump to addr16

; high(addr16)=00h (PFX[0])

; low (addr16)=M0[0]

LJUMP label1 ; label=0120h and is relative to this instruction

; absolute jump is forced by use of 'L' prefix

; MOVE PFX[0], #01h

; JUMP #20h

SJUMP label1 ; relative offset for label1 calculated and used

; if label1 is not relative, assembler will generate an error

SJUMP #10h ; relative offset of #10h is used directly by the JUMP

f000 1100 ssss ssss

Maxim Integrated

18-12

MAXQ Family User’s Guide

Conditional {Long/Short} Jump on Status Flag

Description: Performs conditional branching based upon the state of a specific processor status flag. JUMP C results in a branch
if the Carry flag is set while JUMP NC branches if the Carry flag is clear. JUMP Z results in a branch if the Zero flag
is set while JUMP NZ branches if the Zero flag is clear. JUMP E results in a branch if the Equal flag is set while JUMP
NE branches if the Equal flag is clear. JUMP S results in a branch if the Sign flag is set. Program branches can be
relative or absolute depending upon the src specifier and may be qualified by using the 'L' or 'S' prefixes as docu-
mented in the JUMP src op code. Special src restrictions apply to JUMP E and JUMP NE.

Status Flags: None

JUMP C C=1: IP ← IP + src (relative) -or- src (absolute)

Operation: C=0: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP C, label1 ; C=0, branch not taken

JUMP NC C=0: IP ← IP + src (relative) -or- src (absolute)

Operation: C=1: IP ← IP +1

Encoding: 15 0

Example(s): JUMP NC, label1 ; C=0, branch taken

JUMP Z Z=1: IP ← IP + src

Operation: Z=0: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP Z, label1 ; Z=1, branch taken

f010 1100 ssss ssss

f110 1100 ssss ssss

f001 1100 ssss ssss

{L/S}JUMP C/{L/S}JUMP NC, src,
L/S}JUMP Z/{L/S}JUMP NZ, src,
{{L/S}JUMP E/{L/S}JUMP NE, src,
{L/S}JUMP S, src

Maxim Integrated

18-13

MAXQ Family User’s Guide

JUMP NZ Z=0: IP ← IP + src (relative) -or- src (absolute)

Operation: Z=1: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP NZ, label1 ; Z=1, branch taken

JUMP E E=1: IP ← IP + src (relative) -or- src (absolute)

Operation: E=0: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP E, label1 ; E=1, branch taken

Special Notes: The src specifier must be immediate data.

JUMP NE

Operation: E=0: IP ← IP + src (relative) -or- src (absolute)

E=1: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP NE, label1 ; E=0, branch taken

Special Notes: The src specifier must be immediate data.

JUMP S S=1: IP ← IP + src (relative) -or- src (absolute)

Operation: S=0: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP S, label1 ; S=0, branch not taken

f101 1100 ssss ssss

0011 1100 ssss ssss

0111 1100 ssss ssss

f100 1100 ssss ssss

Maxim Integrated

18-14

MAXQ Family User’s Guide

MOVE dst, src Move Data

Description: Moves data from a specified source (src) to a specified destination (dst). A list of defined source, destination spec-
ifiers is given in the table below. Also, since src can be either 8-bit (byte) or 16-bit (word) data, the rules governing
data transfer are also explained below in the encoding section.

Status Flags: S, Z (if dst is Acc or AP or APC)

C, E (if dst is PSF)

Operation: dst ← src

Encoding: 15 0

Table 18-2. Source Specifier Codes

fddd dddd ssss ssss

src src Bit Encoding
(f ssssssss)

WIDTH
(16 or 8) DESCRIPTION

#k 0 kkkk kkkk 8 kkkkkkkk = Immediate (Literal) Data

MN[n] 1 nnnn 0NNN 8/16 nnnn Selects One of First 16 Registers in Module NNN;
where NNN= 0 to 5. Access to Second 16 Using PFX[n].

AP 1 0000 1000 8 Accumulator Pointer
APC 1 0001 1000 8 Accumulator Pointer Control
PSF 1 0100 1000 8 Processor Status Flag Register
IC 1 0101 1000 8 Interrupt and Control Register

IMR 1 0110 1000 8 Interrupt Mask Register
SC 1 1000 1000 8 System Control Register
IIR 1 1011 1000 8 Interrupt Identification Register

CKCN 1 1110 1000 8 Clock Control Register
WDCN 1 1111 1000 8 Watchdog Control Register

A[n] 1 nnnn 1001 8/16 nnnn Selects One of 16 Accumulators
Acc 1 0000 1010 8/16 Active Accumulator = A[AP]. Update AP per APC

A[AP] 1 0001 1010 8/16 Active Accumulator = A[AP]. No change to AP
IP 1 0000 1100 16 Instruction Pointer

@SP-- 1 0000 1101 16 16-Bit Word @SP, Post-Decrement SP
SP 1 0001 1101 16 Stack Pointer
IV 1 0010 1101 16 Interrupt Vector

LC[n] 1 011n 1101 16 n Selects 1 of 2 Loop Counter Registers
@SPI-- 1 1000 1101 16 16-bit word @SP, Post-Decrement SP, INS=0

@BP[Offs] 1 0000 1110 8/16 Data Memory @BP[Offs]
@BP[Offs++] 1 0001 1110 8/16 Data memory @BP[Offs]; Post Increment OFFS
@BP[Offs--] 1 0010 1110 8/16 Data Memory @BP[Offs]; Post Decrement OFFS

OFFS 1 0011 1110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 1 0100 1110 16 Data Pointer Control Register
GR 1 0101 1110 16 General Register
GRL 1 0110 1110 8 Low Byte of GR Register
BP 1 0111 1110 16 Frame Pointer Base Pointer (BP)

GRS 1 1000 1110 16 Byte-Swapped GR Register
GRH 1 1001 1110 8 High Byte of GR Register
GRXL 1 1010 1110 16 Sign Extended Low Byte of GR Register

FP 1 1011 1110 16 Frame Pointer (BP[Offs])
@DP[n] 1 0n00 1111 8/16 Data Memory @DP[n]

@DP[n]++ 1 0n01 1111 8/16 Data Memory @DP[n], Post-Increment DP[n]
@DP[n]-- 1 0n10 1111 8/16 Data Memory @DP[n], Post-Decrement DP[n]

DP[n] 1 0n11 1111 16 n Selects 1 of 2 Data Pointers

Maxim Integrated

18-15

MAXQ Family User’s Guide

MOVE dst, src (continued) Move Data

Table 18-3. Destination Specifier Codes

Data Transfer dst (16-bit) ← src (16-bit): dst[15:0] ← src[15:0]

Rules dst (8-bit) ← src (8-bit): dst[7:0] ← src[7:0]

dst (16-bit) ← src (8-bit): dst[15:8] ← 00h *

dst[7:0] ← src[7:0]

dst (8-bit) ← src (16-bit): dst[7:0] ← src[7:0]

*Note: The PFX[0] register may be used to supply a separate high-order data byte for this type of transfer.

dst dst Bit Encoding
(ddd dddd)

WIDTH
(16 OR 8) DESCRIPTION

NUL 111 0110 8/16 Null (Virtual) Destination. Intended as a bit bucket to assist
software with pointer increments/decrements.

MN[n] nnn 0NNN 8/16 nnnn Selects One of First 8 Registers in Module NNN; where
NNN= 0 to 5. Access to Next 24 Using PFX[n].

AP 000 1000 8 Accumulator Pointer
APC 001 1000 8 Accumulator Pointer Control
PSF 100 1000 8 Processor Status Flag Register
IC 101 1000 8 Interrupt and Control Register

IMR 110 1000 8 Interrupt Mask Register
A[n] nnn 1001 8/16 nnn Selects 1 of First 8 Accumulators: A[0]..A[7]
Acc 000 1010 8/16 Active Accumulator = A[AP]

PFX[n] nnn 1011 8 nnn Selects One of 8 Prefix Registers
@++SP 000 1101 16 16-Bit Word @SP, Pre-Increment SP

SP 001 1101 16 Stack Pointer
IV 010 1101 16 Interrupt Vector

LC[n] 11n 1101 16 n Selects 1 of 2 Loop Counter Registers
@BP[Offs] 000 1110 8/16 Data Memory @BP[Offs]

@BP[++Offs] 001 1110 8/16 Data Memory @BP[Offs]; Pre-Increment OFFS
@BP[--Offs] 010 1110 8/16 Data Memory @BP[Offs]; Pre-Decrement OFFS

OFFS 011 1110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 100 1110 16 Data Pointer Control Register
GR 101 1110 16 General Register
GRL 110 1110 8 Low Byte of GR Register
BP 111 1110 16 Frame Pointer Base Pointer (BP)

@DP[n] n00 1111 8/16 Data Memory @DP[n]
@++DP[n] n01 1111 8/16 Data Memory @DP[n], Pre-Increment DP[n]
@--DP[n] n10 1111 8/16 Data Memory @DP[n], Pre-Decrement DP[n]

DP[n] n11 1111 16 n Selects 1 of 2 Data Pointers
2-CYCLE DESTINATION ACCESS USING PFX[n] REGISTER (See Special Notes)

SC 000 1000 8 System Control Register
CKCN 110 1000 8 Clock Control Register
WDCN 111 1000 8 Watchdog Control Register

A[n] nnn 1001 16 nnn Selects 1 of Second 8 Accumulators A[8]..A[15]
GRH 001 1110 8 High Byte of GR Register

Maxim Integrated

18-16

MAXQ Family User’s Guide

Example(s): MOVE A[0], A[3] ; A[0] ← A[3]

MOVE DP[0], #110h ; DP[0] ← #0110h (PFX[0] register used)

; MOVE PFX[0], #01h (smart-prefixing)

; MOVE DP[0], #10h

MOVE DP[0], #80h ; DP[0] ← #0080h (PFX[0] register not needed)

Special Notes: Proper loading of the PFX[n] registers, when for the purpose of supplying 16-bit immediate data or accessing 2-cycle
destinations, is handled automatically by the assembler and is therefore an optional step for the user when writing
assembly source code. Examples of the automatic PFX[n] code insertion by the assembler are demonstrated below.

Initial Assembly Code Assembler Output

MOVE DP[0], #0100h MOVE PFX[0], #01h

MOVE A[15], A[7] MOVE PFX[2], anysrc

MOVE A[7], A[7]

MOVE A[8], #3040h

MOVE PFX[2], #30h MOVE A[0], #40h

MOVE Acc., C Move Carry Flag to Accumulator Bit

Description: Replaces the specified bit of the active accumulator with the Carry bit.

Status Flags: S, Z

Operation: Acc. ← C

Encoding: 15 0

MAXQ010
Example(s): ; Acc = 80h, S=1, Z=0, C=0

MOVE Acc.7, C ; Acc = 00h, S=0, Z=1

MAXQ020
Example(s): ; Acc = 8000h, S=1, Z=0, C=0

MOVE Acc.15, C ; Acc = 0000h, S=0, Z=1

Special Notes: For the MAXQ10, the accumulator width is only 8 bits. Thus, only bit index encoding ('bbbb') for bits 0 ('0000')
through 7 ('0111') is supported.

1111 1010 bbbb 1010

Maxim Integrated

18-17

MAXQ Family User’s Guide

MOVE C, Acc. Move Accumulator Bit to Carry Flag

Description: Replaces the Carry (C) status flag with the specified active accumulator bit.

Status Flags: C

Operation: C ← Acc.

Encoding: 15 0

MAXQ010
Example(s): ; Acc = 01h, C=0

MOVE C, Acc.0 ; C =1

MAXQ020
Example(s): ; Acc = 01C0h, C=0

MOVE C, Acc.8 ; C =1

Special Notes: For the MAXQ10, the accumulator width is only 8 bits. Thus, only bit index encoding ('bbbb') for bits 0 ('0000')
through 7 ('0111') is supported.

MOVE C, src. Move Bit to Carry Flag

Description: Replaces the Carry (C) status flag with the specified source bit src..

Status Flags: C

Operation: C ← src.

Encoding: 15 0

Example(s): ; M0[0] = FEh; C=1 (assume M0[0] is an 8-bit register)

MOVE C, M0[0].0 ; C=0

MOVE C, #0 Clear Carry Flag

Description: Clears the Carry (C) processor status flag.

Status Flag: C ← 0

Operation: C ← 0

Encoding: 15 0

Example(s): ; C = 1

MOVE C, #0 ; C ← 0

fbbb 0111 ssss ssss

1101 1010 0000 1010

1110 1010 bbbb 1010

Maxim Integrated

18-18

MAXQ Family User’s Guide

MOVE C, #1 Set Carry Flag

Description: Sets the Carry (C) processor status flag.

Status Flag: C ← 1

Operation: C ← 1

Encoding: 15 0

Example(s): ; C = 0

MOVE C, #1 ; C ← 1

MOVE dst., #0 Clear Bit

Description: Clears the bit specified by dst..

Status Flags: C, E (if dst is PSF), S, Z

Operation: dst. ← 0

Encoding: 15 0

Example(s): ; M0[0] = FEh

MOVE M0[0].1, #0 ; M0[0] = FCh

MOVE M0[0].7, #0 ; M0[0] = 7Ch

Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst., #0.

MOVE dst., #1 Set Bit

Description: Sets the bit specified by dst..

Status Flags: C, E (if dst is PSF), S, Z

Operation: dst. ← 1

Encoding: 15 0

Example(s): ; M0[0] = 00h

MOVE M0[0].1, #1 ; M0[0] = 02h

MOVE M0[0].7, #1 ; M0[0] = 82h

Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst., #1.

1101 1010 0001 1010

1ddd dddd 0bbb 0111

1ddd dddd 1bbb 0111

Maxim Integrated

18-19

MAXQ Family User’s Guide

NEG Negate Accumulator

Description: Performs a negation (two's complement) of the active accumulator and returns the result back to the active accumulator.

Status Flags: S, Z

Operation: Acc ← ~Acc + 1

Encoding: 15 0

MAXQ10
Example(s): ; Acc = FEh, S=1, Z=0

NEG ; Acc = 02h, S=0, Z=0

MAXQ20
Example(s): ; Acc = FEEDh, S=1, Z=0

NEG ; Acc = 0113h, S=0, Z=0

OR src Logical OR

Description: Performs a logical-OR between the active accumulator (Acc or A[AP]) and the specified src data. For the complete
list of src specifiers, reference the MOVE instruction. The MAXQ20 may use the PFX[n] register to supply the high
byte of data for 8-bit sources.

Status Flags: S, Z

Operation: Acc ← Acc OR src

Encoding: 15 0

MAXQ10
Example(s): ; Acc = 45h for each example

OR A[3] ; A[3]= 0Fh → Acc = 4Fh

OR #33h ; → Acc = 77h

MAXQ20
Example(s): ; Acc = 2345h for each example

OR A[3] ; A[3]= 0F0Fh → Acc = 2F4Fh

OR #1133h ; MOVE PFX[0], #11h (smart-prefixing)

; OR #33h → Acc = 3377h

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

1000 1010 1001 1010

f010 1010 ssss ssss

Maxim Integrated

18-20

MAXQ Family User’s Guide

OR Acc. Logical OR Carry Flag with Accumulator Bit

Description: Performs a logical-OR between the Carry (C) status flag and a specified bit of the active accumulator (Acc.)
and returns the result to the Carry.

Status Flags: C

Operation: C ← C OR Acc.

Encoding: 15 0

MAXQ10
Example(s): ; Acc = 45h, C=0 at start

OR Acc.1 ; Acc.1=0 → C=0

OR Acc.2 ; Acc.2=1 → C=1

MAXQ20
Example(s): ; Acc = 2345h, C=0 at start

OR Acc.1 ; Acc.1=0 → C=0

OR Acc.2 ; Acc.2=1 → C=1

Special Notes: For the MAXQ10, the accumulator width is only 8 bits. Thus, only bit index encoding ('bbbb') for bits 0 ('0000')
through 7 ('0111') is supported.

POP dst Pop Word from the Stack

Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack pointer (SP).

Status Flags: S, Z (if dst = Acc or AP or APC)

C, E (if dst = PSF)

Operation: dst ← @ SP--

Encoding: 15 0

Example(s): ; GR ← 1234h

POP GR ; @DP[0] ← 76h (WBS0=0)

POP @DP[0] ; @DP[0] ← 0876h (WBS0=1)

Stack Data:

← SP (initial)
← SP (after POP GR)
← SP (after POP @DP[0])

1ddd dddd 0000 1101

xxxxh
1234h
0876h
xxxxh
xxxxh

1010 1010 bbbb 1010

Maxim Integrated

18-21

MAXQ Family User’s Guide

POPI dst Pop Word from the Stack Enable Interrupts

Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack pointer (SP). Additionally,
POPI returns the interrupt logic to a state in which it can acknowledge additional interrupts.

Status Flags: S, Z (if dst = Acc or AP or APC)

C, E (if dst = PSF)

Operation: dst ← @ SP--

INS ← 0

Encoding: 15 0

Example(s): See POP

PUSH src Push Word to the Stack

Description: Increments the stack pointer (SP) and pushes a single word specified by src to the stack (@SP).

Status Flags: None

Operation: SP ← ++SP

Encoding: 15 0

Example(s): PUSH GR ; GR=0F3Fh

PUSH #40h

Stack Data:

← SP (after PUSH #40h)
← SP (after PUSH GR)
← SP (initial)

1ddd dddd 1000 1101

f000 1101 ssss ssss

xxxxh
0040h
0F3Fh
xxxxh
xxxxh

Maxim Integrated

18-22

MAXQ Family User’s Guide

RET Return from Subroutine

Description: RET pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the stack pointer (SP).
The decremented SP is saved as the new stack pointer (SP).

Status Flags: None

Operation: IP ← @ SP--

Encoding: 15 0

Example(s): RET

Code Execution:

Stack Data:

← SP (before RET)
← SP (after RET)

RET C/RET NC, RET Z/RET NZ, RET S Conditional Return on Status Flag

Description: Performs conditional return (RET) based upon the state of a specific processor status flag. RET C returns if the Carry
flag is set while RET NC returns if the Carry flag is clear. RET Z returns if the Zero flag is set while RET NZ returns if
the Zero flag is clear. RET S returns if the Sign flag is set. See RET for additional information on the return operation.

Status Flags: None

RET C C=1: IP ← @SP--

Operation: C=0: IP ← IP + 1

Encoding: 15 0

Example(s): RET C ; C=1, return (RET) is performed

1010 1100 0000 1101

1000 1100 0000 1101

Addr (IP) Op Code
0311h • • •

0312h RET
0103h • • •

xxxxh
xxxxh
0103h
xxxxh
xxxxh

Maxim Integrated

18-23

MAXQ Family User’s Guide

RET NC

Operation: C=0: IP ← @SP--

C=1: IP ← IP +1

Encoding: 15 0

Example(s): RET NC ; C=1, return (RET) does not occur

RET Z

Operation: Z=1: IP ← @SP--

Z=0: IP ← IP + 1

Encoding: 15 0

Example(s): RET Z ; Z=0, return (RET) does not occur

RET NZ

Operation: Z=0: IP ← @SP--

Z=1: IP ← IP +1

Encoding: 15 0

Example(s): RET NZ ; Z=0, return (RET) is performed

RET S

Operation: S=1: IP ← @SP--

S=0: IP ← IP + 1

Encoding: 15 0

Example(s): RET S ; S=0, return (RET) does not occur

1110 1100 0000 1101

1001 1100 0000 1101

1101 1100 0000 1101

1100 1100 0000 1101

Maxim Integrated

18-24

MAXQ Family User’s Guide

RETI Return from Interrupt

Description: RETI pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the stack pointer (SP).
Additionally, RETI returns the interrupt logic to a state in which it can acknowledge additional interrupts.

Status Flags: None

Operation: IP ← @SP--

INS ← 0

Encoding: 15 0

Example(s): See RETI

RETI C/RETI NC, RETI Z/RETI NZ, RETI S Conditional Return from Interrupt on Status Flag

Description: Performs conditional return (RETI) based upon the state of a specific processor status flag. RETI C returns if the Carry
flag is set while RETI NC returns if the Carry flag is clear. RETI Z returns if the Zero flag is set while RETI NZ returns if
the Zero flag is clear. RETI S returns if the Sign flag is set. See RETI for additional information on the return operation.

Status Flags: None

RETI C

Operation: C=1: IP ← @SP--

INS ← 0

C=0: IP ← IP + 1

Encoding: 15 0

Example(s): RETI C ; C=1, return from interrupt (RETI) is performed

RETI NC

Operation: C=0: IP ← @SP--

INS ← 0

C=1: IP ← IP +1

Encoding: 15 0

Example(s): RETI NC ; C=1, return from interrupt (RETI) does not occur

1000 1100 1000 1101

1010 1100 1000 1101

1110 1100 1000 1101

Maxim Integrated

18-25

MAXQ Family User’s Guide

RETI Z

Operation: Z=1: IP ← @SP--

INS ← 0

Z=0: IP ← IP + 1

Encoding: 15 0

Example(s): RETI Z ; Z=0, return from interrupt (RETI) does not occur

RETI NZ

Operation: Z=0: IP ← @SP--

INS ← 0

Z=1: IP ← IP +1

Encoding: 15 0

Example(s): RETI NZ ; Z=0, return from interrupt (RETI) is performed

RETI S

Operation: S=1: IP ← @SP--

INS ← 0

S=0: IP ← IP + 1

Encoding: 15 0

Example(s): RETI S ; S=0, return from interrupt (RETI) does not occur

1001 1100 1000 1101

1101 1100 1000 1101

1100 1100 1000 1101

Maxim Integrated

18-26

MAXQ Family User’s Guide

(MAXQ10 Version) Rotate Left Accumulator
RL/RLC Carry Flag (Ex/In)clusive

Description: Rotates the active accumulator left by a single bit position. The RL instruction circulates the msb of the accumula-
tor (bit 7) back to the lsb (bit 0) while the RLC instruction includes the Carry (C) flag in the circular left shift.

Status Flags: C (for RLC only), S, Z (for RLC only)

RL Operation: 7 Active Acc 0

Acc.[7:1]← Acc.[6:0]; Acc.0 ← Acc.7

Encoding: 15 0

Example(s): ; Acc = A3h, S=1, Z=0

RL ; Acc = 47h, S=0, Z=0

RL ; Acc = 8Eh, S=1, Z=0

RLC Operation: 7 Active Acc 0 Carry Flag

Acc.[7:1]← Acc.[6:0]; Acc.0 ← C; C ← Acc.7

Encoding: 15 0

Example(s): ; Acc = A3h, C=1, S=1, Z=0

RLC ; Acc = 47h, C=1, S=0, Z=0

RLC ; Acc = 8Fh, C=0, S=1, Z=0

1000 1010 0100 1010

1000 1010 0101 1010

Maxim Integrated

18-27

MAXQ Family User’s Guide

(MAXQ20 Version) Rotate Left Accumulator
RL/RLC Carry Flag (Ex/In)clusive

Description: Rotates the active accumulator left by a single bit position. The RL instruction circulates the msb of the accumula-
tor (bit 15) back to the lsb (bit 0) while the RLC instruction includes the Carry (C) flag in the circular left shift.

Status Flags: C (for RLC only), S, Z (for RLC only)

RL Operation: 15 Active Accumulator (Acc) 0

Acc.[15:1]← Acc.[14:0]; Acc.0 ← Acc.15

Encoding: 15 0

Example(s): ; Acc = A345h, S=1, Z=0

RL ; Acc = 468Bh, S=0, Z=0

RL ; Acc = 8D16h, S=1, Z=0

RLC Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[15:1]← Acc.[14:0]; Acc.0 ← C; C ← Acc.15

Encoding: 15 0

Example(s): ; Acc = A345h, C=1, S=1, Z=0

RLC ; Acc = 468Bh, C=1, S=0, Z=0

RLC ; Acc = 8D17h, C=0, S=1, Z=0

1000 1010 0100 1010

1000 1010 0101 1010

Maxim Integrated

18-28

MAXQ Family User’s Guide

(MAXQ10 Version) Rotate Right Accumulator
RR/RRC Carry Flag (Ex/In)clusive

Description: Rotates the active accumulator right by a single bit position. The RR instruction circulates the lsb of the accumula-
tor (bit 0) back to the msb (bit 7) while the RRC instruction includes the Carry (C) flag in the circular right shift.

Status Flags: C (for RRC only), S, Z (for RRC only)

RR Operation: 7 Active Acc (Acc) 0

Acc.[6:0] ← Acc.[7:1]; Acc.7 ← Acc.0

Encoding: 15 0

Example(s): ; Acc = 45h, S=1, Z=0

RR ; Acc = A2h, S=1, Z=0

RR ; Acc = 51h, S=0, Z=0

RRC Operation: 7 Active Acc (Acc) 0 Carry Flag

Acc.7 ← C; C ← Acc.0

Encoding: 15 0

Example(s): ; Acc = 45h, C=1, S=1, Z=0

RRC ; Acc = A2h, C=1, S=1, Z=0

RRC ; Acc = D1h, C=0, S=1, Z=0

1000 1010 1100 1010

1000 1010 1101 1010

Maxim Integrated

18-29

MAXQ Family User’s Guide

(MAXQ20 Version) Rotate Right Accumulator
RR/RRC Carry Flag (Ex/In)clusive

Description: Rotates the active accumulator right by a single bit position. The RR instruction circulates the lsb of the accumula-
tor (bit 0) back to the msb (bit 15) while the RRC instruction includes the Carry (C) flag in the circular right shift.

Status Flags: C (for RRC only), S, Z (for RRC only)

RR Operation: 15 Active Accumulator (Acc) 0

Acc.[14:0]← Acc.[15:1]; Acc.15 ← Acc.0

Encoding: 15 0

Example(s): ;Acc = A345h, S=1, Z=0

RR ; Acc = D1A2h, S=1, Z=0

RR ; Acc = 68D1h, S=0, Z=0

RRC Operation: 15 Active Acc (Acc) 0 Carry Flag

Acc.[14:0]← Acc.[15:1]; Acc.15 ← C; C ← Acc.0

Encoding: 15 0

Example(s): ; Acc = A345h, C=1, S=1, Z=0

RRC ; Acc = D1A2h, C=1, S=1, Z=0

RRC ; Acc = E8D1h, C=0, S=1, Z=0

1000 1010 1100 1010

1000 1010 1101 1010

Maxim Integrated

18-30

MAXQ Family User’s Guide

(MAXQ10 Version) Shift Accumulator Left Arithmetically
SLA/SLA2/SLA4 One, Two, or Four Times

Description: Shifts the active accumulator left once, twice, or four times respectively for SLA, SLA2, and SLA4. For each shift iter-
ation, a 0 is shifted into the lsb, and the msb is shifted into the Carry (C) flag. For signed data, this shifting process
effectively retains the sign orientation of the data to the point at which overflow/underflow would occur.

Status Flags: C, S, Z

SLA Operation: Carry Flag 7 Active Acc (Acc) 0

C ← Acc.7 ; Acc.[7:1]← Acc.[6:0] ; Acc.0 ← 0

Encoding: 15 0

Example(s): ; Acc = E3h, C=0, S=1, Z=0

SLA ; Acc = C6h, C=1, S=1, Z=0

SLA ; Acc = 8Ch, C=1, S=1, Z=0

SLA2 Operation: Carry Flag 7 Active Acc (Acc) 0

C ← Acc.6 ; Acc.[7:2]← Acc.[5:0] ; Acc.[1:0] ← 0

Encoding: 15 0

Example(s): ; Acc = E3h, C=0, S=1, Z=0

SLA2 ; Acc = 8Ch, C=1, S=1, Z=0

SLA4 Operation: Carry Flag 7 Active Acc (Acc) 0

C ← Acc.4 ; Acc.[7:4]← Acc.[3:0] ; Acc.[3:0] ← 0

Encoding: 15 0

Example(s): ; Acc = E3h, C=0, S=1, Z=0

SLA4 ; Acc = 30h, C=0, S=0, Z=0

1000 1010 0011 1010

0

1000 1010 0110 1010

0

0

1000 1010 0010 1010

Maxim Integrated

18-31

MAXQ Family User’s Guide

(MAXQ20 Version) Shift Accumulator Left Arithmetically
SLA/SLA2/SLA4 One, Two, or Four Times

Description: Shifts the active accumulator left once, twice, or four times respectively for SLA, SLA2, and SLA4. For each shift iter-
ation, a 0 is shifted into the lsb, and the msb is shifted into the Carry (C) flag. For signed data, this shifting process
effectively retains the sign orientation of the data to the point at which overflow/underflow would occur.

Status Flags: C, S, Z

SLA Operation: Carry Flag 15 Active Accumulator (Acc) 0

C ← Acc.15; Acc.[15:1]← Acc.[14:0]; Acc.0 ← 0

Encoding: 15 0

Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA ; Acc = C68h, C=1, S=1, Z=0

SLA ; Acc = 8D14h, C=1, S=1, Z=0

SLA2 Operation: Carry Flag 15 Active Accumulator (Acc) 0

C ← Acc.14 ; Acc.[15:2]← Acc.[13:0] ; Acc.[1:0] ← 0

Encoding: 15 0

Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA2 ; Acc = 8D14h, C=1, S=1, Z=0

SLA4 Operation: Carry Flag 15 Active Accumulator (Acc) 0

C ← Acc.12; Acc.[15:4]← Acc.[11:0]; Acc.[3:0] ← 0

Encoding: 15 0

Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA4 ; Acc = 3450h, C=0, S=0, Z=0

0

1000 1010 0010 1010

1000 1010 0011 1010

0

1000 1010 0110 1010

0

Maxim Integrated

18-32

MAXQ Family User’s Guide

(MAXQ10 Version) Shift Accumulator Right/
SR/SRA/SRA2/SRA4 Shift Accumulator Right Arithmetically

One, Two, or Four Times

Description: Shifts the active accumulator right once for the SR, SRA instructions and two or four times, respectively, for the SRA2,
SRA4 instructions. The SR instruction shifts a 0 into the accumulator msb, while the SRA, SRA2, and SRA4 instruc-
tions effectively shift a copy of the current msb into the accumulator, thereby preserving any sign orientation. For
each shift iteration, the accumulator lsb is shifted into the Carry (C) flag.

Status Flags: C, S (changes for SR only), Z

SR Operation: 7 Active Acc (Acc) 0 Carry Flag

Acc.[6:0]← Acc.[7:1]

Acc.7 ← 0

C ← Acc.0

Encoding: 15 0

Example(s): ; Acc = 45h, C=1, S=0, Z=0

SR ; Acc = 22h, C=1, S=0, Z=0

SR ; Acc = 11h, C=0, S=0, Z=0

SRA Operation: 7 Active Acc (Acc) 0 Carry Flag

Acc.[6:0]← Acc.[7:1]

Acc.7 ← Acc.7

C ← Acc.0

Encoding: 15 0

Example(s): ; Acc = 03h, C=0, Z=0

SRA ; Acc = 01h, C=1, Z=0

SRA ; Acc = 00h, C=1, Z=1

0

1000 1010 1010 1010

1000 1010 1111 1010

Maxim Integrated

18-33

MAXQ Family User’s Guide

SRA2 Operation: 7 Active Acc (Acc) 0 Carry Flag

Acc.[5:0] ← Acc.[7:2]

Acc.[7:6] ← Acc.7

C ← Acc.1

Encoding: 15 0

Example(s): ; Acc = 03h, C=0, Z=0

SRA2 ; Acc = 00h, C=1, Z=1

SRA4 Operation: 7 Active Acc (Acc) 0 Carry Flag

Acc.[3:0] ← Acc.[7:4]

Acc.[7:4] ← Acc.7

C ← Acc.3

Encoding: 15 0

Example(s): ; Acc = 98h, C=0, Z=0

SRA4 ; Acc = F9h, C=1, Z=0

1000 1010 1110 1010

1000 1010 1011 1010

Maxim Integrated

MAXQ Family User’s Guide

(MAXQ20 Version) Shift Accumulator Right/
SR/SRA/SRA2/SRA4 Shift Accumulator Right Arithmetically

One, Two, or Four Times

Description: Shifts the active accumulator right once for the SR, SRA instructions and 2 or 4 times, respectively, for the SRA2,
SRA4 instructions. The SR instruction shifts a 0 into the accumulator msb while the SRA, SRA2, and SRA4 instruc-
tions effectively shift a copy of the current msb into the accumulator, thereby preserving any sign orientation. For
each shift iteration, the accumulator lsb is shifted into the Carry (C) flag.

Status Flags: C, S (changes for SR only), Z

SR Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.15 ← 0; Acc.[14:0]← Acc.[15:1]; C ← Acc.0

Encoding: 15 0

Example(s): ; Acc = A345h, C=1, S=1, Z=0

SR ; Acc = 51A2h, C=1, S=0, Z=0

SR ; Acc = 28D1h, C=0, S=0, Z=0

SRA Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[14:0]← Acc.[15:1]

Acc.15 ← Acc.15

C ← Acc.0

Encoding: 15 0

Example(s): ; Acc = 0003h, C=0, Z=0

SRA ; Acc = 0001h, C=1, Z=0

SRA ; Acc = 0000h, C=1, Z=1

1000 1010 1010 1010

1000 1010 1111 1010

0

Maxim Integrated 18-34

18-35

MAXQ Family User’s Guide

SRA2 Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[13:0] ← Acc.[15:2]

Acc.[15:14] ← Acc.15

C ← Acc.1

Encoding: 15 0

Example(s): ; Acc = 0003h, C=0, Z=0

SRA2 ; Acc = 0000h, C=1, Z=1

SRA4 Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[11:0] ← Acc.[15:4]

Acc.[15:12] ← Acc.15

C ← Acc.3

Encoding: 15 0

Example(s): ; Acc = 9878h, C=0, Z=0

SRA4 ; Acc = F987h, C=1, Z=0

SRA4 ; Acc = FF98h, C=0, Z=0

1000 1010 1110 1010

1000 1010 1011 1010

Maxim Integrated

18-36

MAXQ Family User’s Guide

SUB/SUBB src Subtract /Subtract with Borrow

Description: Subtracts the specified src from the active accumulator (Acc) and returns the result back to the active accumula-
tor. The SUBB additionally subtracts the borrow (Carry Flag), which may have resulted from previous subtraction.
For the complete list of src specifiers, reference the MOVE instruction. The MAXQ20 may use the PFX[n] register to
supply the high byte of data for 8-bit sources.

Status Flags: C, S, Z, OV

SUB Operation: Acc ← Acc - src

Encoding: 15 0

MAXQ10
Example(s): ; Acc = 23h to start, A[1]= 12h

SUB A[1] ; Acc = 11h, C=0, S=0, Z=0

SUB A[1] ; Acc = FFh, C=1, S=1, Z=0

MAXQ20
Example(s): ; Acc = 2345h to start, A[1]= 1250h

SUB A[1] ; Acc = 10F5h, C=0, S=0, Z=0, OV=0

SUB A[1] ; Acc = FEA5h, C=1, S=1, Z=0, OV=0

SUB A[2] ; A[2] =7FFFh

; → Acc = 7EA6h; C=0, S=0, Z=0, OV=1

SUBB Operation: Acc ← Acc - (src + C)

Encoding: 15 0

MAXQ10
Example(s): ; Acc = 23h, A[1]= 12h, C=1

SUBB A[1] ; Acc = 10h, C=0, S=0, Z=0

SUBB A[1] ; Acc = FEh, C=1, S=1, Z=0

SUBB #0Dh ; Acc = F0h, C=0, S=1, Z=0

MAXQ20
Example(s): ; Acc = 2345h, A[1]= 1250h, C=1

SUBB A[1] ; Acc = 10F4h, C=0, S=0, Z=0

SUBB A[1] ; Acc = FEA4h, C=1, S=1, Z=0

Special Notes: The active accumulator (Acc) is not allowed as the src for these operations.

f101 1010 ssss ssss

f111 1010 ssss ssss

Maxim Integrated

18-37

MAXQ Family User’s Guide

(MAXQ20 Only) Exchange Accumulator Bytes
XCH

Description: Exchanges the upper and lower bytes of the active accumulator.

Status Flags: S

Operation: Acc.[15:8] ← Acc.[7:0]

Acc.[7:0] ← Acc.[15:8]

Encoding: 15 0

Example(s): ; Acc = 2345h

XCHN ; Acc = 4523h

XCHN Exchange Accumulator Nibbles

Description: Exchanges the upper and lower nibbles in the active accumulator byte(s).

Status Flags: S

Operation: Acc.[7:4] ← Acc.[3:0]

Acc.[3:0] ← Acc.[7:4]

Acc.[15:12] ← Acc.[11:8]

Acc.[11:8] ← Acc.[15:12]

Encoding: 15 0

MAXQ10
Example(s):

; Acc = 23h

XCHN ; Acc = 32h

MAXQ20
Example(s): ; Acc = 2345h

XCHN ; Acc = 3254h

1000 1010 1000 1010

1000 1010 0111 1010

Maxim Integrated

18-38

MAXQ Family User’s Guide

XOR src Logical XOR

Description: Performs a logical-XOR between the active accumulator (Acc or A[AP]) and the specified src data. For the com-
plete list of src specifiers, reference the MOVE instruction. The MAXQ20 may use the PFX[n] register to supply the
high byte of data for 8-bit sources.

Status Flags: S, Z

Operation: Acc ← Acc XOR src

Encoding: 15 0

MAXQ10
Example(s): ; Acc = 23h

XOR A[2] ; A[2]=0Fh; Acc ← 2Ch

XOR #28h ; Acc ← 04h

MAXQ20
Example(s): ; Acc = 2345h

XOR A[2] ; A[2]=0F0Fh; Acc ← 2C4Ah

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

XOR Acc. Logical XOR Carry Flag with Accumulator Bit

Description: Performs a logical-XOR between the Carry (C) status flag and a specified bit of the active accumulator (Acc.)
and returns the result to the Carry.

Status Flags: C

Operation: C ← C XOR Acc.

Encoding: 15 0

MAXQ10
Example(s): ; Acc = 45h, C=1 at start

XOR Acc.1 ; Acc.1=0 → C=1

XOR Acc.2 ; Acc.2=1 → C=0

MAXQ20
Example(s): ; Acc = 2345h, C=1 at start

XOR Acc.1 ; Acc.1=0 → C=1

XOR Acc.2 ; Acc.2=1 → C=0

Special Notes: For the MAXQ10, the accumulator width is only 8 bits. Thus, only bit index encoding ('bbbb') for bits 0 ('0000')
through 7 ('0111') is supported.

f011 1010 ssss ssss

1011 1010 bbbb 1010

Maxim Integrated

MAXQ Family User’s Guide

REVISION HISTORY

REVISION
NUMBER

REVISION
DATE DESCRIPTION PAGES

CHANGED

0 9/04 Original release. —

Updated Loading a 16-bit register with a 16-bit immediate value:
Changed …PFX[2]…to…PFX[0].

28

Updated I/O Port: Type B:
Changed alternate function to special function.

54

Replaced Table 10. 62

Updated Timer 0 Mode: 16-Bit Timer/Counter:
Removed also from An interrupt also occurs if enabled…

63

Updated RTC Trim (RTRM) Register, (TRM4:0) Trim Calibration Bits:
Changed 32 seconds to 16 seconds

134

1 1/05

Updated JUMP NE:
Changed E = 1, branch taken to E = 0, branch taken.

165

2 4/05
Updated Debug Mode Special Considerations:
Added two bullets regarding single stepping because the debug engine step mechanism (that forces the IP to
8010h) does not allow a memory read from the utility ROM to work properly when single stepping.

149

3 9/05

Updated Polarity Control and Output Enable, Polarity Control:
Added the following sentence: When generating PWM output, please note that changing the compare match
register can result in a perceived duty cycle inversion if a compare match is missed or multiple compare
matches occur during the reload to overflow counting.

73, 75

Updated External Reset:
Added watchdog to list of causes for a reset condition.

4 10/05
Updated Watchdog Timer Reset:
Added and holds the RST pin low to statement for a watchdog resetting the processor.

25

Updated Accessing the Multiplier:
Added and the OF bit to last sentence of first paragraph to clarify that the CLD bit, when set, clears all data
registers and the OF bit to zero.

111
5 2/06

Updated Hardware Multiplier Control (MCNT) Register Description, Bits CLD and OF:
Updated bit descriptions to clarify that the OF bit is cleared to 0 when the CLD bit is set to 1.

112

Created newer template-style document.
Updated layout for peripheral registers based on new template style.

All
6 9/08

Added Figure 9-14: Bit Length Decoding Example (omitted in error.) 9-23

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

© Maxim Integrated The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Maxim Integrated:

 MAXQ314+ MAXQ314-RAN+

http://www.mouser.com/maxim-integrated
http://www.mouser.com/access/?pn=MAXQ314+
http://www.mouser.com/access/?pn=MAXQ314-RAN+

	TABLE OF CONTENTS:
	SECTION 1: OVERVIEW
	1.1 Instruction Set
	1.2 Harvard Memory Architecture
	1.3 Register Set
	1.4 MAXQ10 and MAXQ20 Microc...

	SECTION 2: ARCHITECTURE
	2.1 Instruction Decoding
	2.2 Register Space
	2.3 Memory Organization
	2.3.1 Program Memory
	2.3.2 Utility ROM
	2.3.3 Data Memory
	2.3.4 Stack Memory

	2.4 Pseudo-Von Neumann Memor...
	2.5 Pseudo-Von Neumann Memor...
	2.6 Data Alignment
	2.6.1 Memory Management Unit

	2.7 Clock Generation
	2.7.1 Internal Ring Oscillator
	2.7.2 External Clock (Crysta...
	2.7.3 External Clock (Direct...
	2.7.4 External RC
	2.7.5 Internal System Clock ...

	2.8 Interrupts
	2.8.1 Servicing Interrupts
	2.8.2 Interrupt System Opera...
	2.8.3 Synchronous vs. Asynch...
	2.8.4 Interrupt Prioritizati...
	2.8.5 Interrupt Exception Wi...

	2.9 Operating Modes
	2.9.1 Reset Mode
	2.9.1.1 Power-On/Brownout Reset
	2.9.1.2 External Reset
	2.9.1.3 Watchdog Timer Reset
	2.9.1.4 Internal System Reset

	2.9.2 Power Management Mode
	2.9.2.1 Switchback

	2.9.3 Stop Mode

	SECTION 3: PROGRAMMING
	3.1 Addressing Modes
	3.2 Prefixing Operations
	3.3 Reading and Writing Regi...
	3.3.1 Loading an 8-Bit Regis...
	3.3.2 Loading a 16-Bit Regis...
	3.3.3 Moving Values Between ...
	3.3.4 Moving Values Between ...

	3.4 Reading and Writing Regi...
	3.5 Using the Arithmetic and...
	3.5.1 Selecting the Active A...
	3.5.2 Enabling Auto-Incremen...
	3.5.3 ALU Operations Using t...
	3.5.4 ALU Operations Using O...
	3.5.5 ALU Bit Operations Usi...
	3.5.6 MAXQ10 Example: Adding...
	3.5.7 MAXQ20 Example: Adding...

	3.6 Processor Status Flag Op...
	3.6.1 Sign Flag
	3.6.2 Zero Flag
	3.6.3 Equals Flag
	3.6.4 Carry Flag
	3.6.5 Overflow Flag

	3.7 Controlling Program Flow
	3.7.1 Obtaining the Next Exe...
	3.7.2 Unconditional Jumps
	3.7.3 Conditional Jumps
	3.7.4 Calling Subroutines
	3.7.5 Looping Operations
	3.7.6 Conditional Returns

	3.8 Handling Interrupts
	3.8.1 Conditional Return fro...

	3.9 Accessing the Stack
	3.10 Accessing Data Memory
	3.11 Using the Watchdog Timer

	SECTION 4: SYSTEM REGISTER DESCRIPTIONS
	4.1 Accumulator Pointer Regi...
	4.2 Accumulator Pointer Cont...
	4.3 Processor Status Flags R...
	4.4 Interrupt and Control Re...
	4.5 Interrupt Mask Register ...
	4.6 System Control Register ...
	4.7 Interrupt Identification...
	4.8 System Clock Control Reg...
	4.9 Watchdog Control Registe...
	4.10 (MAXQ10) Accumulator n ...
	4.11 (MAXQ20) Accumulator n ...
	4.12 Prefix Register (PFX[n]...
	4.13 Instruction Pointer Reg...
	4.14 Stack Pointer Register ...
	4.15 Interrupt Vector Regist...
	4.16 Loop Counter 0 Register...
	4.17 Loop Counter 1 Register...
	4.18 Frame Pointer Offset Re...
	4.19 Data Pointer Control Re...
	4.20 General Register (GR, E...
	4.21 General Register Low By...
	4.22 Frame Pointer Base Regi...
	4.23 General Register Byte-S...
	4.24 General Register High B...
	4.25 General Register Sign E...
	4.26 Frame Pointer Register ...
	4.27 Data Pointer 0 Register...
	4.28 Data Pointer 1 Register...

	SECTION 5: PERIPHERAL REGISTER MODULES
	SECTION 6: GENERAL-PURPOSE I/O MODULE
	6.1 I/O Port: Type A
	6.2 I/O Port: Type B
	6.3 I/O Port: Type C
	6.4 I/O Port: Type D
	6.5 I/O Port Peripheral Regi...
	6.5.1 Port Output x Register...
	6.5.2 Port Input x Register ...
	6.5.3 Port Direction x Regis...
	6.5.4 (Type A) External Inte...
	6.5.5 (Type A) External Inte...
	6.5.6 (Type D) External Inte...
	6.5.7 (Type D) External Inte...
	6.5.8 (Type D) External Inte...

	SECTION 7: TIMER/COUNTER 0 MODULE
	7.1 Timer 0
	7.1.1 Timer 0 Mode: 13-Bit T...
	7.1.2 Timer 0 Mode: 16-Bit T...
	7.1.3 Timer 0 Mode: 8-Bit Ti...
	7.1.4 Timer 0 Mode: Two 8-Bi...

	7.2 Timer/Counter 0 Peripher...
	7.2.1 Timer/Counter 0 Contro...
	7.2.2 Timer/Counter 0 High R...
	7.2.3 Timer/Counter 0 Low Re...

	SECTION 8: TIMER/COUNTER 1 MODULE
	8.1 Timer 1
	8.1.1 Timer 1 Mode: 16-Bit T...
	8.1.2 Timer 1 Mode: 16-Bit E...
	8.1.3 Timer 1 Mode: Up/Down ...
	8.1.4 Timer 1 Mode: Clock Ou...

	8.2 Timer/Counter 1 Peripher...
	8.2.1 Timer/Counter 1 Contro...
	8.2.2 Timer/Counter 1 High R...
	8.2.3 Timer/Counter 1 Low Re...
	8.2.4 Timer/Counter 1 High R...
	8.2.5 Timer/Counter 1 Low Re...
	8.2.6 Timer/Counter 1 Mode R...

	8.3 Time-Base Selection for ...

	SECTION 9: TIMER/COUNTER 2 MODULE
	9.1 Timer 2
	9.2 Modes of Operation
	9.2.1 16-Bit Timer: Auto-Rel...
	9.2.1.1 Output Enable (PWM Out)
	9.2.1.2 Polarity Control
	9.2.1.3 Gated
	9.2.1.4 Single Shot (and Gat...
	9.2.1.5 Capture/Reload Control

	9.2.2 16-Bit Timer: Capture ...
	9.2.2.1 Output Enables
	9.2.2.2 Polarity Control
	9.2.2.3 Edge Detection
	9.2.2.4 Gated
	9.2.2.5 Single Shot
	9.2.2.6 Capture and Reload

	9.2.3 16-Bit Counter
	9.2.3.1 Output Enable
	9.2.3.2 Polarity Control
	9.2.3.3 Gating and Single Shot

	9.2.4 Dual 8-Bit Timers
	9.2.4.1 Output Enable (PWM Out)
	9.2.4.2 Polarity Control
	9.2.4.3 Gated
	9.2.4.4 Single Shot

	9.2.5 8-Bit Timer/8-Bit Capt...
	9.2.6 8-Bit Timer/8-Bit Counter
	9.2.7 Timer 2 Input Clock Se...

	9.3 Timer 2 Capture Applicat...
	9.3.1 Measure Low-Pulse Dura...
	9.3.2 Measure High-Pulse Dur...
	9.3.3 Measure Period
	9.3.4 Measure Duty Cycle Rep...
	9.3.5 Overflow/Interrupt on ...

	9.4 Timer/Counter 2 Peripher...
	9.4.1 Timer/Counter 2 Config...
	9.4.2 Timer/Counter 2 Contro...
	9.4.3 Timer/Counter 2 Contro...
	9.4.4 Timer 2 Value Register...
	9.4.5 Timer 2 Value High Reg...
	9.4.6 Timer 2 Reload Registe...
	9.4.7 Timer 2 Reload High Re...
	9.4.8 Timer 2 Capture/Compar...
	9.4.9 Timer 2 Capture/Compar...

	9.5 Low-Speed Infrared Trans...
	9.5.1 Subcarrier Generation ...
	9.5.2 Transmit Baseband Modu...
	9.5.2.1 IR Encoding (Transmi...
	9.5.2.2 Receive Pin Sampling
	9.5.2.3 IR Decoding (Receive...

	9.6 IR Peripheral Register
	9.6.1 Infrared Control Regis...

	SECTION 10: SERIAL I/O MODULE
	10.1 UART Modes
	10.1.1 UART Mode 0
	10.1.2 UART Mode 1
	10.1.3 UART Mode 2
	10.1.4 UART Mode 3

	10.2 Baud-Rate Generation
	10.2.1 Mode 0 Baud Rate
	10.2.2 Mode 2 Baud Rate
	10.2.3 Mode 1 or 3 Baud Rate
	10.2.4 Baud-Clock Generator

	10.3 Framing Error Detection
	10.4 UART Peripheral Registers
	10.4.1 Serial Control Regist...
	10.4.2 Serial Port Mode Regi...
	10.4.3 Serial Port Data Buff...
	10.4.4 Serial Port Phase Reg...

	SECTION 11: SERIAL PERIPHERAL INTERFACE (SPI) MODULE
	11.1 SPI Transfer Formats
	11.2 SPI Character Lengths
	11.3 SPI Transfer Baud Rates
	11.4 SPI System Errors
	11.4.1 Mode Fault
	11.4.2 Receive Overrun
	11.4.3 Write Collision While...

	11.5 SPI Master Operation
	11.6 SPI Slave Operation
	11.7 SPI Peripheral Registers
	11.7.1 SPI Control Register ...
	11.7.2 SPI Configuration Reg...
	11.7.3 SPI Clock Register (S...
	11.7.4 SPI Data Buffer Regis...

	SECTION 12: HARDWARE MULTIPLIER MODULE
	12.1 Hardware Multiplier Org...
	12.2 Hardware Multiplier Con...
	12.3 Register Output Selection
	12.3.1 Signed-Unsigned Opera...
	12.3.2 Operand Count Selection

	12.4 Hardware Multiplier Ope...
	12.4.1 Accessing the Multipl...

	12.5 Hardware Multiplier Per...
	12.5.1 Hardware Multiplier C...
	12.5.2 Multiplier Operand A ...
	12.5.3 Multiplier Operand B ...
	12.5.4 Multiplier Accumulato...
	12.5.5 Multiplier Accumulato...
	12.5.6 Multiplier Accumulato...
	12.5.7 Multiplier Read Regis...
	12.5.8 Multiplier Read Regis...

	12.6 Hardware Multiplier Exa...

	SECTION 13: 1-Wire BUS MASTER
	13.1 1-Wire Peripheral Regis...
	13.1.1 1-Wire Address Regist...
	13.1.2 1-Wire Data Register ...

	13.2 1-Wire Clock Control
	13.2.1 1-Wire Clock Divisor ...

	13.3 1-Wire Bus Master Control
	13.3.1 1-Wire Control Regist...

	13.4 1-Wire Bus Master Comma...
	13.4.1 1-Wire Command Regist...

	13.5 Search Operation Using ...
	13.5.1 Accelerated ROM Searc...

	13.6 1-Wire Transmit and Rec...
	13.6.1 1-Wire Transmit/Recei...

	13.7 1-Wire Bus Master Inter...
	13.7.1 1-Wire Interrupt Flag...
	13.7.2 1-Wire Interrupt Enab...

	13.8 I/O Signaling

	SECTION 14: REAL-TIME CLOCK MODULE
	14.1 RTC Alarm Functions
	14.1.1 Time-of-Day Alarm
	14.1.2 Sub-Second Alarm
	14.1.3 System Wakeup by Time...

	14.2 RTC Trim Function
	14.3 RTC Register Access
	14.3.1 Busy Bit Write Signaling
	14.3.2 Ready Bit Read Signaling
	14.3.3 RTC Count Register Ac...
	14.3.4 RTC Alarm Register Ac...
	14.3.5 RTC Trim Register Access

	14.4 RTC Peripheral Registers
	14.4.1 RTC Control Register ...
	14.4.2 RTC Seconds High Regi...
	14.4.3 RTC Seconds Low Regis...
	14.4.4 RTC Sub-Seconds Regis...
	14.4.5 RTC Alarm Seconds Hig...
	14.4.6 RTC Alarm Seconds Low...
	14.4.7 RTC Sub-Second Alarm ...
	14.4.8 RTC Trim Register (RTRM)

	SECTION 15: TEST ACCESS PORT (TAP)
	15.1 TAP Controller
	15.2 TAP State Control
	15.2.1 Test-Logic-Reset
	15.2.2 Run-Test-Idle
	15.2.3 IR-Scan Sequence
	15.2.4 DR-Scan Sequence

	15.3 Communication via TAP
	15.3.1 TAP Communication Exa...

	SECTION 16: IN-CIRCUIT DEBUG MODE
	16.1 Background Mode Operation
	16.1.1 Breakpoint Registers
	16.1.1.1 Breakpoint 0 Regist...
	16.1.1.2 Breakpoint 1 Regist...
	16.1.1.3 Breakpoint 2 Regist...
	16.1.1.4 Breakpoint 3 Regist...
	16.1.1.5 Breakpoint 4 Regist...
	16.1.1.6 Breakpoint 4 Regist...
	16.1.1.7 Breakpoint 5 Regist...
	16.1.1.8 Breakpoint 5 Regist...

	16.1.2 Using Breakpoints

	16.2 Debug Mode
	16.2.1 Debug Mode Commands
	16.2.2 Read Register Map Com...
	16.2.3 Single-Step Operation...
	16.2.4 Return
	16.2.5 Debug Mode Special Co...

	16.3 In-Circuit Debug Periph...
	16.3.1 In Circuit Debug Temp...
	16.3.2 In Circuit Debug Temp...
	16.3.3 In-Circuit Debug Cont...
	16.3.4 In-Circuit Debug Flag...
	16.3.5 In-Circuit Debug Buff...
	16.3.6 In Circuit Debug Data...
	16.3.7 In Circuit Debug Addr...

	SECTION 17: IN-SYSTEM PROGRAMMING (JTAG)
	17.1 JTAG Bootloader Operation
	17.2 Password-Protected Access
	17.2.1 Entering Password

	SECTION 18: MAXQ FAMILY INSTRUCTION SET SUMMARY
	ADD/ADDC src
	AND src
	AND Acc.
	{L/S}CALL src
	CMP src
	CPL
	CPL C
	{L/S}DJNZ LC[n], src
	{L/S} JUMP src
	{L/S}JUMP C/{L/S}JUMP NC, sr...
	MOVE dst, src
	MOVE Acc., C
	MOVE C, Acc.
	MOVE C, src.
	MOVE C, #0
	MOVE C, #1
	MOVE dst., #0
	MOVE dst., #1
	NEG
	OR src
	OR Acc.
	POP dst
	POPI dst
	PUSH src
	RET
	RET C/RET NC, RET Z/RET NZ, ...
	RETI
	RETI C/RETI NC, RETI Z/RETI ...
	RL/RLC
	RR/RRC
	SLA/SLA2/SLA4
	SR/SRA/SRA2/SRA4
	SUB/SUBB src
	XCH
	XCHN
	XOR src
	XOR Acc.

	REVISION HISTORY

