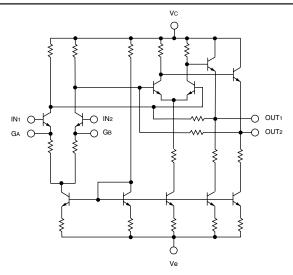
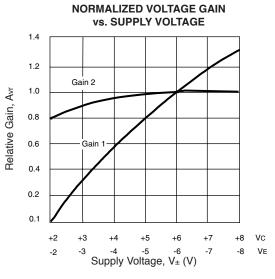
ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)


SYMBOLS	PARAMETERS	UNITS	RATINGS
VC-VE	Voltage between Vc and V \ensuremath{Ve}	V	-0.3 to 14
Рт	Total Power Dissipation ²	mW	200
Vid	Differential Input Voltage	V	±5
VIN	Input Voltage	V	±6
lo	Output Current	mA	35
Тор	TOP Operating Temperature		-45 to +75
Tstg	Tstg Storage Temperature		-55 to +150

Notes:

1. Operation in excess of any one of these parameters may result in permanent damage.

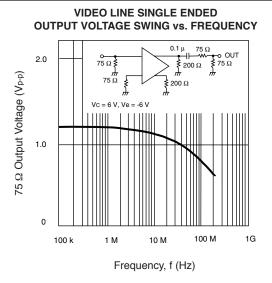
2. Mounted on 50 cm x 50 cm x 1.6 mm glass epoxy PCB with copper film (TA = Max ToP).


EQUIVALENT CIRCUIT

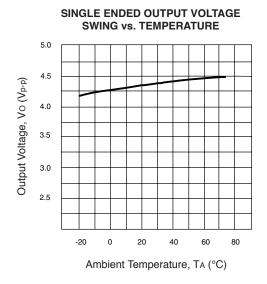
TYPICAL PERFORMANCE UNDER SIN-GLE SUPPLY +5 V OPERATION*

PARAMETER	CONDITIONS	TYPICAL	UNITS
Differential Gain	15 MHz		
Gain 1		35	dB
Gain 2		11	dB
Bandwidth	Gain is 3 dB down from		
Gain 1	the gain at 100 KHz	106	MHz
Gain 2		115	MHz
Rise Time	Rs = 50 Ω , Vout = 80 mV _{p-p}		
Gain 1		2.2	ns
Propagation			
Delay			
Gain 1	RS = 50 Ω, Vout = 80 mVp-p		ns
Gain 2	RS = 50 Ω, Vout = 60 mVp-p	1.8	ns
Phase Shift	100 MHz		
Gain 1		-123	degree
Gain 2		-93	degree
Output Power	Z∟ = 50 Ω, 15 MHz		
RA = 240 Ω		5.0	dBm
Ra = 910 Ω		0	dBm
RA = 80 Ω		-11.5	dBm

* See Application Circuit

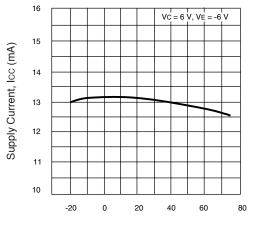

RECOMMENDED OPERATING CONDITIONS (TA = 25°C)

SYMBOLS	CHARACTERISTICS	UNITS	MIN	ТҮР	MAX
Vc	Positive Supply Voltage	V	+2	+6	+6.5
Ve	Negative Supply Voltage	V	-2	-6	-6.5
IO source	Source Current	mA			20
IO sink	Sink Current	mA			2.5
	Frequency Range	MHz	DC		200

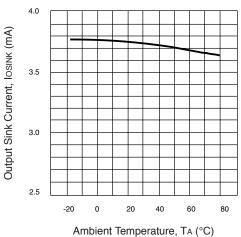

Attention:

Due to high frequency characteristics, the physical circuit layout is very critical. Supply voltage line bypass, double-sided printed-circuit board, and wide-area ground line layout are necessary for stable operation. Two signal resistors connected to both inputs and two load resistors connected to both outputs should be balanced for stable operation.

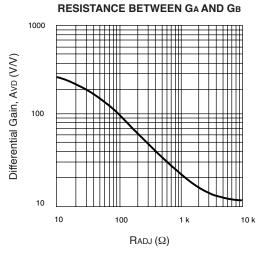
TYPICAL PERFORMANCE CURVES (TA = 25°C)



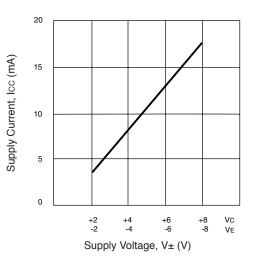
TYPICAL PERFORMANCE CURVES (TA = 25°C)

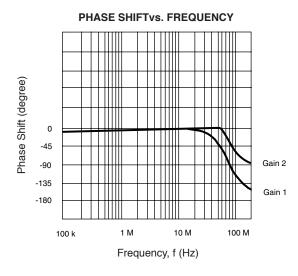

INPUT BIAS CURRENT vs. TEMPERATURE 50 Vc = 6 V, Ve = -6 V Input Bias Current, IB (µA) 40 30 20 10 0 -20 0 20 40 80 60 Ambient Temperature, TA (°C)

SUPPLY CURRENT vs. TEMPERATURE

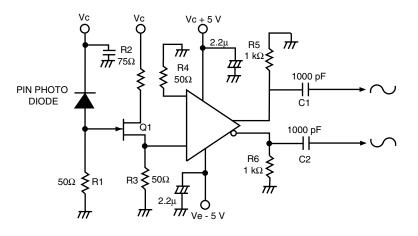


Ambient Temperature, TA (°C)


SINK CURRENT vs. TEMPERATURE


DIFFERENTIAL VOLTAGE GAIN vs.

SUPPLY CURRENT vs. SUPPLY VOLTAGE



TYPICAL PERFORMANCE CURVES (TA = 25°C)

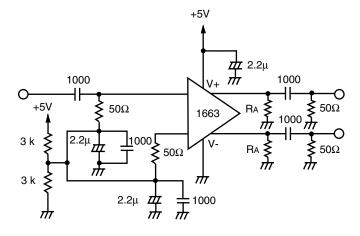
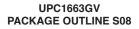
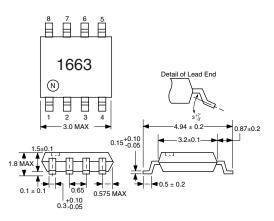
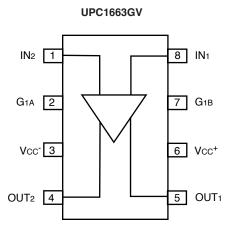

TYPICAL APPLICATIONS

Photo Signal Detector


Since the input impedance of the IC falls when the gain rises, stable operation can be achieved by inserting a FET buffer when necessary as illustrated above.


Application for +5 V Single Supply

OUTLINE DIMENSIONS (Units in mm)


CONNECTION DIAGRAM (TOP VIEW)

Notes:

- 1. Each lead centerline is located within 0.12 mm (0.005 inch) of its true position at maximum material condition.
- 2. All dimensions are typical unless otherwise specified.

ORDERING INFORMATION

PART NUMBER	QUANTITY
UPC1663GV-E1-A	1000/Reel

PIN DESCRIPTION

Pin No.	Pin Name	In single Bias (V)	In single bias (V)	Functions and Application	s Internal Equivalent Circuit
8	IN1	Pin	Apply	Input pin	6
1	IN2	voltage	voltage		
		0	Vcc/2		
5	OUT1	Pin	Apply	Output pin	
4	OUT2	voltage	voltage		
		0	Vcc/2		
6	Vcc*	±2 to ±6.5	-0.3 to +14	Plus voltage supply pin. This pin should be connected with bypass capacitor to minimize AC impedance.	
3	Vcc-		GND	Minus voltage supply pin. This pin should be connected with bypass capacitor to minimize AC impedance.	
7	G1A	_	_	Gain adjustment pin.	
2	G1B			External resistor from 0 to 10 kW can be inserted between pin 2 and 7 to determine gain value.	Internal circuit constants should be refered to application note.

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

EXCLUSIVE NORTH AMERICAN AGENT FOR NEC RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • FAX (408) 988-0279 24-Hour Fax-On-Demand: 800-390-3232 (U.S. and Canada only) • Internet: http://WWW.CEL.COM

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NEC: UPB1009K-A UPB1009K-E1-A