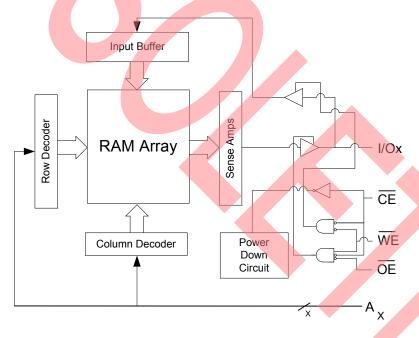


256-Kbit (32K × 8) Static RAM

Features

- Fast access time: 12 ns
- Wide voltage range: 5.0 V ± 10% (4.5 V to 5.5 V)
- Complementary metal oxide semiconductor (CMOS) for optimum speed and power
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Low CMOS standby power
- Automated power down when deselected
- Available in 28-pin SOJ package

Functional Description


The CY7C199CN Automotive [1] is a high performance CMOS Asynchronous SRAM organized as 32K by 8 bits that supports an asynchronous memory interface. The device features an automatic power down feature that reduces power consumption when deselected.

See the Truth Table on page 4 in this data sheet for a complete description of read and write modes.

The CY7C199CN Automotive is available in 28-pin Molded SOJ package.

For a complete list of related resources, click here.

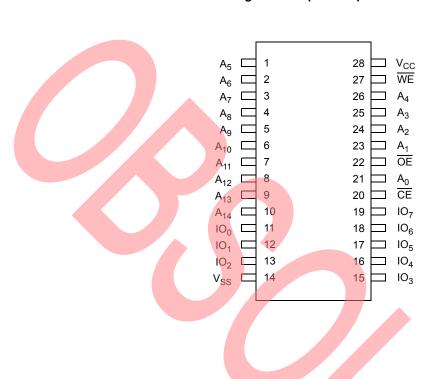
Logic Block Diagram

Product Portfolio

Description	-12	Unit
Maximum access time	12	ns
Maximum operating current	85	mA
Maximum CMOS standby current	10	mA

Cypress Semiconductor Corporation
Document Number: 001-67737 Rev. *D

Contents


Pin Layout and Specifications	3
Pin Description	
Truth Table	
Maximum Ratings	
Operating Range	
DC Electrical Characteristics	
Capacitance	
Thermal Resistance	
AC Test Loads	
AC Test Conditions	6
AC Electrical Characteristics	
Timing Waveforms	
Ordering Information	
Ordering Code Definitions	

Package Diagrams	
Acronyms	13
Document Conventions	13
Units of Measure	13
Document History Page	14
Sales, Solutions, and Legal Information	15
Worldwide Sales and Design Support	15
Products	
PSoC® Solutions	15
Cypress Developer Community	15
Technical Support	15

Pin Layout and Specifications

Figure 1. 28-pin SOJ pinout

Note

^{1.} For best practices recommendations, refer to the Cypress application note System Design Guidelines on www.cypress.com.

Pin Description

Pin	Туре	Description	SOJ
A _X	Input	Address inputs	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21, 23, 24, 25, 26
CE	Control	Chip enable	20
IO _X	Input or output	Data input outputs	11, 12, 13, 15, 16, 17, 18, 19
ŌĒ	Control	Output enable	22
V _{CC}	Supply	Power (5.0V)	28
V _{SS}	Supply	Ground	14
WE	Control	Write enable	27

Truth Table

CE	OE	WE	IOx	Mode	Power
Н	Х	Х	High-Z	Deselect/power-down	Stand by (I _{SB})
L	L	Н	Data-out	Read	Active (I _{CC})
L	Х	L	Data-in	Write	Active (I _{CC})
L	Н	Н	High-Z	Selected, outputs disabled	Active (I _{CC})

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Parameter [2]	Description	Value	Unit
T _{STG}	Storage temperature	-65 to +150	°C
T _{AMB}	Ambient temperature with power applied (that is, case temperature)	-55 to +125	°C
V _{CC}	Core supply voltage relative to V _{SS}	-0.5 to +7.0	V
V _{IN} , V _{OUT}	DC voltage applied to any pin relative to V _{SS}	-0.5 to V _{CC} + 0.5	V
I _{OUT}	Output short-circuit current	20	mA
V _{ESD}	Static discharge voltage (in accordance with MIL-STD-883, Method 3015)	> 2001	V
I _{LU}	Latch-up current	> 200	mA

Operating Range

Range	Ambient Temperature (T _A)	Voltage Range (V _{CC})
Automotive-A	−40 °C to 85 °C	5.0 V ± 10%

DC Electrical Characteristics

Over the Operating Range

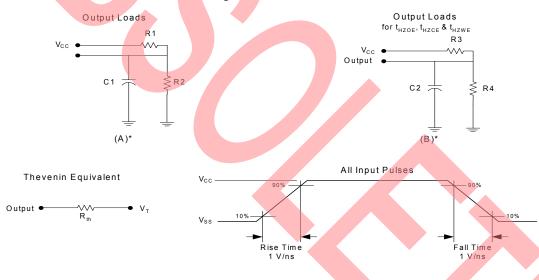
Parameter [2]	Description	Condition	-1	-12	
Parameter	Description		Min	Max	Unit
V _{IH}	Input HIGH voltage		2.2	V _{CC} + 0.3	V
V_{IL}	Input LOW voltage		-0.5	0.8	V
V _{OH}	Output HIGH voltage	V_{CC} = Min, I_{OH} = -4.0 mA	2.4	-	V
V_{OL}	Output LOW voltage	V _{CC} = Min, I _{OL} = 8.0 mA	-	0.4	V
I _{CC}	V _{CC} operating supply current	V_{CC} = Max, I_{OUT} = 0 mA, f = F_{max} = 1/ t_{RC}	-	85	mA
I _{SB1}	Automatic CE power- down current – TTL Inputs	$ \begin{aligned} &\text{Max V}_{CC}, \overline{CE} \geq V_{IH}, \\ &V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, f = F_{max} \end{aligned} $		30	mA
I _{SB2}	Automatic CE power- down current – CMOS Inputs	$\begin{aligned} &\text{Max V}_{CC}, \ \overline{CE} \geq V_{CC} - 0.3 \ V, \\ &V_{IN} \geq V_{CC} - 0.3 \ V, \text{ or } V_{IN} \leq 0.3 \ V, \text{ f = 0} \end{aligned}$	-	10	mA
I _{OZ}	Output leakage current	$GND \le V_I \le V_{CC}$, Output disabled	- 5	+5	μА
I_{IX}	Input leakage current	$GND \le V_I \le V_{CC}$	- 5	+5	μА

Note

Document Number: 001-67737 Rev. *D

^{2.} $V_{IL(min)}$ = -2.0 V for pulse durations of less than 20 ns.

Capacitance


Parameter [3]	Description	Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 5.0 \text{V}$	8	pF
C _{OUT}	Output capacitance		8	

Thermal Resistance

Paramete	er ^[3]	Description	Conditions	SOJ	Unit
Θ_{JA}		Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 square inch, two-layer printed circuit board	79	°C/W
Θ ^{JC}		Thermal resistance (junction to case)		41.42	

AC Test Loads

Figure 2. AC Test Loads

* including scope and jig capacitance

AC Test Conditions

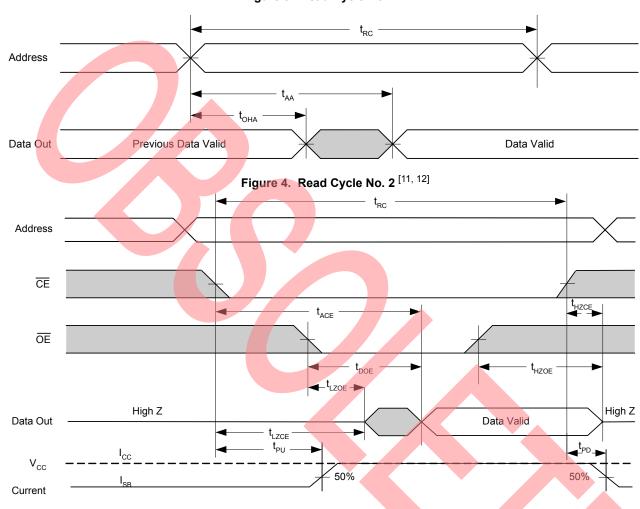
Parameter	Description	Nom	Unit
C1	Capacitor 1	30	pF
C2	Capacitor 2	5	
R1	Resistor 1	480	Ω
R2	Resistor 2	255	
R3	Resistor 3	480	
R4	Resistor 4	255	
R _{TH}	Resistor Thevenin	167	
V _{TH}	Voltage Thevenin	1.73	V

Note

Document Number: 001-67737 Rev. *D

^{3.} Tested initially and after any design or process change that may affect these parameters.

AC Electrical Characteristics


Parameter [4, 5]	December 1	-12		Unit
Parameter [1, 9]	Description	Min	Max	Onit
t _{RC}	Read cycle time	12	_	ns
t _{AA}	Address to data valid	-	12	ns
t _{OHA}	Data hold from address change	3	_	ns
t _{ACE}	CE to data valid	-	12	ns
t _{DOE}	OE to data valid	-	6	ns
t _{LZOE}	OE to low-Z [6]	0	_	ns
t _{HZOE}	OE to high-Z [6, 7]	_	5	ns
t _{LZCE}	CE to low-Z [6]	3	_	ns
t _{HZCE}	CE to high-Z [6, 7]	_	5	ns
t _{PU}	CE to power-up	0	_	ns
t _{PD}	CE to power-down	_	12	ns
t _{WC}	Write cycle time [8]	12	_	ns
t _{SCE}	CE to write end	9	_	ns
t _{AW}	Address setup to write end	9	_	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address setup to write start	0	_	ns
t _{PWE}	WE pulse width	8	_	ns
t _{SD}	Data setup to write end	8	_	ns
t _{HD}	Data hold from write end	0	_	ns
t _{HZWE}	WE LOW to high-Z [6, 7]	_	7	ns
t _{LZWE}	WE HIGH to low-Z [6]	3	_	ns

- 4. Test Conditions are based on a transition time of 3 ns or less and timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.
 5. The minimum write cycle pulse width for Write Cycle No. 3 (WE Controlled, OE LOW) should be equal to sum of t_{SD} and t_{HZWE}.
 6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
- 7. t_{HZOE} , t_{HZCE} , t_{HZWE} are specified as in part (b) of Figure 2 on page 6. Transitions are measured \pm 200 mV from steady state voltage.
- 8. The internal memory write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. $\overline{\text{CE}}$ and $\overline{\text{WE}}$ must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data setup and hold timing must be referenced to the leading edge of the signal that terminates the write.

Timing Waveforms

Figure 3. Read Cycle No. 1 [9, 10]

Notes

- 9. Device is continuously selected. $\overline{OE} = V_{IL} = \overline{CE}$.
- 10. WE is HIGH for read cycle.
- This cycle is \overline{OE} controlled and \overline{WE} is HIGH read cycle.
 Address valid before or similar with \overline{CE} transition LOW.

Timing Waveforms (continued)

Figure 5. Write Cycle No. 1 (WE Controlled) [13, 14, 15]

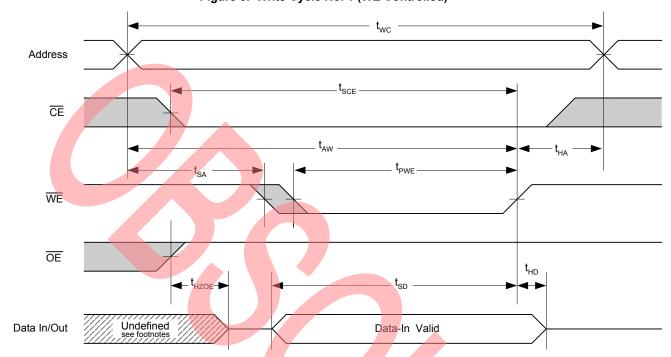
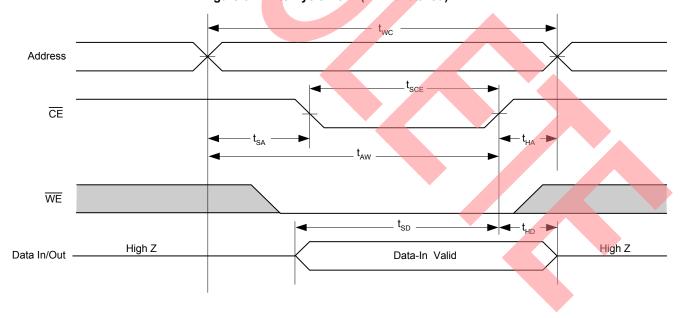
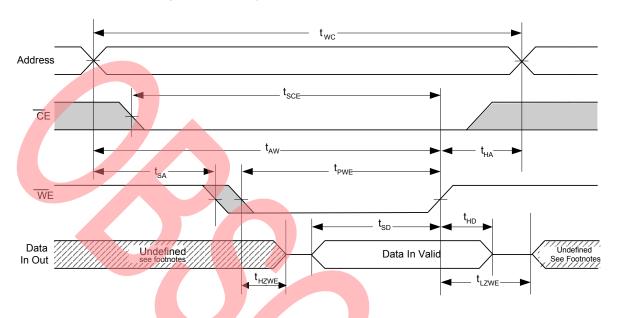



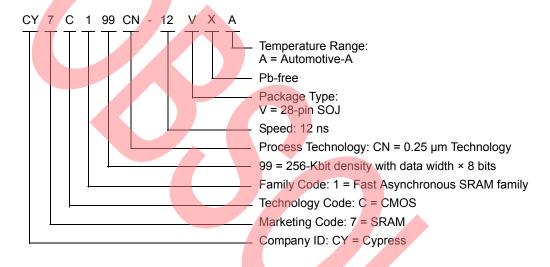
Figure 6. Write Cycle No. 2 (CE Controlled) [14, 16, 17]



- Notes
 13. This cycle is WE controlled, OE is HIGH during write.
- 14. Data in and/or out is high impedance if $\overline{OE} = V_{IH}$.
- 15. During this period the IOs are in output state and input signals must not be applied.
- 16. This cycle is $\overline{\text{CE}}$ controlled.
- 17. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high impedance state.

Timing Waveforms (continued)

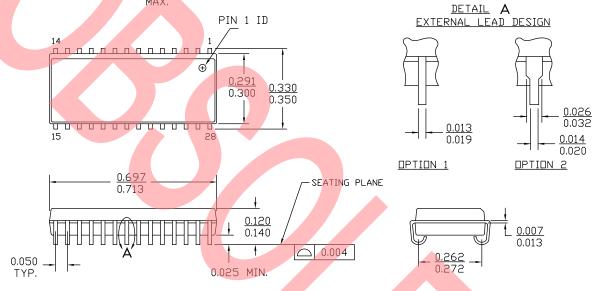
Figure 7. Write Cycle No. 3 (WE Controlled, OE Low) [18]


 $^{\ \, \}text{Note} \\ \ \, \text{18. The cycle is $\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW. The minimum write cycle time is the sum of t_{HZWE} and t_{SD}.}$

Ordering Information

Speed (ns)	Ordering Code	Package Diagram		Power Option	Operating Range
12	CY7C199CN-12VXA	51-85031	28-pin SOJ (300 Mils), Pb-free	Standard	Automotive-A

Ordering Code Definitions



Package Diagrams

Figure 8. 28-pin SOJ (300 Mils) V28.3 (Molded SOJ V21) Package Outline, 51-85031

NOTE :

- 1. JEDEC STD REF MOO88
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
 MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE
- 3. DIMENSIONS IN INCHES MIN. MAX.

51-85031 *F

Document Number: 001-67737 Rev. *D

Acronyms

Acronym	Description				
CE	Chip Enable				
CMOS	Complementary Metal Oxide Semiconductor				
I/O	Input/Output				
OE	Output Enable				
SRAM	Static Random Access Memory				
SOJ	Small Outline J-Lead				
TTL	Transistor-Transistor Logic				
WE	Write Enable				

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μA	microampere			
mA	milliampere			
ns	nanosecond			
Ω	ohm			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Document Title: CY7C199CN Automotive, 256-Kbit (32K × 8) Static RAM Document Number: 001-67737						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	3253367	PRAS	05/23/11	New data sheet. Separation of the automotive data sheet from CY7C199CN spec no. 001-06435 Rev. *D. Further rev of 001-06435 would include only industrial / commercial parts.		
*A	4394563	VINI	05/30/2014	Updated Package Diagrams: spec 51-85031 – Changed revision from *D to *E. Updated to new template. Completing Sunset Review.		
*B	4546472	VINI	10/28/2014	Updated Maximum Ratings: Referred Note 2 in "Parameter" column. Updated AC Electrical Characteristics: Added Note 5 and referred the same note in "Parameter" column.		
*C	4745772	PSR	04/28/2015	Updated Functional Description: Added "For a complete list of related resources, click here." at the end. Updated Package Diagrams: spec 51-85031 – Changed revision from *E to *F. Updated to new template. Completing Sunset Review.		
*D	5307710	VINI	06/14/2016	Obsolete document. Completing Sunset Review.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive
Clocks & Buffers
Interface
Lighting & Power Control
Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:

 $\underline{\text{CY7C199CN-15PXC}} \ \underline{\text{CY7C199CNL-15VXI}} \ \underline{\text{CY7C199CNL-15VXIT}} \ \underline{\text{CY7C199CN-12VXA}} \ \underline{\text{CY7C199CN-12VXAT}}$