Honeywell Zephyr[™] HAF Series sensors provide a digital interface for reading airflow over specified full-scale flow and compensated temperature ranges. The thermally isolated heater and temperature sensing elements help these sensors provide a fast response to air or gas flow.

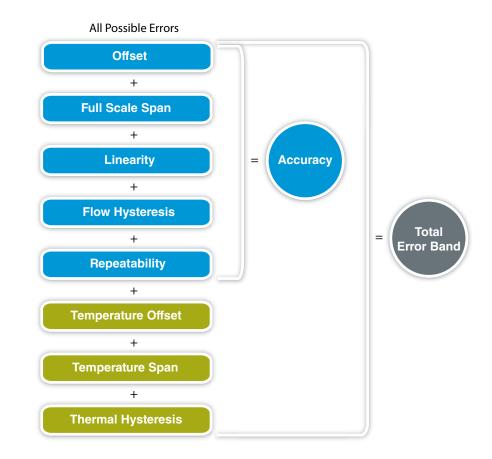
Zephyr sensors are designed to measure mass flow of air and other non-corrosive gases. Standard flow ranges are available at ± 50 , ± 100 , ± 200 , ± 400 or ± 750 SCCM. Custom flow ranges are also available. The sensors are fully calibrated and temperature compensated with an onboard Application Specific Integrated Circuit (ASIC).

The HAF Series is compensated over the temperature range of 0 °C to 50 °C [32 °F to 122 °F] and operates across a temperature range of -20 °C to 70 °C [-4 °F to 158 °F]. The state-of-the-art ASIC-based compensation provides digital (12 C) outputs with a response time of 1 ms.

These sensors operate on the heat transfer principle to measure mass airflow. They consist of a microbridge Microelectronic and Microelectromechanical System (MEMS) with temperature-sensitive resistors deposited with thin films of platinum and silicon nitride. The MEMS sensing die is located in a precise and carefully-designed airflow channel to provide repeatable response to flow.

Zephyr sensors provide the customer with enhanced reliability, high accuracy, repeatable measurements and the ability to customize sensor options to meet many specific application needs. The combination of rugged housings with a stable substrate makes these products extremely robust. They are designed and manufactured according to ISO 9001 standards.

What makes our sensors better?


- o Fast response time
- Wide range of airflows
- o Customizable flow ranges and configurable package styles
- Linear output
- High stability
- Low pressure drop

Features and Benefits

TOTAL ERROR BAND (TEB) AS LOW AS 0.25% FSS*

Allows for precise airflow measurement, often ideal for demanding applications with high accuracy requirements.

Figure 1. Total Error Band vs. Accuracy

Other airflow sensor manufacturers only report on accuracy, while Honeywell reports Total Error Band.

FAST RESPONSE TIME*

Allows a customer's application to respond quickly to airflow change, important in critical medical (e.g., anesthesia) and industrial (e.g., fume hood) applications.

WIDE RANGE OF AIRFLOWS*

Zephyr measures mass flow at standard flow ranges of ± 50 , $\pm 100 \pm 200$, ± 400 or ± 750 SCCM, or custom flow ranges, increasing the options for integrating the sensor into the application.

CUSTOMIZABLE FLOW RANGES AND CONFIGURABLE PACKAGE STYLES*

Meet specific end-user needs.

FULL CALIBRATION AND TEMPERATURE COMPENSATION

Typically allow customer to remove additional components associated with signal conditioning from the PCB, reducing PCB size as well as costs often associated with those components (e.g., acquisition, inventory, assembly).

Features and Benefits

LINEAR OUTPUT*

Provides more intuitive sensor signal than the raw output of basic airflow sensors, which can help reduce production costs, design, and implementation time.

LOW PRESSURE DROP*

Typically improves patient comfort in medical applications, and reduces noise and system wear on other components such as motors and pumps.

HIGH 12-BIT RESOLUTION

Increases ability to sense small airflow changes, allowing customers to more precisely control their application.

LOW 3.3 VDC OPERATING VOLTAGE OPTION AND LOW POWER CONSUMPTION

Allow for use in battery-driven and other portable applications.

ASIC-BASED I²C DIGITAL OUTPUT COMPATIBILITY

Eases integration to microprocessors or microcontrollers, reducing PCB complexity and component count.

INSENSITIVITY TO ALTITUDE

Eliminates customer-implemented altitude adjustments in the system, easing integration and reducing production costs by not having to purchase additional sensors for altitude adjustments.

SMALL SIZE

Occupies less space on PCB, allowing easier fit and potentially reducing production costs; PCB size may also be reduced for easier fit into space-constrained applications.

ROHS-COMPLIANT MATERIALS

Meet Directive 2002/95/EC.

Potential Applications

MEDICAL

ANESTHESIA DELIVERY MACHINES VENTRICULAR ASSIST DEVICES (HEART PUMPS) NEBULIZERS OXYGEN CONCENTRATORS PATIENT MONITORING SYSTEMS (RESPIRATORY MONITORING) SLEEP APNEA MACHINES SPIROMETERS VENTILATORS LAPAROSCOPY

INDUSTRIAL

AIR-TO-FUEL RATIO FUEL CELLS GAS LEAK DETECTION VAV SYSTEM ON HVAC SYSTEMS GAS METERS HVAC FILTERS

Table 1. Absolute Maximum Ratings¹

Characteristic	Parameter
Supply voltage	-0.3 Vdc to 6.0 Vdc
Voltage on I/O output pin	-0.3 Vdc to Vsupply
Storage temperature range	-40 °C to 125 °C [-40 °F to 257 °F]
Maximum flow change	5.0 SLPM/s
Maximum common mode pressure	25 psi at 25 °C [77 °F]
Maximum flow	10 SLPM

¹Absolute maximum ratings are the extreme limits that the device will withstand without damage to the device. However, the electrical and mechanical characteristics are not guaranteed as the maximum limits (above recommended operating conditions) are approached, nor will the device necessarily operate at absolute maximum ratings.

CAUTION

IMPROPER USE Do not use these products to sense liquid flow. Failure to comply with these instructions may result in product damage.

CAUTION

PRODUCT DAMAGE

Do not disassemble these products. Failure to comply with these instructions may result in product damage.

Table 2. Operating Specifications

Characteristic	Parameter	Notes
Supply voltage 3.3 Vdc 5.0 Vdc	3.3 Vdc ±10% 5.0 Vdc ±10%	—
Power: 3.3 Vdc 5.0 Vdc	40 mW max. 65 mW max.	1
Compensated temperature range	0 °C to 50 °C [32 °F to 122 °F]	2
Operating temperature range	-20 °C to 70 °C [-4 °F to 158 °F]	—
Accuracy	See Table 3.	3, 4
Total Error Band (TEB)	See Table 3.	4, 5
Null accuracy	0.1 %FSS	4, 6
Response time	1 ms typ.	7
Resolution	12 bit min.	
Start-up time	17 ms	8
Warm-up time	30 ms	9
Calibration media	gaseous nitrogen	10
Bus standards	I ² C fast mode (up to 400 kHz)	11
Null stability	Null will not deviate beyond the specified TEB.	_
Reverse polarity protection	no	_

¹Maximum Power: Is measured under the conditions of the highest supply voltage Vsupply + 10%, 70° C, full scale flow and with the minimum pull-up resistors for SDA and SCL according to the I²C specification.

²Custom and extended compensated temperature ranges are possible. Contact Honeywell for details.

³Accuracy: The maximum deviation from the nominal digital output over the compensated flow range at a reference temperature of 25 °C. Errors include offset, span, non-linearity, hysteresis and non-repeatability.

⁴Full Scale Span (FSS): The algebraic difference between the digital output at the forward Full Scale (FS) flow and the digital output at the reverse FS flow. Forward flow is defined as flow from P1 to P2 as shown in Figure 4. The references to mass flow (SCCM) refer to gas flows at the standard conditions of 0 °C and atmospheric pressure 760 (101.3 kPa). ⁵Total Error Band (TEB): The maximum deviation in output from ideal transfer function over the entire compensated temperature and flow range. Includes all errors due to offset, full

"Iotal Error Band (IEB): The maximum deviation in output from local transfer function over the entire compensated temperature and now range. Includes all errors due to onset, full scale span, flow repeatability, thermal effect on offset, thermal effect on span and thermal hysteresis.

⁶Null accuracy: The the maximum deviation in output at 0 SCCM from the ideal transfer function over the compensated temperature range. This includes offset errors, thermal airflow hysteresis and repeatability errors.

⁷Response time: The time to electrically respond to any mass flow change at the microbridge airflow transducer (response time of the transducer may be affected by the pneumatic interface).

⁸Start-up time: The time to first valid reading of serial number proceeding streaming 14-bit flow measurements.

⁹Warm-up time: The time to the first valid flow measurement after power is applied.

¹⁰Default calibration media is dry nitrogen gas. Please contact Honeywell for other calibration options.

¹¹Refer to the Technical Note "I²C Communications with Honeywell Digital Airflow Sensors" for I²C protocol information.

Accuracy Error Band Total Error Band Error (%FSS) Error (%FSS) See table below for null accuracy. See table below for null accuracy. Sensor Range Airflow (SCCM) Airflow (SCCM) (SCCM) **Applied Flow** Accuracy Error TEB Applied Flow (SCCM) (SCCM) (%FSS) (%FSS) -50 to -16.7 ±6% reading -50 to -14.3 ±7% reading -16.7 to 0 ±1 -14.3 to 0 ±1 0 0 ±50 ±0.16 ±0.16 0 to 20 ±1 0 to 14.3 ±1 20 to 50 ±5% reading -14.3 to 50 ±7% reading -100 to -14.3 ±7% reading -100 to -14.3 ±7% reading -14.3 to 0 -14.3 to 0 ±0.5 ±0.5 0 ±100 0 ±0.12 ±0.12 20 ±0.5 0 to 16.7 ±0.5 20 to 100 ±5% reading 16.7 to 100 ±6% reading -200 to -11.1 -200 to -11.1 ±9% reading ±9% reading) -11.1 to -0 ±0.25 -11.1 to -0 ±0.25 0 ±0.01 0 ±0.1 ±2001 0 to 40 ±0.25 0 to 22.2 ±0.25 40 to 200 ±2.5% reading 22.2 to 200 ±4.5% reading -400 to -26.7 ±9% reading -400 to -32 10% reading -26.7 to -0 -32 to -0 ±0.3 ±0.4 ±400 0 ±0.1 0 ±0.1 0 to 68.6 ±0.3 0 to 71.1 ±0.4 68.6 to 400 ±3.5% reading 71.1 to 400 ±4.5% reading -750 to -31.3 ±12% reading -750 to -31.25 ±12% reading -31.3 to -0 ±0.25 -31.25 to -0 ±0.25 ±750 0 0 ±0.1 ±0.1 0 to 68.2 ±0.25 0 to 50 ±0.25 68.2 to 750 ±5.5% reading 50 to 750 ±7.5 reading

Table 3. Bidirectional Forward Flow Optimization

¹The short port sensors are only specified down to -100 SCCM.

CAUTION

LARGE PARTICULATE DAMAGE

Use a 5-micron filter upstream of the sensor to keep media flow through the sensor free of condensing moisture and particulates. Large, high-velocity particles or conductive particles may damage the sensing element.

Failure to comply with these instructions may result in product damage.

Table 4. Environmental Characteristics

Table 5. Wetted Materials

Characteristic	Parameter	Characteristic	Parameter
Humidity	0% to 95% RH, non-condensing	Covers	high temperature polymer
Shock	100 g, 11 ms	Substrate	PCB
Vibration	15 g at 20 Hz to 2000 Hz	Adhesives	ероху
ESD	Class 3B per MIL-STD 883G	Electronic components	silicon, gold
		Compliance	RoHS, WEEE

Table 6. Recommended Mounting and Implementation

Characteristic	Parameter
Mounting screw: size torque	5-40 0,68 N m [6 in-lb]
Silicon tubing for long port style	70 durometer; size 0.125 in inside diameter, 0.250 in outside diameter silicone tubing
O-ring: for short port style for long port style	AS568A, Size 7, Silicone, Shore A 70 AS568A, Size 10, Silicone, Shore A 70
Filter	5-micron filter upstream of the sensor

Figure 2. Nominal Digital Output

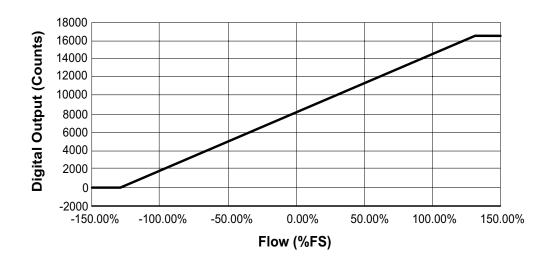
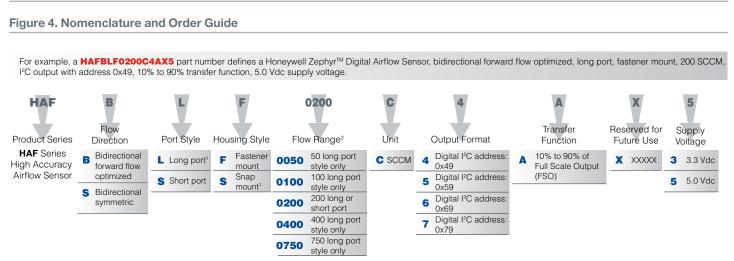



Figure 3. ideal Transfer Function

Digital Output Code = $16384 \times [0.5 + 0.4 \times (Flow Applied/Full Scale Flow)]$ Flow Applied = Full Scale Flow * [(Digital Output Code/16384) - 0.5]/0.4

¹The Long Port Port Style with the Snap Mount Housing Style is not a valid configuration. ²The 200 SCCM Flow Range is available in the Long and Short Port Styles.

Apart from the general configuration required, other customer-specific requirements are also possible. Please contact Honeywell.

Ang John J	t, snap mount
mile mile t	1000

Figure 5. All Available Standard Configurations

Figure 6. Wave Solder Profile

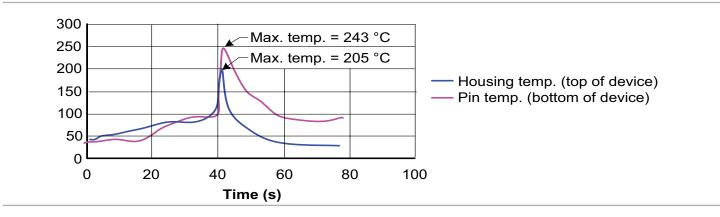
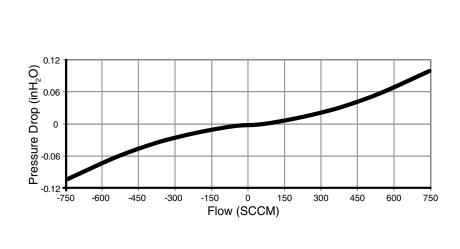
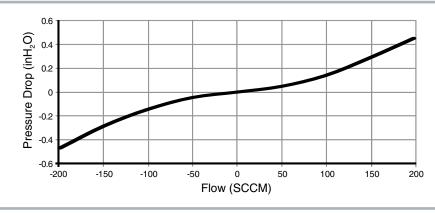




Figure 7. Long Port Style Flow vs Pressure

Flow	Typical Pressure Drop			
(SCCM)	mbar	inH ₂ O	Pa	
-750	-0.2517	-0.1011	-25.17	
-550	-0.1499	-0.0602	-14.99	
-400	-0.0891	-0.0358	-8.91	
-300	-0.0578	-0.0232	-5.78	
-200	-0.0321	-0.0129	-3.21	
-100	-0.0114	-0.0046	-1.14	
-50	-0.0035	-0.0014	-0.35	
-20	-0.0007	-0.0003	-0.07	
0	0.0000	0.0000	0.0000	
20	0.0007	0.0003	0.07	
50	0.0035	0.0014	0.35	
100	0.0014	0.0046	0.14	
200	0.0321	0.0129	3.21	
300	0.0578	0.0232	5.78	
400	0.0891	0.0358	8.91	
550	0.1499	0.0602	14.99	
750	0.2517	0.1011	25.17	

Figure 8. Short Port Style Flow vs Pressure

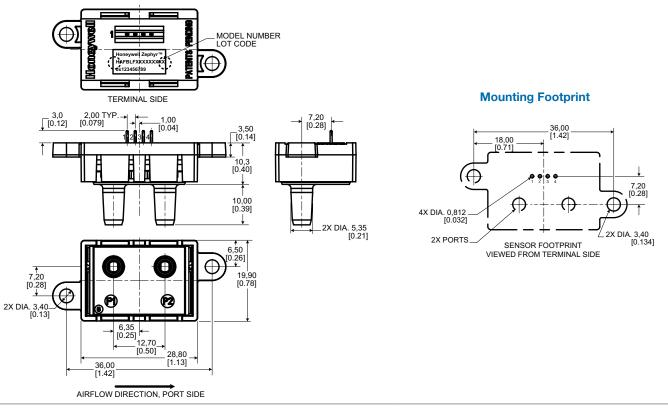
Flow	Typical Pressure Drop			
(SCCM)	mbar	inH ₂ O	Pa	
-200	-1.1707	-0.470	-117.07	
-150	-0.7074	-0.284	-70.74	
-100	-0.3562	-0.143	-35.62	
-50 -0.11	-0.1120	-0.045	-11.20	
0 0	0.0000	0.000	0.0000	
50 0	0.1196	0.048	11.96	
100	0.3462	0.139	34.62	
150	0.7149	0.287	71.49	
200	1.2589	0.452	125.89	

Digital Interface

For additional details on the use of Zephyr with digital output see the Technical Note "I²C Communications with Honeywell Digital Airflow Sensors".

The sensor uses the I²C standard for digital communication with a slave address specified in the Nomenclature and Order Guide in Figure 4. Following sensor power-up, each of the first two read sequences shown in Figure 9 will respond with 2 bytes of the unique 4-byte Serial Number. The first read after power-up will respond with the two most significant bytes of the Serial Number, while the second read will respond with the two least significant bytes of the Serial Number. For reliable performance, allow sensor to be powered for the sensor start-up time before performing the first read, then allow a 10 ms command response time before performing the second read.

Figure 9. Sensor I²C Read and Write Sequences


I ² C Read: Slave responds to Master with data						
Data Byte 0 (Most Significant) Data Byte 1 (Least Significant)						
SDA S	A6 A5 A4 A3 A2	A1 A0 1 SA D7 D6 D5 D4 D3 D2 D1 D0 MA D7 D6 D5 D4 D3 D2 MN S				
SCL 📃						
I ² C	Read: Master se	ends data to Slave				
		Command Byte				
SDA S	A6 A5 A4 A3 A2	A1 A0 1 SA D7 D6 D5 D4 D3 D2 D1 D0 MA S				
SCL 🧮	nininin					
Bit	Name	Description				
Bit s	Name Start condition	Description Master pulls SDA from high to low while SCL remains high				
S	Start condition	Master pulls SDA from high to low while SCL remains high				
S S	Start condition Stop condition	Master pulls SDA from high to low while SCL remains high Master allows SDA to float from low to high while SCL remains high				
S S A6	Start condition Stop condition Address bit	Master pulls SDA from high to low while SCL remains high Master allows SDA to float from low to high while SCL remains high I ² C Slave Address is the 7 Most Significant Bits for the first transmitted byte				
S S A6 1	Start condition Stop condition Address bit Read/write bit	Master pulls SDA from high to low while SCL remains high Master allows SDA to float from low to high while SCL remains high I ² C Slave Address is the 7 Most Significant Bits for the first transmitted byte				
S S A6 1 D7	Start condition Stop condition Address bit Read/write bit Data bit	Master pulls SDA from high to low while SCL remains high Master allows SDA to float from low to high while SCL remains high I^2C Slave Address is the 7 Most Significant Bits for the first transmitted byte Read = 1, Write = 0				
S A6 1 D7 SA	Start condition Stop condition Address bit Read/write bit Data bit Slave ACK	Master pulls SDA from high to low while SCL remains high Master allows SDA to float from low to high while SCL remains high I ² C Slave Address is the 7 Most Significant Bits for the first transmitted byte Read = 1, Write = 0 Slave pulls SDA low				

After the power-up read sequence described above, the sensor will respond to each I²C read request with a 16-bit (2 byte) digital flow reading. Read requests taken faster than the Response Time (1 ms) are not guaranteed to return fresh data. The first two bits of each flow reading will be '00'.

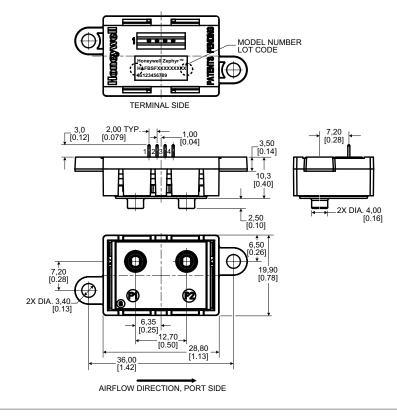
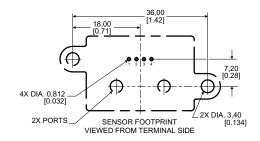

The maximum sink current on SCL or SDA is 2 mA. Therefore, if the pull-up resistors are biased by V_{DD} , and if V_{DD} reaches the maximum supply voltage of 6 V, then the pull-up resistors for SCL and SDA must be greater than 3.0 k Ω to limit the sink current to 2 mA. The typical value for SCL and SDA pull-up resistors is 4.7 k Ω (this value depends on the bus capacitance and the bus speed).

Figure 10. Mounting Dimensions (For reference only: mm [in].)


LF: Long port, fastener mount

SF: Short port, fastener mount

Mounting Footprint

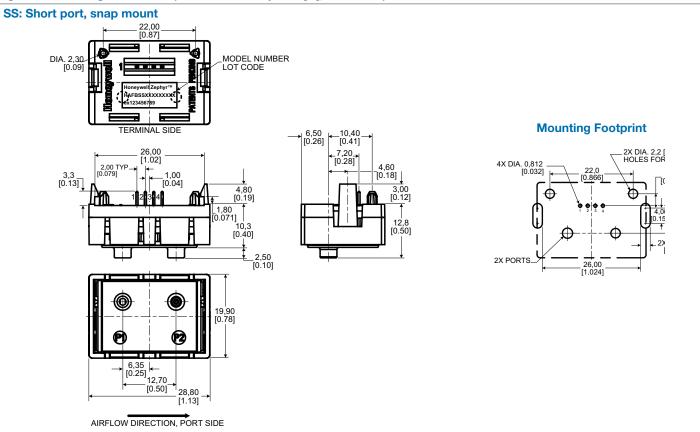


Figure 10. Mounting Dimensions (For reference only: mm [in], continued.)

Table 8. Pinout

Pin 1	Pin 2	Pin 3	Pin 4
SCL	Vsupply	ground	SDA

ADDITIONAL INFORMATION

The following associated literature is available at sensing. honeywell.com:

- Product line guide
- Product part listing/nomenclature tree
- Product range guide
- Technical Information:
 - I²C Communications with Honeywell Digital Airflow Sensors
 - Gas Media Compatibility and Correction Factors
- Installation instructions
- Application-specific information

Find out more

Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office.

To learn more about Honeywell's sensing and control products, call **+1-815-235-6847 or 1-800-537-6945**, visit **sensing.honeywell.com,** or e-mail inquiries to **info.sc@honeywell.com**

Sensing and Control Honeywell 1985 Douglas Drive North Golden Valley, MN 55422 honeywell.com

WARNING PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

WARNING MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. **The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.**

While we provide application assistance personally, through our literature and the Honeywell website, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

32308684-A-EN June 2015 2015 Honeywell International Inc. All rights reserved.

Honeywell

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Honeywell:

HAFBLF0200C2AX	HAFBSS0200C2AX	HAFBLF0200C2AX3	HAFBSF0200C2AX3	HAFBSF0200C2AX5
HAFBSS0200C2AX5	HAFBLF0050C4AX5	HAFBLF0750C4AX5	HAFBLF0050CAAX5	HAFBLF0750CAAX5
HAFBSF0200CAAX5	HAFBLF0200CAAX3	HAFBSS0200CAAX5	HAFBSF0200CAAX3	HAFBLF0200CAAX5
HAFBSS0200CAAX3	HAFBLF0200C4AX3	HAFBLF0200C4AX5	HAFBSF0200C4AX3	HAFBSF0200C4AX5
HAFBSS0200C4AX3	HAFBSS0200C4AX5	HAFBLF0100CAAX3	HAFBLF0750C4AX3	HAFBLF0100C4AX5
HAFBLF0100C4AX3	HAFBLF0750CAAX3	HAFBLF0100CAAX5	HAFBLF0400CAAX3	HAFBLF0400C4AX5
HAFBLF0400CAAX5	HAFBLF0050CAAX3	HAFBLF0050C4AX3	HAFBLF0400C4AX3	HAFBLF0200C5AX5
HAFBLF0200C6AX5	HAFBLF0200C7AX5	HAFBLF0050C5AX5	HAFBLF0050C6AX5	HAFBLF0050C7AX5
HAFBSF0200C5AX5	HAFBSF0200C6AX5	HAFBSF0200C7AX5	HAFSLF0750C4AX5	HAFBSF0400CAAX5
HAFSLF0050CAAX3	HAFSLF0100CAAX3	HAFSLF0100CAAX5	HAFSLF0200CAAX3	HAFSLF0200CAAX5
HAFSLF0400CAAX3	HAFSLF0400CAAX5	HAFSLF0750CAAX3	HAFSLF0750CAAX5	HAFBLF0050C2AX5
HAFBLF0400C5AX3	HAFBSS0200C5AX3	HAFBLF0200C5AX3	HAFSLF0050C4AX3	HAFSLF0050C4AX5
HAFSLF0050CAAX5	HAFSLF0100C4AX3	HAFSLF0100C4AX5	HAFSLF0200C4AX3	HAFSLF0200C4AX5
HAFSLF0400C4AX3	HAFSLF0400C4AX5	HAFSLF0750C4AX3		