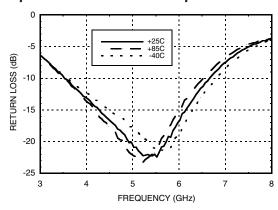
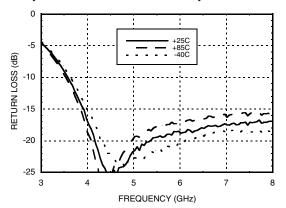
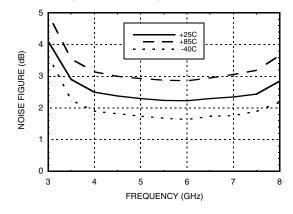
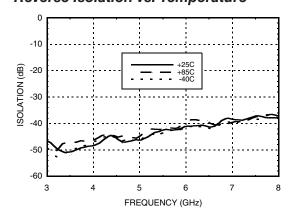


GaAs MMIC LOW NOISE AMPLIFIER, 3.5 - 7.0 GHz

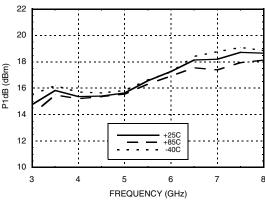

Broadband Gain & Return Loss

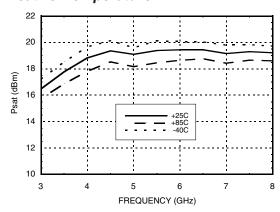

Gain vs. Temperature


Input Return Loss vs. Temperature

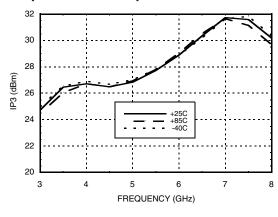

Output Return Loss vs. Temperature

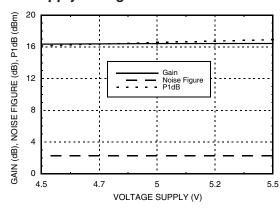
Noise Figure vs. Temperature

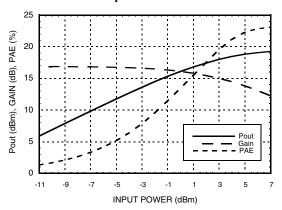

Reverse Isolation vs. Temperature



GaAs MMIC LOW NOISE AMPLIFIER, 3.5 - 7.0 GHz


P1dB vs. Temperature


Psat vs. Temperature


Output IP3 vs. Temperature

Gain, Noise Figure & Power vs. Supply Voltage @ 5.5 GHz

Power Compression @ 5.5 GHz

GaAs MMIC LOW NOISE AMPLIFIER, 3.5 - 7.0 GHz

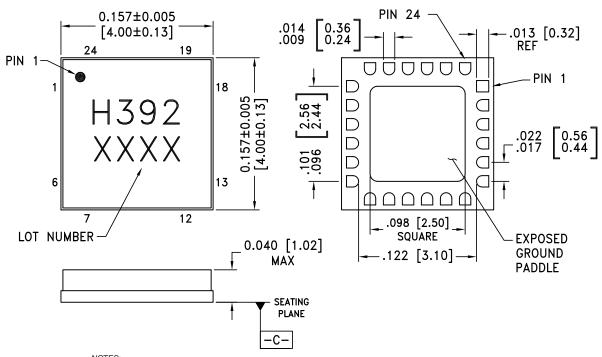
Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+7 Vdc
RF Input Power (RFIN)(Vdd = +5.0 Vdc)	+11 dBm
Channel Temperature	175 °C
Continuous Pdiss (T= 85 °C) (derate 6.5 mW/°C above 85 °C)	0.42 W
Thermal Resistance (channel to ground paddle)	155 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
+4.5	54
+5.0	55
+5.5	56

Note: Amplifier will operate over full voltage ranges shown above.



GaAs MMIC LOW NOISE AMPLIFIER, 3.5 - 7.0 GHz

Outline Drawing

BOTTOM VIEW

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA.
- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL
- 3. DIMENSIONS ARE IN INCHES (MILLIMETERS).
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, BLACK INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
- 6. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM + C -
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

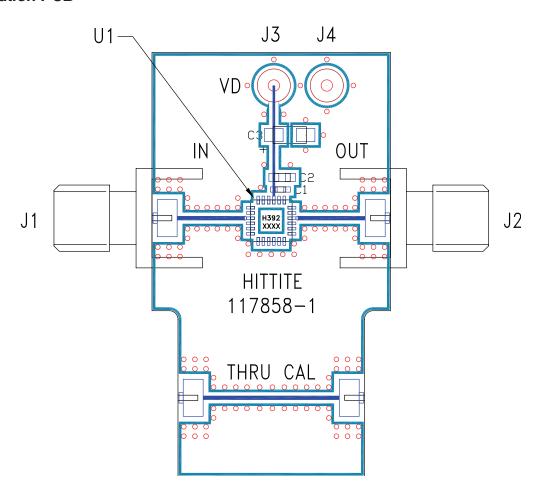
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC392LC4	Alumina, White	Gold over Nickel	MSL3 [1]	H392 XXXX

^[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

GaAs MMIC LOW NOISE AMPLIFIER, 3.5 - 7.0 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 5 - 14, 18 - 20, 22 - 24	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
2, 4, 15, 17	GND	Package bottom has an exposed metal paddle that must also be connected to RF/DC ground.	○ GND =
3	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN O——
16	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT
21	Vdd	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1000pF, and 2.2 µF are required.	Vdd - - -

GaAs MMIC LOW NOISE AMPLIFIER, 3.5 - 7.0 GHz

Evaluation PCB

List of Materials for Evaluation PCB 117490 [1]

Item	Description
J1, J2	SMA
J3 - J4	DC Pin
C1	100 pF capacitor, 0402 Pkg
C2	1,000 pF Capacitor, 0603 Pkg
С3	2.2µF Capacitor, Tantalum
U1	HMC392LC4 Amplifier
PCB [2]	117858 Evaluation PCB

^[1] Reference this number when ordering complete evlaution PCB

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350.

GaAs MMIC LOW NOISE AMPLIFIER, 3.5 - 7.0 GHz

ANALOGDEVICES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

HMC392LC4TR HMC392LC4 117490-HMC392LC4 HMC392LC4-AN HMC392LC4TR-AN HMC392LC4TR-R5