
PIN CONFIGURATION

SSOP / TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to +6.5	٧
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	- 50	mA
lcc lss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
xŌĒ	Output Enable Inputs (Active LOW)	
xDIR	Direction Control Input	
xAx	x A x Side A Inputs or 3-State Outputs	
хВх	Side B Inputs or 3-State Outputs	

FUNCTION TABLE (EACH 8-BIT SECTION)(1)

Inputs			
х <mark>ОЕ</mark>	xDIR	Outputs	
L	L	Bus B Data to Bus A	
L	Н	Bus A Data to Bus B	
Н	Х	Z	

NOTES:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Test	Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_]
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		-	_	0.8	1
lін	Input Leakage Current	Vcc = 3.6V	Vi = 0 to 5.5V	-	_	±5	μA
lıL							
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	_	±10	μA
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN \text{ or } VO \le 5.5V$		-	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		-	-0.7	-1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	<u> </u>	_	10	μA
ICCH ICCZ			$3.6 \le \text{Vin} \le 5.5 \text{V}^{(2)}$	<u> </u>	_	10	1
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	μА

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Voн	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = -6mA	2	_	
		Vcc = 2.3V	Iон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V	1	2.4	_	·
		Vcc = 3V	Iон = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range.

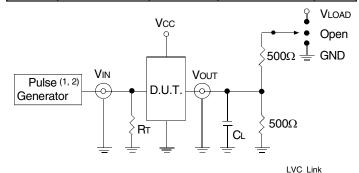
TA = - 40°C to + 85°C.

OPERATING CHARACTERISTICS, $Vcc = 3.3V \pm 0.3V$, Ta = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz	38	pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled		4	

SWITCHING CHARACTERISTICS(1)

		Vcc =	: 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tPLH	Propagation Delay	_	4.7	1	4	ns
tPHL	xAx to xBx, xBx to xAx					
tpzh	Output Enable Time	_	6.7	1.5	5.5	ns
tPZL	xOE to xAx or xBx					
tpHz	Output Disable Time	_	7.1	1.5	6.6	ns
tPLZ	xOE to xAx or xBx					
tsk(o)	Output Skew ⁽²⁾	_	_		1	ns


NOTES:

^{1.} See TEST CIRCUITS AND WAVEFORMS. $T_A = -40$ °C to + 85°C.

^{2.} Skew between any two outputs of the same package and switching in the same direction.

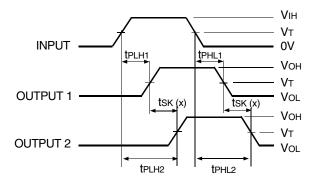
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	V
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc/2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

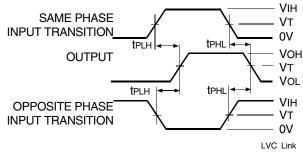

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

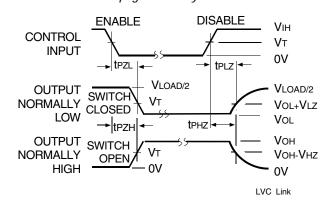
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2.5ns: tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

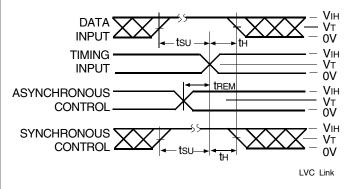


tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

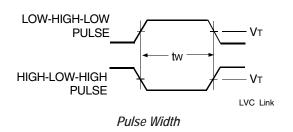

Output Skew - tsk(x)

NOTES:

- For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

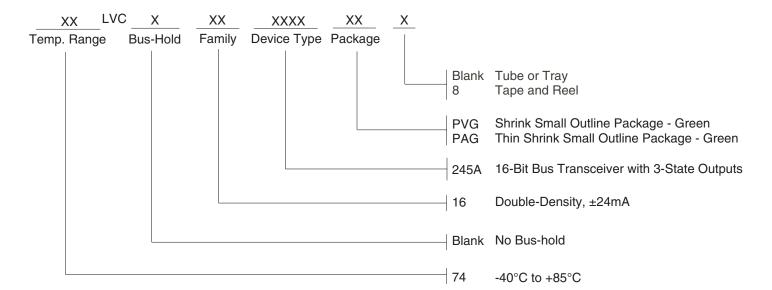


Propagation Delay



Enable and Disable Times

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

LVC Link

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

74LVC16245APAG 74LVC16245APVG 74LVC16245APAG8 74LVC16245APVG8