ABSOLUTE MAXIMUM RATINGS

IN, V _{CC} to GND	0.3V to +6V	Package Junction-to-Case	
COMP, FB, REF to GND0.3V t	io (V _{CC} + 0.3V)	Thermal Resistance (θ _{JC}) (Note 2)	32°C/W
LX to Current (Note 1)	±4.5A	Operating Temperature Range	
PGND to GNDIntern	ally Connected	MAX195_ ESA	40°C to +85°C
		Junction Temperature Range	40°C to +150°C
8-Pin SO (derate 12.2mW/°C above +70°C)	976mW	Storage Temperature Range	65°C to +150°C
Package Junction-to-Ambient		Lead Temperature (soldering, 10s)	+300°C
Thermal Resistance (θ _{JA}) (Note 2)	82°C/W		

- **Note 1:** LX has internal clamp diodes to PGND and IN. Applications that forward bias these diodes should take care not to exceed the IC's package power dissipation limits.
- **Note 2:** Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{CC} = 3.3V, PGND = GND, FB in regulation, C_{REF} = 0.1\mu F, T_A = 0^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_A = +25^{\circ}C.)$

PARAMETER	CC	ONDITIONS		MIN	TYP	MAX	UNITS
IN AND V _{CC}	<u> </u>						
IN Voltage Range				2.6		5.5	V
Supply Current	Switching with no load, L	X unconnected	$V_{IN} = 5.5V$		6	10	mA
Shutdown Current	COMP = GND				0.5	1.0	mA
V _{CC} Undervoltage Lockout Threshold	When LX starts/stops sv	witching	Vcc rising	2	2.35	2.5	V
REF			V _{CC} falling		2.25		
REF Voltage	I _{REF} = 0μA, V _{IN} = 2.6V t	to 5 5V		1.96	2	2.03	V
REF Load Regulation	$I_{REF} = 0 \mu A$, $V_{IN} = 2.0 V$			1.90	0.01	0.2	%
REF Line Regulation	$I_{REF} = 0.0040\mu A, V_{IN} = 2.6V$				0.01	0.2	%
REF Shutdown Resistance	From REF to GND, CON				12	22	Ω
COMP	THOMPTIES TO GIVE, CON	VII			12		32
	From FB to COMP VCOMP = 1.25V	MAX1951	40	60	80	μS	
COMP Transconductance		MAX1952	26.7	40	53.3		
COMP Clamp Voltage, Low	$V_{IN} = 2.6V \text{ to } 5.5V, V_{FB}$	= 1.3V		0.6	1	1.2	V
COMP Clamp Voltage, High	$V_{IN} = 2.6V \text{ to } 5.5V, V_{FB}$	= 1.1V		1.97	2.15	2.28	V
COMP Shutdown Resistance	From COMP to GND, VI	N = 2V			15	30	Ω
COMP Charteless Through als	\\/\ __\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	o da a la forción	COMP rising		0.6	1	V
COMP Shutdown Threshold	When LX starts/stops sv	witching	COMP falling	0.17	0.4		V
COMP Startup Current	COMP = GND			15	25	40	μΑ
FB							
Output Voltage Range (MAX1951)	When using external feedback resistors to drive FB		0.8		V_{IN}	V	
FB Regulation Voltage	$V_{COMP} = 1V \text{ to } 2V, V_{IN}$	y = 2.6V to 5.5V	MAX1951	0.787	0.795	0.803	V
(Error Amp Only)	$I_{OUT} = 0 \text{ to } 1.5A$ V_{IN}	y = 2.8V to 5.5V	MAX1952	1.773	1.8	1.827	V
FB Input Resistance			MAX1952	13	18	28	kΩ
FB Input Bias Current			MAX1951	-0.1		+0.1	μΑ

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = V_{CC} = 3.3V, PGND = GND, FB in regulation, C_{REF} = 0.1 \mu F, T_A = 0 ^{\circ}C to +85 ^{\circ}C$, unless otherwise noted. Typical values are at TA = +25 ^{\circ}C.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
LX			•			
	V _{IN} = 5V			116		
LX On-Resistance, PMOS	$V_{IN} = 3.3V$			140	266	mΩ
	V _{IN} = 2.6V			163		
	V _{IN} = 5V			93		
LX On-Resistance, NMOS	$V_{IN} = 3.3V$			106	206	mΩ
	V _{IN} = 2.6V		116			
LX Current-Sense Transimpedance	From LX to COMP, V _{IN} = 2.6V to 5.5V		0.16	0.24	0.35	Ω
LV O	Duty cycle = 100%, V _{IN} = 2.6V to 5.5V	High side	2.4	3.1	4.5	
LX Current-Limit Threshold		Low side		-0.6		A
LV Looke no Current	i Vini = 5.5V	$V_{LX} = 5.5V$			10	μΑ
LX Leakage Current		LX = GND	-10			
LX Switching Frequency	V _{IN} = 2.6V to 5.5V		0.85	1	1.1	MHz
LX Maximum Duty Cycle	$V_{COMP} = 1.5V$, LX = Hi-Z, $V_{IN} = 2.6V$ to	5.5V	100			%
LX Minimum Duty Cycle	V _{COMP} = 1V, V _{IN} = 2.6V to 5.5V			15		%
THERMAL CHARACTERISTIC	s					
Thermal-Shutdown Threshold	When I V starts/stans quitabing	T _J rising		160		°C
mermal-onutuown mreshold	When LX starts/stops switching	T _J falling		145		

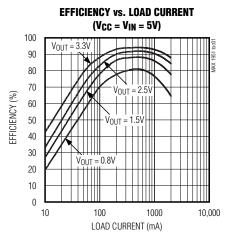
ELECTRICAL CHARACTERISTICS

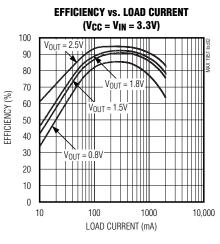
 $(V_{IN} = V_{CC} = 3.3V, PGND = GND, FB in regulation, C_{REF} = 0.1 \mu F, T_A = -40 ^{\circ}C to +85 ^{\circ}C, unless otherwise noted.) (Note 3)$

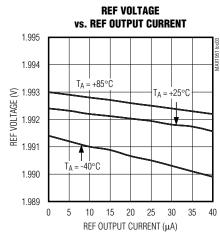
PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IN AND V _{CC}	•					
IN Voltage Range			2.6		5.5	V
Supply Current	Switching with no load, V _{IN} = 5.5V				10	mA
Shutdown Current	COMP = GND	COMP = GND			1	mA
V _{CC} Undervoltage Lockout	When I V starta/atons awitching	V _{CC} rising			2.5	V
Threshold	When LX starts/stops switching	V _{CC} falling	1.95			V
REF						
REF Voltage	$I_{REF} = 0\mu A$, $V_{IN} = 2.6V$ to 5.5V		1.95		2.03	V
REF Load Regulation	$I_{REF} = 0$ to $40\mu A$, $V_{IN} = 2.6V$ to $5.5V$				0.2	%
REF Line Regulation	$I_{REF} = 20\mu A$, $V_{IN} = 2.6V$ to 5.5V				0.4	%
REF Shutdown Resistance	From REF to GND, COMP = GND				22	Ω

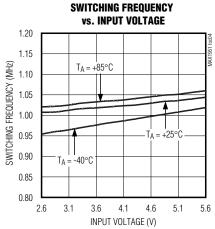
ELECTRICAL CHARACTERISTICS (continued)

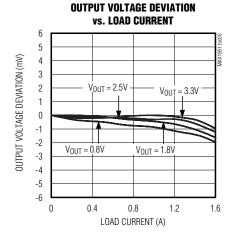
 $(V_{IN} = V_{CC} = 3.3V, PGND = GND, FB in regulation, C_{REF} = 0.1 \mu F, T_A = -40 ^{\circ}C to +85 ^{\circ}C, unless otherwise noted.)$ (Note 3)

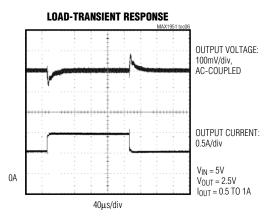

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
COMP						
COMP Transponductors	From FR to COMP Vacuus 1 25V	MAX1951	40		80	
COMP Transconductance	From FB to COMP, V _{COMP} = 1.25V	MAX1952	26.7		53.3	μS
COMP Clamp Voltage, Low	$V_{IN} = 2.6V$ to 5.5V, $V_{FB} = 1.3V$		0.6		1.2	V
COMP Clamp Voltage, High	$V_{IN} = 2.6V$ to 5.5V, $V_{FB} = 1.1V$		1.97		2.28	V
COMP Shutdown Resistance	From COMP to GND, V _{IN} = 2V				30	Ω
COMP Charteless There I I I I	Mhan I Vatarta/stana auritahina	COMP rising			1.2	V
COMP Shutdown Threshold	When LX starts/stops switching	COMP falling	0.17			- V
COMP Startup Current	COMP = GND		14		40	μΑ
FB						
Output Voltage Range (MAX1951)	When using external feedback resistors to drive FB		0.8		VIN	V
FB Regulation Voltage	V	MAX1951	0.783		0.807	V
(Error Amp Only)	$V_{COMP} = 1V \text{ to } 2V, V_{IN} = 2.6V \text{ to } 5.5V$	MAX1952	1.764		1.836	
FB Input Resistance	From FB to GND	MAX1952	10		30	kΩ
FB Input Bias Current		MAX1951	-0.1		+0.1	μΑ
LX (Note 4)						
LX On-Resistance, PMOS					266	mΩ
LX On-Resistance, NMOS					206	mΩ
LX Current Sense	From LX to COMP, V _{IN} = 2.6V to 5.5V		0.16		0.35	Ω
LX Current-Limit Threshold	Duty cycle = 100%, V _{IN} = 2.6V to 5.5V, high side		2.4		4.5	Α
LVI saksas Current	V 5 5 V	$V_{LX} = 5.5V$			10	
LX Leakage Current	$V_{IN} = 5.5V$ $LX = GI$		-10			μA
LX Switching Frequency	V _{IN} = 2.6V to 5.5V		0.8		1.1	MHz
LX Maximum Duty Cycle	$V_{COMP} = 1.5V$, $LX = Hi-Z$, $V_{IN} = 2.6V$ to	5.5V	100			%

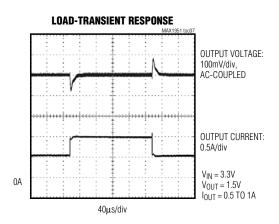

Note 3: Specifications to -40°C are guaranteed by design and not production tested.

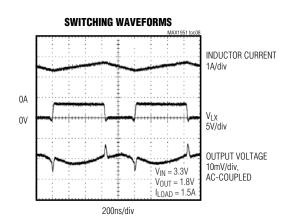

Note 4: The LX output is designed to provide 2.4A RMS current.

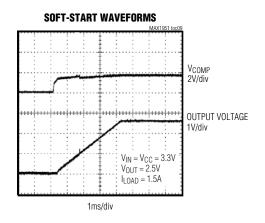

Typical Operating Characteristics

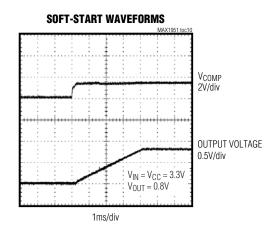

(Typical values are at $V_{IN} = V_{CC} = 5V$, $V_{OUT} = 1.5V$, $I_{OUT} = 1.5A$, and $T_A = +25$ °C, unless otherwise noted. See Figure 2.)

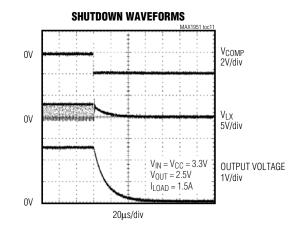


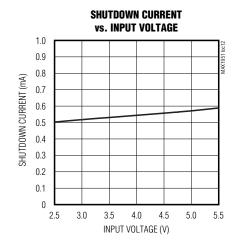









_Typical Operating Characteristics (continued)


(Typical values are at $V_{IN} = V_{CC} = 5V$, $V_{OUT} = 1.5V$, $I_{OUT} = 1.5A$, and $T_A = +25^{\circ}C$, unless otherwise noted. See Figure 2.)

Pin Description

	1	T
PIN	NAME	FUNCTION
1	Vcc	Supply Voltage. Bypass V_{CC} with $0.1\mu F$ capacitor to ground and 10Ω resistor to IN.
2	REF	Reference Bypass. Bypass REF with 0.1µF capacitor to ground.
3	GND	Ground
4	FB	Feedback Input. Connect FB to the output to regulate using the internal feedback resistor string (MAX1952). Connect an external resistor-divider from the output to FB and GND to set the output to a voltage between 0.8V and V _{IN} (MAX1951).
5	COMP	Regulator Compensation. Connect series RC network from COMP to GND. Pull COMP below 0.17V to shut down the regulator. COMP = GND when V _{IN} is less than 2.25V (see the Compensation and Shutdown Mode section)
6	PGND	Power Ground. Internally connected to GND. Keep power ground and signal ground planes separate.
7	LX	Inductor Connection. Connect an inductor between LX and the regulator output.
8	IN	Power-Supply Voltage. Input voltage range from 2.6V to 5.5V. Bypass IN with a $10\mu F$ (min) ceramic capacitor to GND and a 10Ω resistor to VCC.

Detailed Description

The MAX1951/MAX1952 high-efficiency switching regulators are small, simple, DC-to-DC step-down converters capable of delivering up to 2A of output current. The devices operate in pulse-width modulation (PWM) at a fixed frequency of 1MHz from a 2.6V to 5.5V input voltage and provide an output voltage from 0.8V to VIN, making the MAX1951/MAX1952 ideal for on-board postregulation applications. The high switching frequency allows for the use of smaller external components, and internal synchronous rectifiers improve efficiency and eliminate the typical Schottky free-wheeling diode. Using the onresistance of the internal high-side MOSFET to sense switching currents eliminates current-sense resistors, further improving efficiency and cost. The MAX1951 total output error over load, line, and temperature (0°C to +85°C) is less than 1%.

Controller Block Function

The MAX1951/MAX1952 step-down converters use a PWM current-mode control scheme. An open-loop comparator compares the integrated voltage-feedback signal against the sum of the amplified current-sense signal and the slope compensation ramp. At each rising edge of the internal clock, the internal high-side MOSFET turns on until the PWM comparator trips. During this on-time, current ramps up through the inductor, sourcing current to the output and storing energy in the inductor. The currentmode feedback system regulates the peak inductor current as a function of the output voltage error signal. Since the average inductor current is nearly the same as the peak inductor current (<30% ripple current), the circuit acts as a switch-mode transconductance amplifier. To preserve inner-loop stability and eliminate inductor staircasing, a slope-compensation ramp is summed into the main PWM comparator. During the second half of the cycle, the internal high-side p-channel MOSFET turns off, and the internal low-side n-channel MOSFET turns on. The inductor releases the stored energy as its current ramps down while still providing current to the output. The output capacitor stores charge when the inductor current exceeds the load current, and discharges when the inductor current is lower, smoothing the voltage across the load. Under overload conditions, when the inductor current exceeds the current limit (see the Current Limit section), the high-side MOSFET does not turn on at the rising edge of the clock and the low-side MOSFET remains on to let the inductor current ramp down.

Current Sense

An internal current-sense amplifier produces a current signal proportional to the voltage generated by the high-side MOSFET on-resistance and the inductor current (RDS(ON) x ILx). The amplified current-sense signal and the internal slope compensation signal are summed together into the comparator's inverting input. The PWM comparator turns off the internal high-side MOSFET when this sum exceeds the output from the voltage-error amplifier.

Current Limit

The internal high-side MOSFET has a current limit of 3.1A (typ). If the current flowing out of LX exceeds this limit, the high-side MOSFET turns off and the synchronous rectifier turns on. This lowers the duty cycle and causes the output voltage to droop until the current limit is no longer exceeded. A synchronous rectifier current limit of -0.6A (typ) protects the device from current flowing into LX. If the negative current limit is exceeded, the synchronous rectifier turns off, forcing the inductor current to flow

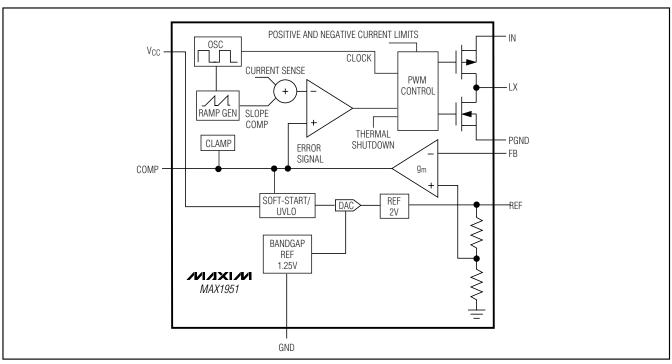


Figure 1. Functional Diagram

through the high-side MOSFET body diode, back to the input, until the beginning of the next cycle or until the inductor current drops to zero. The MAX1951/MAX1952 utilize a pulse-skip mode to prevent overheating during short-circuit output conditions. The device enters pulse-skip mode when the FB voltage drops below 300mV, limiting the current to 3A (typ) and reducing power dissipation. Normal operation resumes upon removal of the short-circuit condition.

Vcc Decoupling

Due to the high switching frequency and tight output tolerance (1%), decouple VCC with a 0.1µF capacitor connected from VCC to GND, and a 10 Ω resistor connected from VCC to IN. Place the capacitor as close to VCC as possible.

Soft-Start

The MAX1951/MAX1952 employ digital soft-start circuitry to reduce supply inrush current during startup conditions. When the device exits undervoltage lockout (UVLO), shutdown mode, or restarts following a thermal-overload event, or the external pulldown on COMP is released, the digital soft-start circuitry slowly ramps up the voltages at REF and FB (see the Soft-Start Waveforms in the *Typical Operating Characteristics*).

Undervoltage Lockout

If VCC drops below 2.25V, the UVLO circuit inhibits switching. Once VCC rises above 2.35V, the UVLO clears, and the soft-start sequence activates.

Compensation and Shutdown Mode

The output of the internal transconductance voltage error amplifier connects to COMP. The normal operation voltage for COMP is 1V to 2.2V. To shut down the MAX1951/MAX1952, use an NPN bipolar junction transistor or a very low output capacitance open-drain MOSFET to pull COMP to GND. Shutdown mode causes the internal MOSFETs to stop switching, forces LX to a high-impedance state, and shorts REF to GND. Release COMP to exit shutdown and initiate the soft-start sequence.

Thermal-Overload Protection

Thermal-overload protection limits total power dissipation in the device. When the junction temperature exceeds $T_J = +160^{\circ}C$, a thermal sensor forces the device into shutdown, allowing the die to cool. The thermal sensor turns the device on again after the junction temperature cools by 15°C, resulting in a pulsed output during continuous overload conditions. Following a thermal-shutdown condition, the soft-start sequence begins.

8 ______ /I/XI/N

Design Procedure

Output Voltage Selection: Adjustable (MAX1951) or Preset (MAX1952)

The MAX1951 provides an adjustable output voltage between 0.8V and V_{IN}. Connect FB to output for 0.8V output. To set the output voltage of the MAX1951 to a voltage greater than V_{FB} (0.8V typ), connect the output to FB and GND using a resistive divider, as shown in Figure 2a. Choose R2 between $2k\Omega$ and $20k\Omega$, and set R3 according to the following equation:

$$R3 = R2 \times [(V_{OUT}/V_{FB}) - 1]$$

The MAX1951 PWM circuitry is capable of a stable minimum duty cycle of 18%. This limits the minimum output voltage that can be generated to 0.18 \times V_{IN}. Instability may result for V_{IN}/V_{OUT} ratios below 0.18.

The MAX1952 provides a preset output voltage. Connect the output to FB, as shown in Figure 2b.

Output Inductor Design

Use a 2µH inductor with a minimum 2A-rated DC current for most applications. For best efficiency, use an inductor with a DC resistance of less than $20m\Omega$ and a saturation current greater than 3A (min). See Table 2 for recommended inductors and manufacturers. For most designs, derive a reasonable inductor value (LINIT) from the following equation:

LINIT = VOUT × (VIN - VOUT)/(VIN × LIR × IOUT(MAX) × fSW) where fSW is the switching frequency (1MHz typ) of the oscillator. Keep the inductor current ripple percentage LIR between 20% and 40% of the maximum load current for the best compromise of cost, size, and performance. Calculate the maximum inductor current as:

$$I_{L(MAX)} = (1 + LIR/2) \times I_{OUT(MAX)}$$

Check the final values of the inductor with the output ripple voltage requirement. The output ripple voltage is given by:

 $\label{eq:VRIPPLE} VRIPPLE = VOUT \times (VIN - VOUT) \times ESR / (VIN \times LFINAL \times fSW) \\ where ESR is the equivalent series resistance of the output capacitors.$

Input Capacitor Design

The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit's switching. The input capacitor must meet the ripple current requirement (I_{RMS}) imposed by the switching currents defined by the following equation:

$$I_{RMS} = (1/V_{IN}) \times \sqrt{(I_{OUT}^2 \times V_{OUT} \times (V_{IN} - V_{OUT}))}$$

For duty ratios less than 0.5, the input capacitor RMS current is higher than the calculated current. Therefore, use a +20% margin when calculating the RMS current at lower duty cycles. Use ceramic capacitors for their low ESR, equivalent series inductance (ESL), and lower cost. Choose a capacitor that exhibits less than 10°C temperature rise at the maximum operating RMS current for optimum long-term reliability.

After determining the input capacitor, check the input ripple voltage due to capacitor discharge when the high-side MOSFET turns on. Calculate the input ripple voltage as follows:

 $V_{IN_RIPPLE} = (I_{OUT} \times V_{OUT})/(f_{SW} \times V_{IN} \times C_{IN})$ Keep the input ripple voltage less than 3% of the input voltage.

Output Capacitor Design

The key selection parameters for the output capacitor are capacitance, ESR, ESL, and the voltage rating requirements. These affect the overall stability, output ripple voltage, and transient response of the DC-to-DC converter. The output ripple occurs due to variations in the charge stored in the output capacitor, the voltage drop due to the capacitor's ESR, and the voltage drop due to the capacitor's ESL. Calculate the output voltage ripple due to the output capacitance, ESR, and ESL as:

VRIPPLE = VRIPPLE(C) + VRIPPLE(ESR) + VRIPPLE(ESL) where the output ripple due to output capacitance, ESR, and ESL is:

 $V_{RIPPLE(C)} = I_{P-P}/(8 \times C_{OUT} \times f_{SW})$ $V_{RIPPLE(ESR)} = I_{P-P} \times ESR$

 $V_{RIPPLE(ESL)} = (I_{P-P}/t_{ON}) \times ESL \text{ or } (I_{P-P}/t_{OFF}) \times ESL,$ whichever is greater

and IP-P the peak-to-peak inductor current is:

$$I_{P-P} = [(V_{IN} - V_{OUT})/f_{SW} \times L)] \times V_{OUT}/V_{IN}$$

Use these equations for initial capacitor selection, but determine final values by testing a prototype or evaluation circuit. As a rule, a smaller ripple current results in less output voltage ripple. Since the inductor ripple current is a factor of the inductor value, the output voltage ripple decreases with larger inductance. Use ceramic capacitors for their low ESR and ESL at the switching frequency of the converter. The low ESL of ceramic capacitors makes ripple voltages negligible. Load transient response depends on the selected output capacitor. During a load transient, the output instantly changes by ESR x ILOAD. Before the controller can respond, the output deviates further, depending on the inductor and output capacitor values. After a short time (see the Load Transient Response graph in the

Typical Operating Characteristics), the controller responds by regulating the output voltage back to its nominal state. The controller response time depends on the closed-loop bandwidth. A higher bandwidth yields a faster response time, thus preventing the output from deviating further from its regulating value.

Compensation Design

The double pole formed by the inductor and output capacitor of most voltage-mode controllers introduces a large phase shift, that requires an elaborate compensation network to stabilize the control loop. The MAX1951/MAX1952 utilize a current-mode control scheme that regulates the output voltage by forcing the required current through the external inductor, eliminating the double pole caused by the inductor and output capacitor, and greatly simplifying the compensation network. A simple type 1 compensation with single compensation resistor (R₁) and compensation capacitor (C₂) creates a stable and high-bandwidth loop.

An internal transconductance error amplifier compensates the control loop. Connect a series resistor and capacitor between COMP (the output of the error amplifier) and GND to form a pole-zero pair. The external inductor, internal current-sensing circuitry, output capacitor, and the external compensation circuit determine the loop system stability. Choose the inductor and output capacitor based on performance, size, and cost. Additionally, select the compensation resistor and capacitor to optimize control-loop stability. The component values shown in the typical application circuit (Figure 2) yield stable operation over a broad range of input-to-output voltages.

The basic regulator loop consists of a power modulator, an output feedback divider, and an error amplifier. The power modulator has DC gain set by gmc x RLOAD, with a pole-zero pair set by RLOAD, the output capacitor (COUT), and its ESR. The following equations define the power modulator:

Modulator gain:

10

 $GMOD = \Delta VOUT/\Delta VCOMP = gmc \times RLOAD$

Modulator pole frequency:

 $fpMOD = 1 / (2 \times \pi \times COUT \times (RLOAD + ESR))$

Modulator zero frequency:

 $fzesr = 1/(2 \times \pi \times Cout \times ESR)$

where, RLOAD = VOUT/IOUT(MAX), and gmc = 4.2S.

The feedback divider has a gain of $G_{FB} = V_{FB} / V_{OUT}$, where V_{FB} is equal to 0.8V. The transconductance error amplifier has a DC gain, $G_{EA(DC)}$, of 70dB. The compensation capacitor, C_2 , and the output resistance of the error amplifier, R_{OEA} (20M Ω), set the dominant

pole. C_2 and R_1 set a compensation zero. Calculate the dominant pole frequency as:

 $fpEA = 1/(2\pi x C_C \times R_{OEA})$

Determine the compensation zero frequency is:

 $fzEA = 1/(2\pi \times C_C \times R_C)$

For best stability and response performance, set the closed-loop unity-gain frequency much higher than the modulator pole frequency. In addition, set the closed-loop crossover unity-gain frequency less than, or equal to, 1/5 of the switching frequency. However, set the maximum zero crossing frequency to less than 1/3 of the zero frequency set by the output capacitance and its ESR when using POSCAP, SPCAP, OSCON, or other electrolytic capacitors. The loop-gain equation at the unity-gain frequency is:

GEA(fc) x GMOD(fc) x VFB/VOUT = 1

where $G_{EA(fc)} = gm_{EA} \times R_1$, and $G_{MOD(fc)} = gmc \times R_{LOAD} \times f_{PMOD}/f_{C}$, where $gm_{EA} = 60\mu S$.

R₁ calculated as:

 $R_1 = V_{OUT} \times K/(gmea \times V_{FB} \times G_{MOD(fc)})$

where K is the correction factor due to the extra phase introduced by the current loop at high frequencies (>100kHz). K is related to the value of the output capacitance (see Table 1 for values of K vs. C). Set the error-amplifier compensation zero formed by R₁ and C₂ at the modulator pole frequency at maximum load. C₂ is calculated as follows:

$$C_2 = (V_{OUT} \times C_{OUT}/(R_1 \times I_{OUT}(MAX)))$$

As the load current decreases, the modulator pole also decreases; however, the modulator gain increases accordingly, resulting in a constant closed-loop unity-gain frequency. Use the following numerical example to calculate R_1 and C_2 values of the typical application circuit of Figure 2a.

Table 1. K Value

		DESCRIPTION
Cout (µF)	K	Values are for output inductance from 1.2µH
10		to 2.2µH. Do not use output inductors larger
22	0.47	than 2.2 μ H. Use f _C = 200kHz to calculate R ₁ .

 $V_{OUT} = 1.5V$

IOUT(MAX) = 1.5A

 $COUT = 10\mu F$

 $RESR = 0.010\Omega$

 $gm_{EA} = 60\mu S$

gmc = 4.2S

 $f_{SWITCH} = 1MHz$

 $R_{LOAD} = V_{OUT}/I_{OUT}(MAX) = 1.5V/1.5 A = 1\Omega$

 $fp_{MOD} = [1/(2\pi \times C_{OUT} \times (R_{LOAD} + R_{ESR})]$

= $[1/(2 \times \pi \times 10 \times 10^{-6} \times (1 + 0.01)] = 15.76$ kHz.

 $fzesr = [1/(2\pi \times Cout Resr)]$

= $[1/(2 \times \pi \times 10 \times 10^{-6} \times 0.01)] = 1.59$ MHz.

For $2\mu H$ output inductor, pick the closed-loop unity-gain crossover frequency (fc) at 200kHz. Determine the power modulator gain at fc:

 $GMOD(fc) = gmc \times RLOAD \times fpMOD/fc = 4.2 \times 1 \times 15.76kHz/200kHz = 0.33$

then:

 $R_1 = V_O \times K/(gme_A \times V_{FB} \times G_{MOD(fc)}) = (1.5 \times 0.55)/$ $(60 \times 10^{-6} \times 0.8 \times 0.33) \approx 51.1 k\Omega (1\%)$

> C₂ = $(VOUT \times COUT)/(R \times IOUT(max))$ = $(1.5 \times 10 \times 10^{-6})/(51.1k \times 1.5)$ $\approx 196pF$, choose 220pF, 10%

_Applications Information

PCB Layout Considerations

Careful PCB layout is critical to achieve clean and stable operation. The switching power stage requires particular attention. Follow these guidelines for good PCB layout:

- Place decoupling capacitors as close to the IC as possible. Keep power ground plane (connected to PGND) and signal ground plane (connected to GND) separate.
- 2) Connect input and output capacitors to the power ground plane; connect all other capacitors to the signal ground plane.

- Keep the high-current paths as short and wide as possible. Keep the path of switching current (C1 to IN and C1 to PGND) short. Avoid vias in the switching paths.
- 4) If possible, connect IN, LX, and PGND separately to a large copper area to help cool the IC to further improve efficiency and long-term reliability.
- 5) Ensure all feedback connections are short and direct. Place the feedback resistors as close to the IC as possible.
- 6) Route high-speed switching nodes away from sensitive analog areas (FB, COMP).

Thermal Considerations

The MAX1951 uses a fused-lead 8-pin SO package with a RTHJC rating of 32°C/W. The MAX1951 EV kit layout is optimized for 1.5A. The typical application circuit shown in Figure 2c was tested with the existing MAX1951 EV kit layout at +85°C ambient temperature, and GND lead temperature was measured at +113°C for a typical device. The estimated junction temperature was +138°C. Thermal performance can be further improved with one of the following options:

- Increase the copper areas connected to GND, LX, and IN.
- 2) Provide thermal vias next to GND and IN, to the ground plane and power plane on the back side of PCB, with openings in the solder mask next to the vias to provide better thermal conduction.
- 3) Provide forced-air cooling to further reduce case temperature.

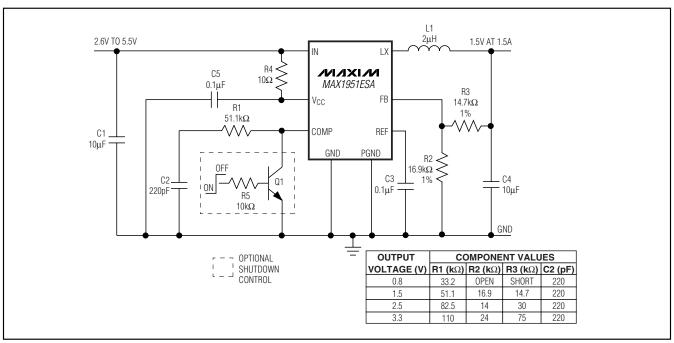


Figure 2a. MAX1951 Adjustable Output Typical Application Circuit

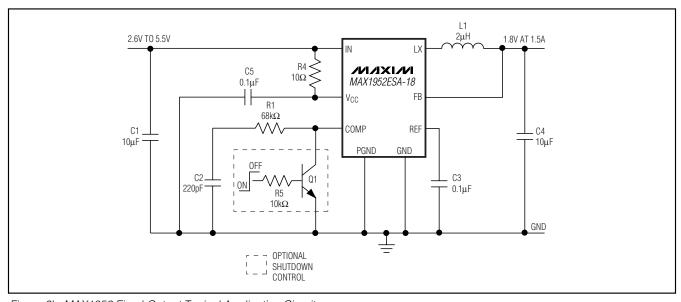


Figure 2b. MAX1952 Fixed-Output Typical Application Circuit

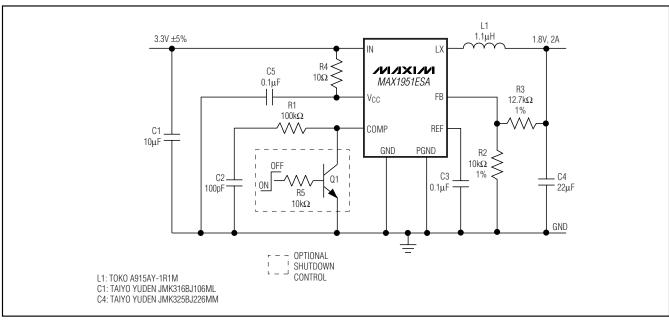


Figure 2c. MAX1951 Typical Application Circuit with 2A Output

Table 2. External Components List

COMPONENT (FIGURE 2)	FUNCTION	DESCRIPTION
L1	Output inductor	2μH ±20% inductor Sumida CDRH4D28-1R8 or Toko A915AY-2R0M
C1	Input filtering capacitor	10µF ±20%, 6.3V X5R capacitor Taiyo Yuden JMK316BJ106ML or TDK C3216X5R0J106MT
C2	Compensation capacitor	220pF ±10%, 50V capacitor Murata GRM39X7R221K050AD or Taiyo Yuden UMK107CH221KZ
СЗ	Reference bypass capacitor	0.1µF ±20%, 16V X7R capacitor Taiyo Yuden EMK107BJ104MA, TDK C1608X7R1C104K, or Murata GRM 39X7R104K016AD
C4	Output filtering capacitor	10µF ±20%, 6.3V X5R capacitor Taiyo Yuden JMK316BJ106ML or TDK C3216X5R0J106MT
C5	V _{CC} bypass capacitor	0.1µF ±20%, 16V X7R capacitor Taiyo Yuden EMK107BJ104MA, TDK C1608X7R1C104K, or Murata GRM 39X7R104K016AD
R1	Loop compensation resistor	Figure 2a
R2	Feedback resistor	Figure 2a
R3	Feedback resistor	Figure 2a
R4	Bypass resistor	10Ω ±5% resistor
R5	Shutdown transistor base current bias (optional)	10kΩ ±5% resistor
Q1	Shutdown transistor (optional)	NPN bipolar junction transistor Fairchild MMBT3904 Zetex FMMT413

Table 3. Component Suppliers

MANUFACTURER	PHONE	FAX
Murata	650-964-6321	650-964-8165
Sumida	847-545-6700	847-545-6720
Taiyo Yuden	800-348-2496	847-925-0899
TDK	847-803-6100	847-803-6296
Toko	1-800-PIK-TOKO	408-943-9790

Chip Information

PROCESS: BiCMOS

_Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
8 SO	S8-F6	<u>21-0041</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/02	Initial release	
1	8/03	Updated data sheet title, Features, Typical Operating Circuit, Detailed Description and added Thermal Considerations section.	1–15
2	6/09	Revised Ordering Information, Electrical Characteristics, Typical Operating Characteristics, Pin Description, and the Compensation Design section.	1–7, 10, 11, 14

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX1951ESA+ MAX1951ESA+W MAX1951ESA+TW MAX1951ESA+T MAX1952ESA+ MAX1952ESA+T