ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND unless otherwise noted.) Supply Voltages

eapply tonagee	
V _{CC}	0.3V to +4V
V+ (Note 1)	0.3V to +7V
V- (Note 1)	
V+ to V- (Note 1)	13V
Logic Input Voltages	
M0, M1, M2, DCE/DTE, T_IN	-0.3V to +6V
Logic Output Voltages	
Ř_OUT	-0.3V to (V _{CC} + 0.3V)
Short-Circuit Duration	Continuous
V+ to V- (Note 1) Logic Input Voltages M0, M1, M2, DCE/DTE, T_IN Logic Output Voltages R_OUT	+0.3V to -7V 13V 0.3V to +6V 0.3V to (V _{CC} + 0.3V)

Transmitter Outputs
T_OUT15V to +15V
Short-Circuit Duration60s
Receiver Inputs
R_IN15V to +15V
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
28-Pin SSOP (derate 11.1mW/°C above +70°C)889mW
Operating Temperature Range
MAX3171CAI/MAX3173CAI0°C to +70°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 3.3V ±5%; C1 = C2 = 1 μ F, C3 = C4 = C5 = 3.3 μ F, and T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{CC} = +3.3V, T_A = +25°C.) (Note 2)

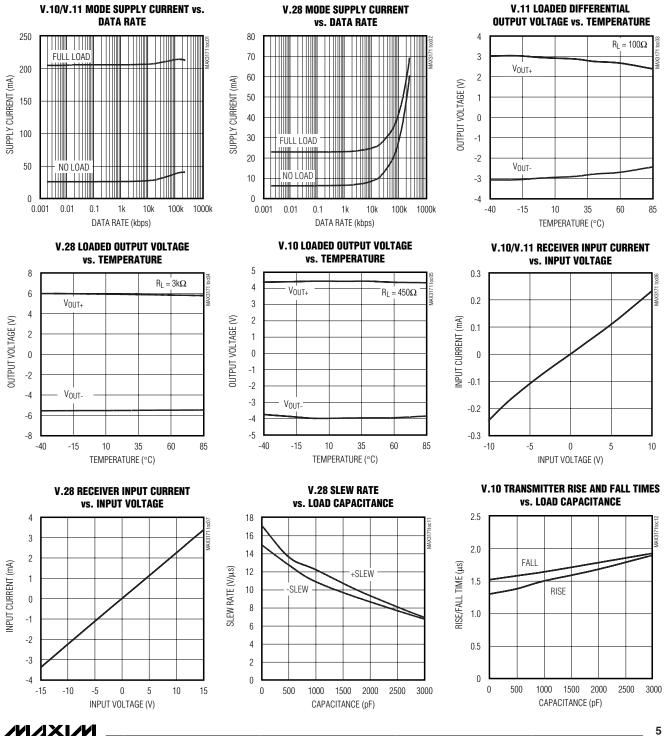
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS				
DC CHARACTERISTICS										
Supply Current		V.11/V.10 modes		220	300					
		V.11/V.10 modes (no load)		6	23					
(DCE Mode, Digital Inputs = GND or V _{CC} , Transmitter	ICC	V.28 mode		24	40	mA				
Outputs Static)		V.28 mode (no load)		6	23					
		No-cable mode		2	8	1				
		V.11/V.10 modes (no load)		20						
latera d Device Dissis stice	D	V.11/V.10 modes (full load)		450		mW				
Internal Power Dissipation	PD	V.28 mode (full load)		40						
		No-cable mode		6.6		1				
V+ Output Voltage		V.11/V.10 modes (no load)	4.4							
	V+	V.11/V.10 modes (full load)	4.2							
	V+	V.28 mode	5.55			- V				
		No-cable mode		4.6						
		V.11/V.10 modes (no load)			-4.0					
	V-	V.11/V.10 modes (full load)			-3.8					
V- Output Voltage	V-	V.28 mode			V					
		No-cable mode		-4.2		1				
Charge-Pump Enable Time		Delay until V+ and V- specifications met		1		ms				
LOGIC INPUTS (M0, M1, M2, D	DCE/DTE, T_IN)								
Input High Voltage	VIH		2.0			V				
Input Low Voltage	VIL				0.8	V				
		T_IN	±1							
Logic Input Current	IIH, IIL	M0, M1, M2, DCE/ $\overline{\text{DTE}}$ = V _{CC}		±1						
		M0, M1, M2, DCE/DTE = GND	30	50	100]				

ELECTRICAL CHARACTERISTICS (continued) (V_{CC} = $3.3V \pm 5\%$; C1 = C2 = 1µF, C3 = C4 = C5 = 3.3μ F, and T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{CC}

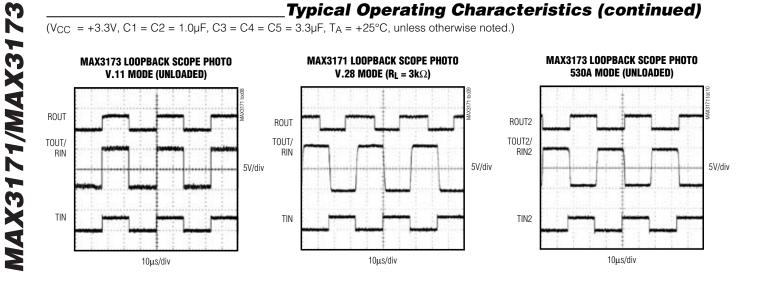
PARAMETER	SYMBOL		MIN	ТҮР	MAX	UNITS	
LOGIC OUTPUTS (R_OUT)				•			<u>.</u>
Output High Voltage	VOH	ISOURCE = 1.0	ЭmА	Vcc - 1.0)		V
Output Low Voltage	Vol	$I_{SINK} = 1.6 mA$	ł			0.4	V
Rise or Fall Time	t _r , t _f	10% to 90%,		15		ns	
Output Leakage Current		R_OUT = GN	ID	30	50	100	
(Receiver Output Three-Stated)		R_OUT = V _{CC})			±1	μA
TRANSMITTER OUTPUTS							
Output Leakage Current	IZ	$-0.25V \le V_{OU}$	$T \le +0.25V$, power off or le	-100		100	μA
		V.28			240		
Data Rate		V.10			115		kbps
		V.11			10		Mbps
Receiver Glitch Rejection		Minimum puls	se width passed	5			
(MAX3171 only)	Minimum pulse width rejected			15	μs		
Receiver Input Resistance	R _{IN}		+10V, VA or VB grounded,	20	40		ΚΩ
		-15V ≤ Va ≤ +	15V, V.28 mode	3	5	7	
			V.10/V.28		64		
Data Rate		MAX3171	V.11		64		kbps
			V.10/V.28		240		
		MAX3173	V.11		10		Mbps
V.11 TRANSMITTER				•			
Unloaded Differential Output Voltage	Vodo	R = 1.95kΩ, F	igure 1	4.0		6.0	V
Loaded Differential Output Voltage	V _{ODL}	R = 50Ω , Figure 1		0.5 × V _{OI}	00		V
Change in Magnitude of Output Differential Voltage	ΔV_{OD}	$R = 50\Omega$, Figure 1				0.2	V
Common-Mode Output Voltage	Voc	$R = 50\Omega$, Figu	ure 1			3.0	V
Change in Magnitude of Output Common-Mode Voltage	ΔV _{OC}	R = 50Ω, Figu	ıre 1			0.2	V
Short-Circuit Current	ISC	T_OUTA/B =	GND		60	150	mA
Rise or Fall Time	t _r , t _f	10% to 90%,	Figure 2		10	25	ns
Transmitter Input to Output	t _{PHL} , t _{PLH}	Figure 2			50	80	ns
Data Skew	l t _{PHL} - t _{PLH} l	Figure 2			2	10	ns
Output-to-Output Skew	tskew	Figure 2			2		ns
Channel-to-Channel Skew					2		ns
V.11 RECEIVER				·			
Differential Threshold Voltage	V _{TH}	$-7V \le V_{CM} \le +$	-7V	-200	-100	-25	mV
Input Hysteresis	ΔV_{TH}	$-7V \le V_{CM} \le +$	5	15		mV	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 3.3V \pm 5\%; C1 = C2 = 1\mu$ F, C3 = C4 = C5 = 3.3μ F, and T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{CC} = +3.3V, T_A = $+25^{\circ}$ C.) (Note 2)


PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		MAX3171	5	10	MAX 15 120 4 16 ±6.0 (15) 120 4 15 120 4 15 120 4 16 (15) 16 (15) 16 (15) 16 (15) (16	μs
Receiver Input to Output	tphl, tplh	MAX3173		60		ns
		MAX3171		10 15 60 120 0.5 4 5 16 ±4.4 ±6.0 ±100 ±150 2 2 50 - ±100 +300 15 - 10 15 60 120 0.5 4 5 16 ±5.4 - ±5.4 ±6.5 ±25 ±60 30 30 1 - 0.5 - 0.8 - 0.5 -	μs	
Data Skew	l tphl - tþlh l	MAX3173		5	16	ns
V.10 TRANSMITTER						
Unloaded Output Voltage	Vodo	$R_L = 3.9k\Omega$, Figure 3	±4.0	±4.4	±6.0	V
Loaded Output Voltage Swing	Vodl	$R_L = 450\Omega$, Figure 3	0.9× V _{ODO}			V
Short-Circuit Current	Isc	T_OUTA = GND		±100	±150	mA
Transmitter Rise or Fall Time	t _r , t _f	$R_L = 450\Omega$, $C_L = 100pF$, Figure 3		2		μs
Transmitter Input to Output	tphl, tplh	$R_L = 450\Omega$, $C_L = 100pF$, Figure 3		2		μs
Data Skew	tphl - tplh	$R_L = 450\Omega$, $C_L = 100pF$, Figure 3		50		ns
V.10 RECEIVER						
Threshold Voltage	V _{TH}		+25	+100	+300	mV
Input Hysteresis	ΔV_{TH}			15		mV
Receiver Input to Output	tphl, tplh	MAX3171, Figure 4	5	10	15	μs
		MAX3173, Figure 4		60	120	ns
Data Skew	tphl - tplh	MAX3171, Figure 4		0.5	4	μs
		MAX3173, Figure 4		5	16	ns
V.28 TRANSMITTER						
Output Voltage Swing	Vo	All transmitters loaded with RL = $3k\Omega$	±5.0	±5.4		V
Output Voltage Swing	VO	No load			±6.5	v
Short-Circuit Current	I _{SC}	T_OUTA = GND		±25	±60	mA
Output Claus Data	0.5	R_L = 3k Ω,C_L = 2500pF, measured from +3V to -3V or from -3V to +3V, Figure 3	4		30	
Output Slew Rate	SR	$R_L = 7k\Omega$, $C_L = 150pF$, measured from +3V to -3V or from -3V to +3V, Figure 3	6		30	V/µs
Transmitter Input to Output	tphl, tplh	Figure 3		1		μs
Data Skew	tphl - tplh	Figure 3		100		ns
V.28 RECEIVER			•			
Input Threshold Low	VIL				0.8	V
Input Threshold High	VIH		2.0			V
Input Hysteresis	V _{HYS}			0.5		V
Propagation Dalay	tplh, tphl	MAX3171, Figure 4	5	10	15	μs
Propagation Delay		MAX3173, Figure 4		200		
Data Skew		MAX3171, Figure 4	0.5		4.0	μs
Dala JKEW	t _{PHL} - t _{PLH}	MAX3173, Figure 4		100		ns

Note 2: V+ and V- are also used to supply the MAX3172/MAX3174. The MAX3171/MAX3173 are tested with additional current load on V+ and V- to capture the effect of loading from the MAX3172/MAX3174 in all operation modes.



Typical Operating Characteristics

 $(V_{CC} = +3.3V, C1 = C2 = 1.0\mu F, C3 = C4 = C5 = 3.3\mu F, T_A = +25^{\circ}C, unless otherwise noted.)$

MAX3171/MAX3173

Test Circuits

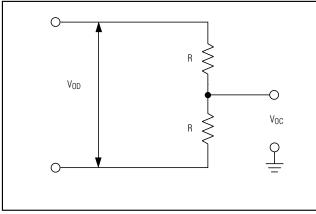


Figure 1. V.11 DC Test Circuit

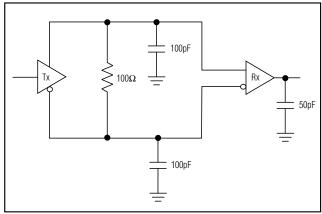
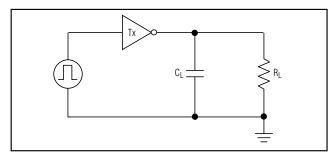



Figure 2. V.11 AC Test Circuit

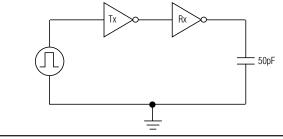


Figure 3. V.10/V.28 Driver Test Circuit

Figure 4. V.10/V.28 Receiver Test Circuit

Pin Description

PIN	NAME	FUNCTION
1	V+	Positive Supply Generated by the Charge Pump (connect to V+ pin of MAX3172/MAX3174). Bypass V+ to ground with a 3.3µF ceramic capacitor.
2	C2+	Positive Terminal of the Inverting Charge-Pump Capacitor. Connect C2+ to C2- with a $1\mu F$ ceramic capacitor.
3	C2-	Negative Terminal of the Inverting Charge-Pump Capacitor. Connect C2+ to C2- with a $1\mu\text{F}$ ceramic capacitor.
4	V-	Negative Supply Generated by the Charge Pump (connect to V- pin of MAX3172/MAX3174). Bypass V- to ground with a 3.3µF ceramic capacitor.
5, 6, 7	T_IN	Transmitter CMOS Inputs (T1IN, T2IN, T3IN)
8, 9, 10	R_OUT	Receiver CMOS Outputs (R1OUT, R2OUT, R3OUT)
11, 12, 13	M_	Mode Select Inputs (M0, M1, M2). Internally pulled up to V _{CC} . See Table 1 for detailed information.
14	DCE/DTE	DCE/DTE Mode Select Input. Logic level high selects DCE interface; logic level low selects DTE interface. Internally pulled up to V_{CC} .
15, 18	R_INB	Noninverting Receiver Inputs (R3INB, R2INB)
16, 17	R_INA	Inverting Receiver Inputs (R3INA, R2INA)
19	T3OUTB/R1INB	Noninverting Transmitter Output/Noninverting Receiver Input
20	T3OUTA/R1INA	Inverting Transmitter Output/Inverting Receiver Input
21, 23	T_OUTB	Noninverting Transmitter Outputs (T2OUTB, T1OUTB)
22, 24	T_OUTA	Inverting Transmitter Outputs (T2OUTA, T1OUTA)
25	C1-	Negative Terminal of the Voltage-Doubler Charge-Pump Capacitor. Connect C1+ to C1- with a 1µF ceramic capacitor.
26	GND	Ground
27	V _{CC}	+3.3V Supply Voltage (\pm 5%). Bypass V _{CC} to ground with a 3.3µF ceramic capacitor.
28	C1+	Positive Terminal of the Voltage-Doubler Charge-Pump Capacitor. Connect C1+ to C1- with a 1μ F ceramic capacitor.

Table 1. Mode Selection

PROTOCOL		LOGIC INPUTS			TRANSMITTERS			RECEIVERS		
	M2	M1	MO	DCE/DTE	T1	T2	Т3	R1	R2	R3
V.11	0	0	0	0	V.11	V.11	Z	V.11	V.11	V.11
RS-530A	0	0	1	0	V.11	V.10	Z	V.11	V.10	V.11
RS-530	0	1	0	0	V.11	V.11	Z	V.11	V.11	V.11
X.21	0	1	1	0	V.11	V.11	Z	V.11	V.11	V.11
V.35	1	0	0	0	V.28	V.28	Z	V.28	V.28	V.28
RS-449/V.36	1	0	1	0	V.11	V.11	Z	V.11	V.11	V.11
V.28/RS-232	1	1	0	0	V.28	V.28	Z	V.28	V.28	V.28
No cable	1	1	1	0	Z	Z	Z	Z	Z	Z
V.11	0	0	0	1	V.11	V.11	V.11	Z	V.11	V.11
RS-530A	0	0	1	1	V.11	V.10	V.11	Z	V.10	V.11
RS-530	0	1	0	1	V.11	V.11	V.11	Z	V.11	V.11
X.21	0	1	1	1	V.11	V.11	V.11	Z	V.11	V.11
V.35	1	0	0	1	V.28	V.28	V.28	Z	V.28	V.28
RS-449/V.36	1	0	1	1	V.11	V.11	V.11	Z	V.11	V.11
V.28/RS-232	1	1	0	1	V.28	V.28	V.28	Z	V.28	V.28
No cable	1	1	1	1	Z	Z	Z	Z	Z	Z

Z = High impedance

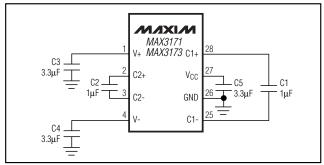


Figure 5. Charge-Pump Connections

Detailed Description

The MAX3171/MAX3173 are three-driver/three-receiver multiprotocol transceivers that operate from a single +3.3V supply. The MAX3171/MAX3173, along with the MAX3170 and MAX3172/MAX3174, form a complete software-selectable DTE or DCE interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449, V.36, EIA-530, EIA-530-A, X.21, RS-423), and V.35 protocols. The MAX3171/MAX3173 carry the control signals, while the MAX3170 transceiver carries the high-speed clock and data signals. The MAX3172/MAX3174 provide termination for the clock and data signals and have an extra transceiver for applications requiring four transceivers for control handshaking.

The MAX3171/MAX3173 feature a 2mA no-cable mode, true fail-safe operation, and thermal shutdown circuitry. Thermal shutdown protects the drivers against excessive power dissipation. When activated, the thermal shutdown circuitry places the driver outputs into a highimpedance state.

Mode Selection

The state of mode select pins M0, M1, and M2 determines which serial interface protocol is selected (Table 1). The state of the DCE/DTE input determines whether the transceivers will be configured as a DTE serial port or a DCE serial port. When the DCE/DTE input is logic HIGH, driver T3 is activated and receiver R1 is disabled. When the DCE/DTE input is logic LOW, driver T3 is disabled and receiver R1 is activated. M0, M1, M2, and DCE/DTE are internally pulled up to V_{CC} to ensure logic HIGH if left unconnected.

The MAX3171/MAX3173's mode can be selected through software control of the M0, M1, M2, and DCE/DTE inputs. Alternatively, the mode can be selected by shorting the appropriate combination of mode control inputs to GND (the inputs left floating will be internally pulled up to V_{CC}). If the M0, M1, and M2 mode inputs are all unconnected, the MAX3171/MAX3173 will enter no-cable mode.

No-Cable Mode

The MAX3171/MAX3173 enter no-cable mode when the mode select pins are left unconnected or tied HIGH (M0 = M1 = M2 = 1). In this mode, the multiprotocol drivers and receivers are disabled and the supply current is less than 8mA. The receiver outputs enter a high-impedance state in no-cable mode, which allows these output lines to be shared with other receivers (the receiver outputs have an internal pullup resistor to pull the outputs HIGH if not driven). Also, in no-cable mode, the transmitter outputs enter a high-impedance state, so these output lines can be shared with other devices.

Dual Charge-Pump Voltage Converter

The MAX3171/MAX3173 internal power supply consists of a regulated dual charge pump that provides positive and negative output voltages from a +3.3V supply. The charge pump operates in discontinuous mode: If the output voltage is less than the regulated voltage, the charge pump is enabled; if the output voltage exceeds the regulated voltage, the charge pump is disabled. Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies. See Figure 5 for charge-pump connections.

The charge pump is designed to supply V+ and V-power to the MAX3172/MAX3174 in addition to the MAX3171/MAX3173 internal transceivers. Connect the MAX3172/MAX3174 V+ and V- terminals to the MAX3171/MAX3173 V+ and V- terminals, respectively.

Fail-Safe The MAX3171/MAX3173 guarantee a logic HIGH receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with drivers disabled. The V.11 receiver threshold is set between -25mV and -200mV to guarantee fail-safe operation. If the differential receiver input voltage (B - A) is \geq -25mV, R_OUT is logic HIGH. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage is pulled to 0 by the termination. With the MAX3171/MAX3173 receiver thresholds, this results in R_OUT logic HIGH with a 25mV (min) noise margin.

The V.10 receiver threshold is set between +25mV and +300mV. If the V.10 receiver input voltage is \leq +25mV, ROUT is logic HIGH. The V.28 receiver threshold is set between 0.8V and 2.0V. If the receiver input voltage is \leq 0.8V, ROUT is logic HIGH. In the case of a terminated bus with transmitters disabled, the V.10/V.28 receiver's input voltage is pulled to ground by the termination. With the MAX3172/MAX3174 receiver thresholds, this results in R_OUT logic HIGH.

Applications Information

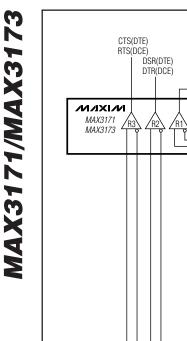
Capacitor Selection

The capacitors used for the charge pumps, as well as the supply bypassing, should have a low-ESR and low-temperature coefficient. Multilayer ceramic capacitors with an X7R dielectric offer the best combination of performance, size, and cost. The flying capacitors (C1, C2) should have a value of 1μ F, while the reservoir capacitors (C3, C4) and bypass capacitor (C5) should have a minimum value of 3.3μ F (Figure 5). To reduce the ripple present on the transmitter outputs, capacitors C3, C4, and C5 can be increased. Do not increase the value of C1 and C2.

Local Loopback Control Signal

For applications that require the use of local loopback (LL) signal routing, an extra transceiver is available for use on the MAX3172/MAX3174 multiprotocol termination network device.

Cable-Selectable Mode


Figure 6 shows a cable-selectable mulitprotocol interface. The mode control lines (M0, M1, M2, and DCE/DTE) are wired to the DB-25 connector. To select the serial interface mode, the appropriate combinations of M0, M1, M2, and DCE/DTE are grounded within the cable wiring. The control lines that are not grounded are pulled high by the internal pullups on the MAX3170. The serial interface protocol of the MAX3171/MAX3173 (MAX3170 and MAX3172/MAX3174) is now selected based on the cable connected to the DB-25 interface.

V.11 (RS-422) Interface

As shown in Figure 7, the V.11 protocol is a fully balanced differential interface. The V.11 driver generates $\pm 2V$ (min) between nodes A and B when 100Ω (min) resistance is presented at the load. The V.11 receiver is sensitive to ± 200 mV differential signals at the receiver inputs A' and B'. The V.11 receiver input must comply with the impedance curve of Figure 8 and reject common-mode signals up to $\pm 7V$ developed across the cable (referenced from C to C' in Figure 7).

The MAX3171/MAX3173 V.11 mode receiver has a differential threshold between -200mV and -25mV to ensure that the receiver has proper fail-safe operation (see *Fail-Safe*). To aid in rejecting system noise, the MAX3171/MAX3173 V.11 receiver has a 15mV (typ) hysteresis. Switch S3 in Figure 9 is open in V.11 mode to disable the V.28 5k Ω termination at the inverting receiver input. Because the control signals are slow (64kbps), 100 Ω termination resistance is generally not required for the MAX3171/MAX3173.

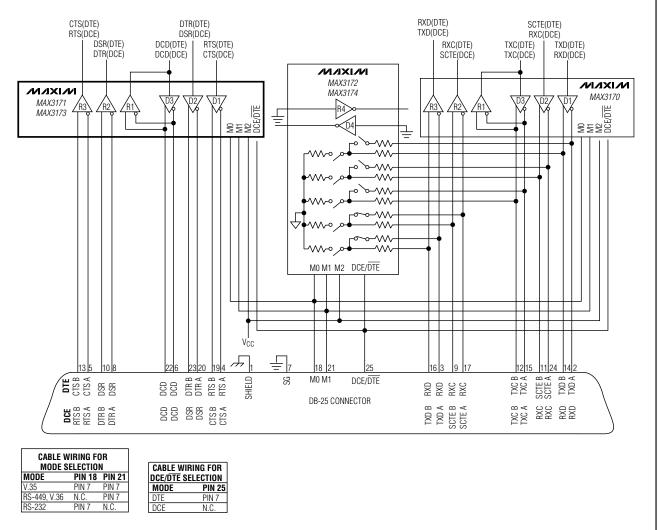
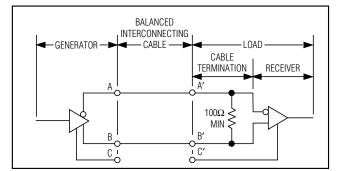
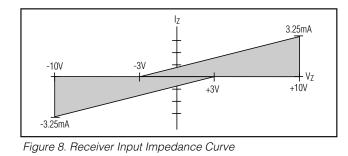


Figure 6. Cable-Selectable Multiprotocol DCE/DTE Port




Figure 7. Typical V.11 Interface

V.10 Interface

The V.10 interface (Figure 10) is an unbalanced singleended interface capable of driving a 450 Ω load. The V.10 driver generates a ±4V (min) VODO voltage across A' and C' when unloaded and a minimum of $\pm 0.9 \times$ V_{ODO} voltage with a 450 Ω load. The V.10 receiver input trip threshold is defined between +300mV and -300mV with the input impedance characteristic shown in Figure 8.

The MAX3171/MAX3173 V.10 mode receiver has a threshold between +25mV and +300mV to ensure that the receiver has proper fail-safe operation (see Fail-

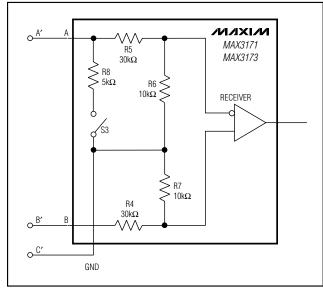


Figure 9. V.11 Termination and Internal Resistance Networks

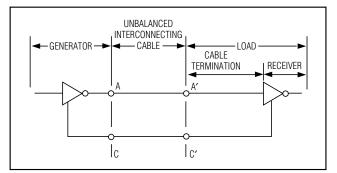


Figure 10. Typical V.10/V.28 Interface

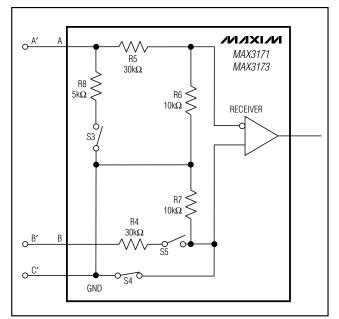


Figure 11. V.10 Internal Resistance Network

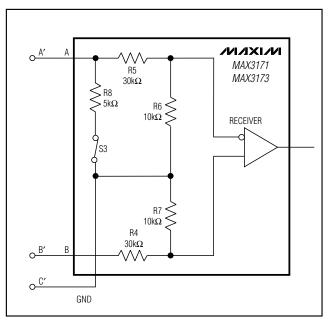


Figure 12. V.28 Termination and Internal Resistance Networks

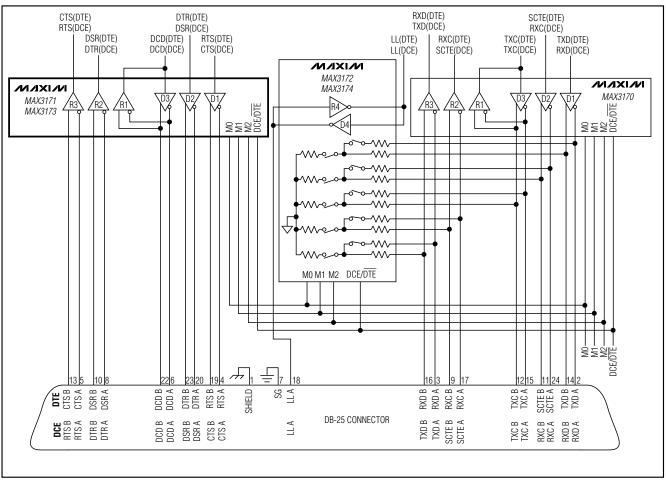


Figure 13. Multiprotocol DCE/DTE Port

Safe). To aid in rejecting system noise, the MAX3171/MAX3173 V.10 receiver has 15mV (typ) hysteresis. Switch S3 in Figure 11 is open in V.10 mode to disable the 5k Ω V.28 termination at the receiver input. Switch S4 is closed, and switch S5 is open to internally ground the receiver B input.

V.28 Interface

The V.28 interface is an unbalanced single-ended interface (Figure 12). The V.28 generator provides $\pm 5V$ (min) across the load impedance between A' and C'. The V.28 standard specifies input trip points at $\pm 3V$.

The MAX3171/MAX3173 V.28 mode receiver has a threshold between +0.8V and +2.0V to ensure that the receiver has proper fail-safe operation (see *Fail-Safe*). To aid in rejecting system noise, the MAX3171/MAX3173 V.28 receiver has a 500mV (typ) hysteresis. Switch S3 in

Figure 12 is closed in V.28 mode to enable the 5k Ω V.28 termination at the receiver input.

Receiver Glitch Rejection

To facilitate operation in an unterminated or otherwise noisy system, the MAX3171 features 10µs of receiver input glitch rejection in V.10, V.11, and V.28 modes. The glitch rejection circuitry blocks the reception of high-frequency noise (t_B < 5µs) while receiving a low-frequency signal (t_B > 15µs), allowing glitch-free operation in unterminated systems at up to 64kbps. The MAX3173 does not have this feature and can be operated at data rates up to 240kbps if properly terminated.

DTE vs. DCE Operation

Figure 13 shows a DCE or DTE controller-selectable interface. The DCE/DTE input switches the port's mode of operation. A logic high selects DCE, which enables

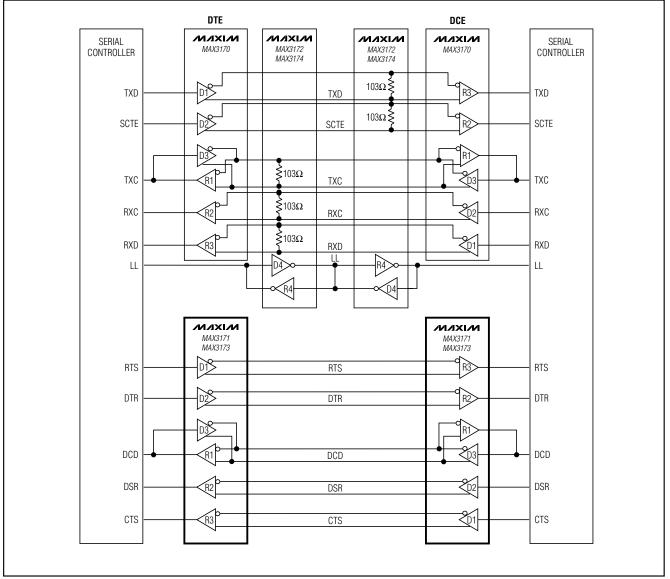


Figure 14. DCE-to-DTE X.21 Interface

driver 3 on the MAX3171/MAX3173, driver 3 on the MAX3170, and driver 4 on the MAX3172/MAX3174. A logic low selects DTE, which enables receiver 1 on the MAX3171/MAX3173, receiver 1 on the MAX3170, and receiver 4 on the MAX3172/MAX3174.

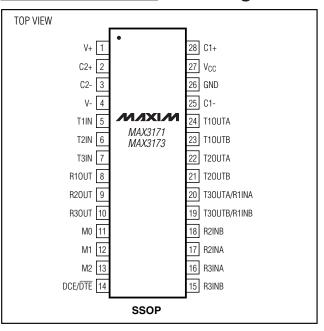
This application requires only one DB-25 connector. See Figure 13 for complete signal routing in DCE and DTE modes. For example, driver 3 routes the DCD (DCE) signal to pins 22 and 6 in DCE mode, while in DTE mode, receiver 1 routes pins 22 and 6 to DCD (DTE).

Complete Multiprotocol X.21 Interface

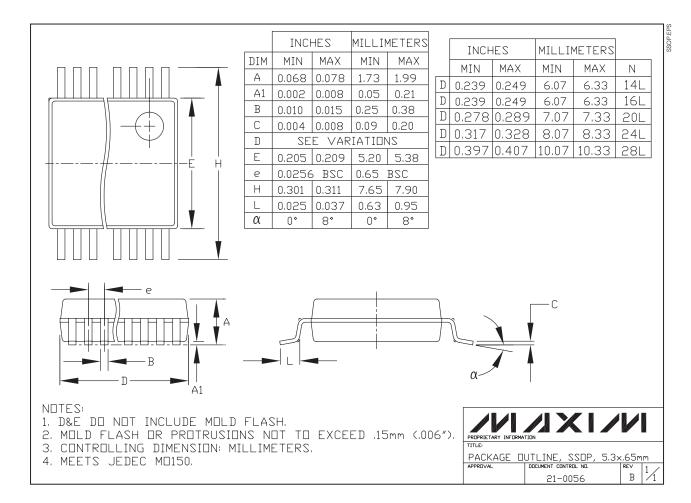
Figure 14 shows a complete DCE-to-DTE interface operating in X.21 mode. The MAX3171/MAX3173 generate the control signals, and the MAX3170 is used to generate the clock and data signals. The MAX3172/MAX3174 generate local loopback and are used to terminate the clock and data signals to support the V.11 protocol for cable termination. The control signals do not need external termination.

///XI//

MAX3171/MAX3173


Compliance Testing

_Pin Configuration



Chip Information

TRANSISTOR COUNT: 1763 PROCESS: BICMOS

_Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2001 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products.

15

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated: <u>MAX3171CAI+</u> MAX3171CAI+T MAX3173CAI+ MAX3173CAI+T