

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout (Top View) and Logic Diagram

Table 1. Pin Description

Pin	Function
CLK0*, CLK0**	ECL/PECL/HSTL CLK Input
CLK1*, CLK1**	ECL/PECL/HSTL CLK Input
Q0:4, Q0:4	ECL/PECL Outputs
CLK_SEL*	ECL/PECL Active Clock Select Input
EN*	ECL Sync Enable
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply

Pins will default LOW when left open.

Table 2. Function Table

CLK0	CLK1	CLK_SEL	EN	Q
L	Х	L	L	L
Н	X	L	L	Н
X	L	Н	L	L
X	Н	Н	L	Н
X	X	X	Н	L*

On next negative transition of CLK0 or CLK1

Table 3. General specifications

Charact	Value	
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor	75 kΩ	
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2000 V > 200 V > 1500 V
Thermal Resistance (Junction-to-Ambient)	0 LFPM, 20 TSSOP 500 LFPM, 20 TSSOP	140°C/W 100°C/W

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

 $^{^{\}star\star}~$ Pins will default to $V_{\mbox{\footnotesize CC}}/2$ when left open.

Table 4. Absolute Maximum Ratings⁽¹⁾

Symbol	Characteristic	Conditions	Rating	Units
V _{SUPPLY}	Power Supply Voltage	Difference between V _{CC} & V _{EE}	3.9	V
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} – 0.3	٧
I _{OUT}	Output Current	Continuous Surge	50 100	mA mA
I _{BB}	V _{BB} Sink/Source Current		±0.5	°C
T _A	Operating Temperature Range		-40 to +85	°C
T _{STG}	Storage Temperature Range		-65 to +150	°C

Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated
conditions is not implied.

Table 5. DC Characteristics (V_{CC} = 0 V, V_{EE} = -2.5 V ± 5% or V_{CC} = 2.5 V ± 5%, V_{EE} = 0 V)

Symbol	Characteristics	-40°C			0°C to 85°C			I I m i 4
Зунион		Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		30	60		30	60	mA
V _{OH}	Output HIGH Voltage ⁽¹⁾	V _{CC} -1250	V _{CC} -990	V _{CC} -800	V _{CC} -1200	V _{CC} -960	V _{CC} -750	mV
V _{OL}	Output LOW Voltage ⁽¹⁾	V _{CC} -2000	V _{CC} -1550	V _{CC} -1150	V _{CC} -1925	V _{CC} -1630	V _{CC} -1200	mV
V _{outPP}	Output Peak-to-Peak Voltage	200			200			mV
V _{IH}	Input HIGH Voltage	V _{CC} -1165		V _{CC} -880	V _{CC} -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	mV
V _{BB}	Output Reference Voltage I _{BB} = 200 μA	V _{CC} -1400		V _{CC} -1200	V _{CC} -1400		V _{CC} -1200	mV
V _{PP}	Differential Input Voltage ⁽²⁾	0.12		1.3	0.12		1.3	mV
V _{CMR}	Differential Cross Point Voltage ⁽³⁾	V _{EE} +0.2		V _{CC} -1.0	V _{EE} +0.2		V _{CC} -1.0	mV
I _{IN}	Input Current			±150			±150	μΑ

^{1.} Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported but the power consumption of the device will increase.

Table 6. DC Characteristics (V_{CC} = 0 V, V_{EE} = -3.8 V to -3.135 V or V_{CC} = 3.135 V to 3.8 V, V_{EE} = 0 V)

Symbol	Characteristics	-40°C			0°C to 85°C			Unit
Syllibol		Min	Тур	Max	Min	Тур	Max	Offic
I _{EE}	Power Supply Current		30	60		30	60	mA
V _{OH}	Output HIGH Voltage ⁽¹⁾	V _{CC} -1150	V _{CC} -1020	V _{CC} -800	V _{CC} -1200	V _{CC} -970	V _{CC} -750	mV
V _{OL}	Output LOW Voltage ⁽¹⁾	V _{CC} -1950	V _{CC} -1620	V _{CC} -1250	V _{CC} -2000	V _{CC} -1680	V _{CC} -1300	mV
V _{outPP}	Output Peak-to-Peak Voltage	200			200			mV
V _{IH}	Input HIGH Voltage	V _{CC} -1165		V _{CC} -880	V _{CC} -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	mV
V _{BB}	Output Reference Voltage I _{BB} = 200 μA	V _{CC} -1400		V _{CC} -1200	V _{CC} -1400		V _{CC} -1200	mV
V _{PP}	Differential Input Voltage ⁽²⁾	0.12		1.3	0.12		1.3	V
V _{CMR}	Differential Cross Point Voltage ⁽³⁾	V _{EE} +0.2		V _{CC} -1.1	V _{EE} +0.2		V _{CC} -1.1	V
I _{IN}	Input Current			±150			±150	μА

^{1.} Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported but the power consumption of the device will increase.

^{2.} V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

^{3.} V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

^{2.} V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

3. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Table 7. AC Characteristics (V_{CC} = 0 V, V_{EE} = -3.8 V to -2.375 V or V_{CC} = 2.375 V to 3.8 V, V_{EE} = 0 V)⁽¹⁾

Symbol	Characteristics	–40°C		25°C		85°C		Unit			
Symbol	Characteristics	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Oilit
f _{max}	Maximum Output Frequency	2			2			2			GHz
t _{PLH}	Propagation Delay (Differential) CLK to Q, \overline{Q}	300	355	425	300	375	475	300	400	525	ps
t _{SKEW}	Within Device Skew ⁽²⁾ Q, \overline{Q} Device-to-Device Skew ⁽²⁾		23	45 125		23	45 175		23	45 225	ps ps
t _{JITTER}	Cycle-to-Cycle Jitter RMS (1σ)			1			1			1	ps
V _{PP}	Input Peak-to-Peak Voltage Swing (Differential)	200		1200	200		1200	200		1200	mV
V _{CMR}	Differential Cross Point Voltage	V _{EE} +0.2		V _{CC} -1.2	V _{EE} +0.2		V _{CC} -1.2	V _{EE} +0.2		V _{CC} -1.2	V
t _r /t _f	Output Rise/Fall Time (20%–80%)	70		225	70		250	70		275	ps

- 1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V_{CC} -2.0 V.
- 2. Skew is measured between outputs under identical transitions.

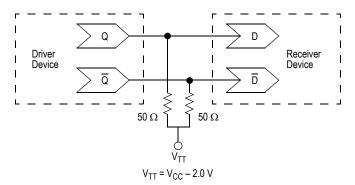
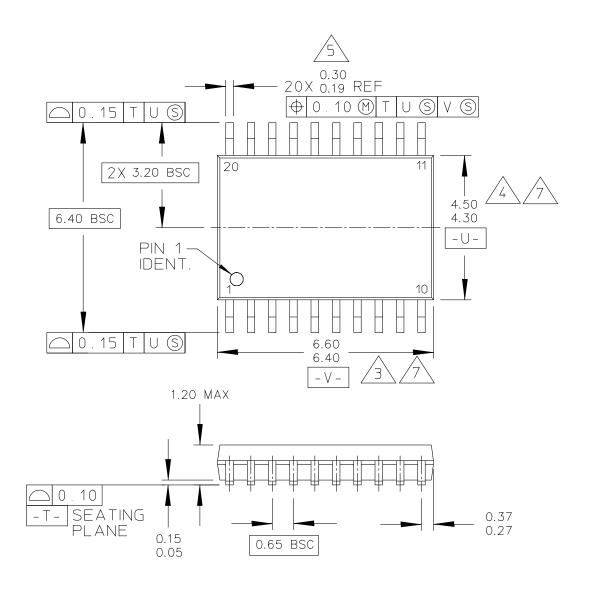
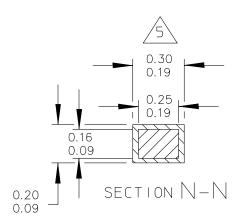
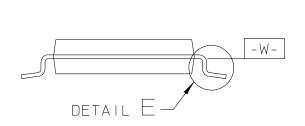



Figure 2. Typical Termination for Output Driver and Device Evaluation

PACKAGE DIMENSIONS


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANIC		MECHANICA	L OUTLINE	PRINT VERSION NO	TO SCALE	
TITLE:				DOCUMENT NO]: 98ASH70169A	RE∨: B
	20 LD TSSOP,	PIICH	0.65MM	CASE NUMBER	2: 948E-03	09 MAR 2005
				STANDARD: JE	DEC	


CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE

PAGE 1 OF 3

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MEC		L OUTLINE	PRINT VERSION NOT TO SCAL	
20 I D TOORD DITCH 045MM		DOCUMENT NO]: 98ASH70169A	RE∨: B
		CASE NUMBER	R: 948E-03	09 MAR 2005
		STANDARD: JE	DEC	

CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE

PAGE 2 OF 3

PACKAGE DIMENSIONS

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.

DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

4\ DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

/5\ DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

DIMENSIONS ARE TO BE DETERMINED AT DATUM PLANE -W

– W –	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	TO SCALE
TITLE:		DOCUMENT NO]: 98ASH70169A	RE∨: B
20 LD TSSOP, PITCH	0.65MM	CASE NUMBER	2: 948E-03	09 MAR 2005
		STANDARD: JE	DEC	

CASE 948E-03 **ISSUE B** 20-LEAD TSSOP PACKAGE

PAGE 3 OF 3

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

MC100ES6014EJR2 MC100ES6014EJ