

www.vishay.com

Vishay Semiconductors

FORWARD CONDUCTIO	N							
PARAMETER	SYMBOL		VALUES 5.MTK	VALUES 9.MTK	VALUES 11.MTK	UNITS		
Maximum DC output current at	I _O	120° rect	120° rect. conduction angle		55	90	110	Α
case temperature	.0	120 1001.	ornadotron ang		85	85	85	°C
		t = 10 ms	No voltage		390	950	1130	
Maximum peak, one-cycle forward, non-repetitive on state	I _{TSM}	t = 8.3 ms	reapplied		410	1000	1180	Α
surge current	TISM	t = 10 ms	$100\%V_{RRM}$		330	800	950	
		t = 8.3 ms	reapplied	Initial $T_{.1} = T_{.1}$ max.	345	840	1000	
		t = 10 ms	No voltage	ililiai ij = ijiliax.	770	4525	6380	A ² s
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied		700	4130	5830	
		t = 10 ms	100 % V _{RRM}		540	3200	4510	
		t = 8.3 ms	reapplied		500	2920	4120	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms	7700	45 250	63 800	A ² √s		
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x 1	1.17	1.09	1.04	V		
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(A)})$	1.45	1.27	1.27	V		
Low level value on-state slope resistance	r _{t1}	(16.7 % x a	$τ x I_{T(AV)} < I < π$	12.40	4.10	3.93	mΩ	
High level value on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(A)})$	_{√)}), T _J maximun	11.04	3.59	3.37	11152	
Maximum on-state voltage drop	V_{TM}	$I_{pk} = 150 A$, T _J = 25 °C, t _p	2.68	1.65	1.57	V	
Maximum non-repetitve rate of rise of turned on current	dl/dt	$T_J = 25$ °C, from 0.67 V_{DRM} , $I_{TM} = \pi \times I_{T(AV)}$, $I_g = 500$ mA, $t_r < 0.5$ μ s, $t_p > 6$ μ s						A/µs
Maximum holding current	I _H	T _J = 25 °C, anode supply = 6 V, resistive load, gate open circuit				200		mA
Maximum latching current	ΙL	$T_J = 25 ^{\circ}\text{C}$	anode supply	= 6 V, resistive load		400		

BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS	5.MTK	9.MTK	11.MTK	UNITS
RMS isolation voltage	V_{ISOL}	$T_J = 25$ °C all terminal shorted, f = 50 Hz, t = 1 s		4000		V
Maximum critical rate of rise of off-state voltage	dV/dt (1)	$T_J = T_J$ maximum, linear to 0.67 V_{DRM} , gate open circuit	500		V/µs	

Note

 $^{(1)}$ Available with dV/dt = 1000 V/ μ s, to complete code add S90 i. e. 113MT160KBS90

TRIGGERING									
PARAMETER	SYMBOL	TEST CONDITIONS 5.MTK 9.MTK 11.MT				11.MTK	UNITS		
Maximum peak gate power	P _{GM}				10		W		
Maximum average gate power	P _{G(AV)}				2.5		VV		
Maximum peak gate current	I _{GM}	$T_J = T_J$ maximum	$T_{J} = T_{J}$ maximum 2.5						
Maximum peak negative gate voltage	- V _{GT}								
	V _{GT}	T _J = - 40 °C		4.0			V		
Maximum required DC gate voltage to trigger		T _J = 25 °C		2.5					
		T _J = 125 °C	Anode supply = 6 V,	1.7					
		T _J = - 40 °C	resistive load	270			mA		
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C		150					
ourient to angger		T _J = 125 °C			80		1		
Maximum gate voltage that will not trigger	V_{GD}	T. – T. maximum, rator		0.25		V			
Maximum gate current that will not trigger	I _{GD}	$T_{J} = T_{J}$ maximum, rated V_{DRM} applied 6					mA		

www.vishay.com

Vishay Semiconductors

PARAMETER	SYMBOL	TEST CONDITIONS	5.MTK	9.MTK	11.MTK	UNITS		
Maximum junction operating and storage temperature range	T _J , T _{Stg}		- 40 to 125			°C		
		DC operation per module	0.18	0.14	0.12			
Maximum thermal resistance, junction to case	R _{thJC}	DC operation per junction	1.07	0.86	0.70			
		120 °C rect. conduction angle per module	0.19	0.15	0.12	K/W		
		120 °C rect. conduction angle per junction	1.17	0.91	0.74	14/ 44		
Maximum thermal resistance, case to heatsink per module R _{thCS}		Mounting surface smooth, flat and grased		0.03				
Mounting to heatsink torque ± 10 % to terminal		A mounting compound is recommended and	4 to 6 3 to 4			Nm		
		the torque should be rechecked after a period of						
Approximate weight		3 hours to allow for the spread of the compound. Lubricated threads.	225			g		

△R CONDUCTION PER JUNCTION											
DEVICES			DAL CONI T _J MAXIM			RECTANGULAR CONDUCTION AT T _J MAXIMUM					UNITS
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	,
5.MTK	0.072	0.085	0.108	0.152	0.233	0.055	0.091	0.117	0.157	0.236	
9.MTK	0.033	0.039	0.051	0.069	0.099	0.027	0.044	0.055	0.071	0.100	K/W
11.MTK	0.027	0.033	0.042	0.057	0.081	0.023	0.037	0.046	0.059	0.082	

Note

Table shows the increment of thermal resistance RthJC when devices operate at different conduction angles than DC

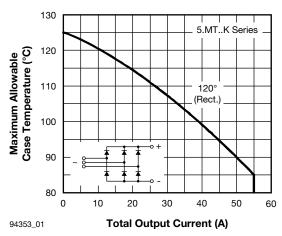


Fig. 1 - Current Ratings Characteristic

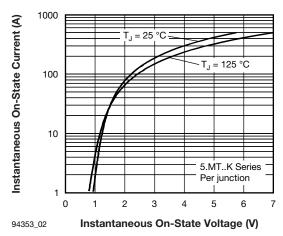
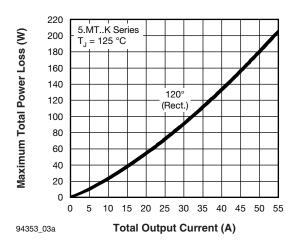



Fig. 2 - Forward Voltage Drop Characteristics

www.vishay.com

Vishay Semiconductors

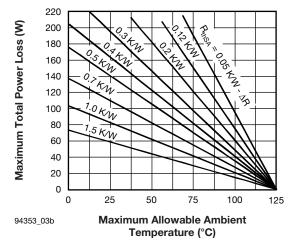


Fig. 3 - Total Power Loss Characteristics

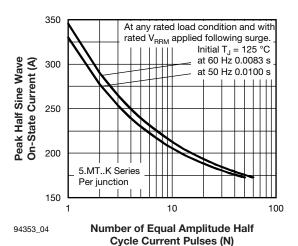


Fig. 4 - Maximum Non-Repetitive Surge Current

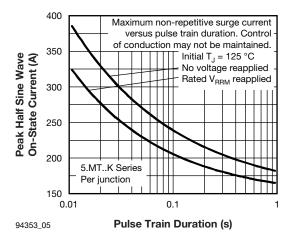


Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 6 - Current Ratings Characteristic

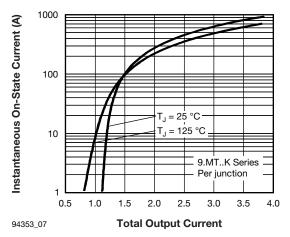
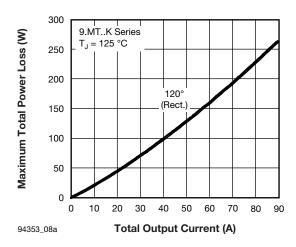



Fig. 7 - Forward Voltage Drop Characteristics

www.vishay.com

Vishay Semiconductors

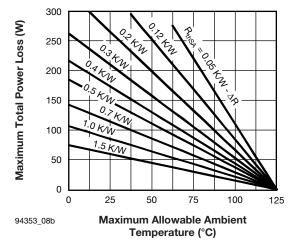


Fig. 8 - Total Power Loss Characteristics

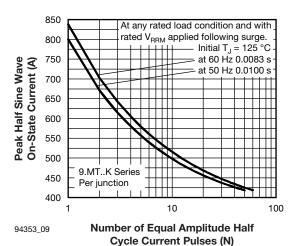


Fig. 9 - Maximum Non-Repetitive Surge Current

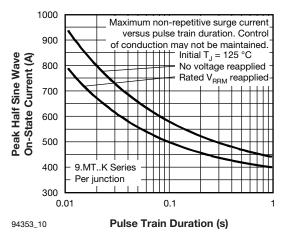


Fig. 10 - Maximum Non-Repetitive Surge Current

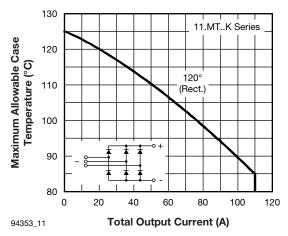


Fig. 11 - Current Ratings Characteristic

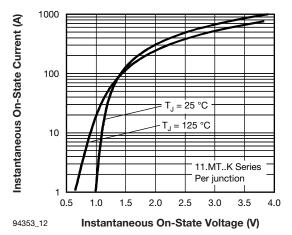
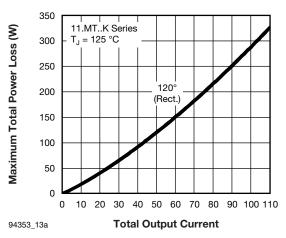



Fig. 12 - Forward Voltage Drop Characteristics

www.vishay.com

Vishay Semiconductors

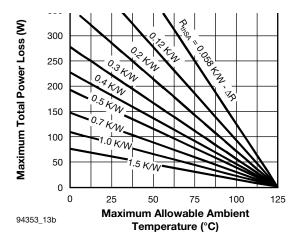


Fig. 13 - Total Power Loss Characteristics

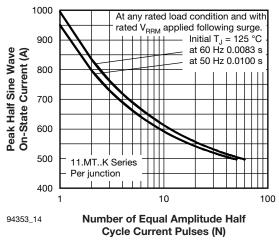


Fig. 14 - Maximum Non-Repetitive Surge Current

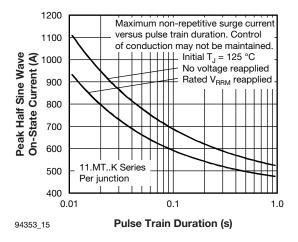


Fig. 15 - Maximum Non-Repetitive Surge Current

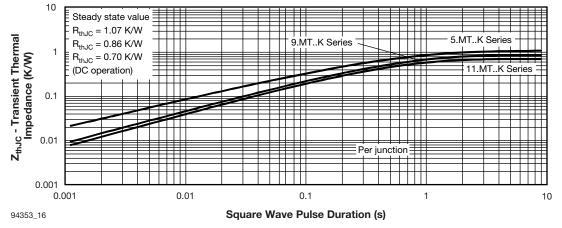


Fig. 16 - Thermal Impedance Z_{thJC} Characteristics

www.vishay.com

Vishay Semiconductors

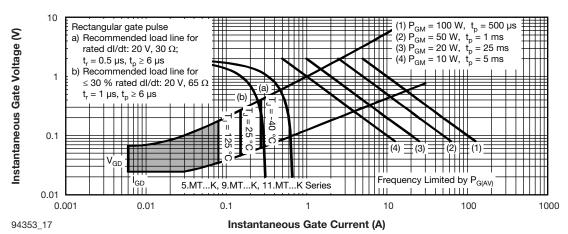
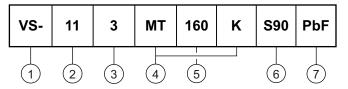
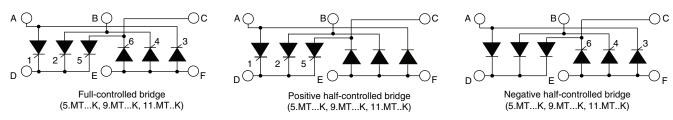



Fig. 17 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code

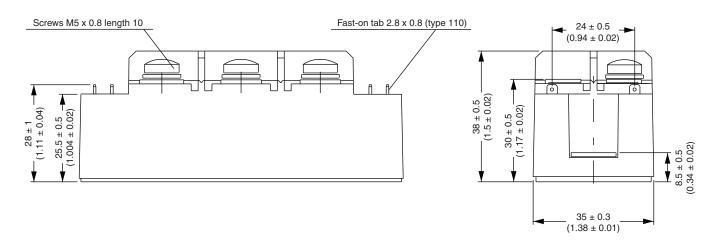


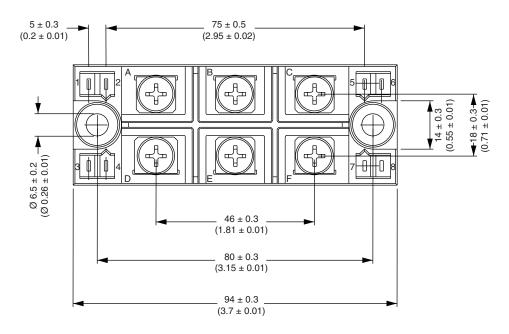
- Vishay Semiconductors product
- 2 Current rating code:
 - 5 = 55 A (average)
 - 9 = 90 A (average)
 - 11 = 110 A (average)
- 3 Circuit configuration code:
 - 1 = Negative half-controlled bridge
 - 2 = Positive half-controlled bridge
 - 3 = Full-controlled bridge
- 4 Essential part number
- 5 Voltage code x 10 = V_{RRM} (see Voltage Ratings table)
- 6 Critical dV/dt:
 - None = 500 V/µs (standard value)
 - S90 = 1000 V/µs (special selection)
- 7 PbF = Lead (Pb)-free

Note

To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION

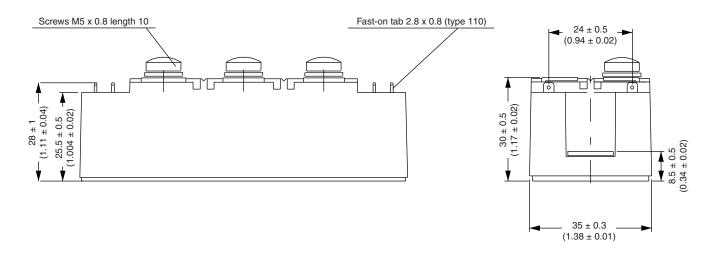

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95004				

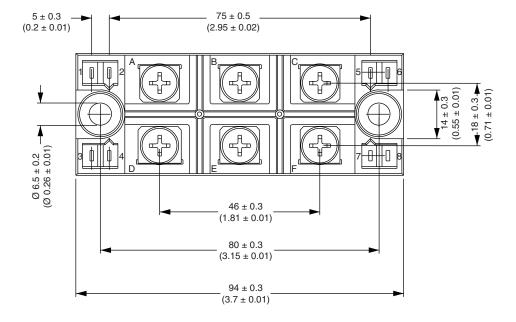


Vishay Semiconductors

MTK (with and without optional barrier)

DIMENSIONS WITH OPTIONAL BARRIERS in millimeters (inches)





Vishay Semiconductors MTK (with and without optional barrier)

DIMENSIONS WITHOUT OPTIONAL BARRIERS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

```
        VS-52MT140KPBF
        VS-53MT120KPBF
        VS-51MT120KPBF
        VS-51MT160KPBF
        VS-53MT160KPBF
        VS-53MT160KPBF
        VS-53MT160KPBF
        VS-53MT160KPBF
        VS-53MT160KPBF
        VS-53MT160KPBF
        VS-111MT80KPBF
        VS-111MT80KPBF
        VS-113MT160KPBF
        VS-113MT160KPBF
        VS-113MT160KPBF
        VS-53MT80KPBF
        VS-52MT80KPBF
        VS-93MT160KPBF
        VS-52MT80KPBF
        VS-92MT160KPBF
        VS-93MT120KPBF
        VS-92MT160KPBF
        VS-93MT120KPBF
        VS-92MT160KPBF
        VS-93MT120KPBF
        VS-93MT
```