ABSOLUTE MAXIMUM RATINGS

IN, OUT, ENM, ENS to GND	0.3V to +6.0V
SET, LED_, C1N, C2N to GND	0.3V to $(V_{IN} + 0.3V)$
C1P, C2P to GND	0.3V to
the greater of	$f(V_{OUT} + 1V)$ or $(V_{IN} + 1V)$
OUT Short Circuit to GND	Continuous

Continuous Power Dissipation ($T_A = +70$ °C)	
16-Pin Thin QFN 4mm x 4mm	
(derate 16.9 mW/°C above +70°C)	1349mW
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

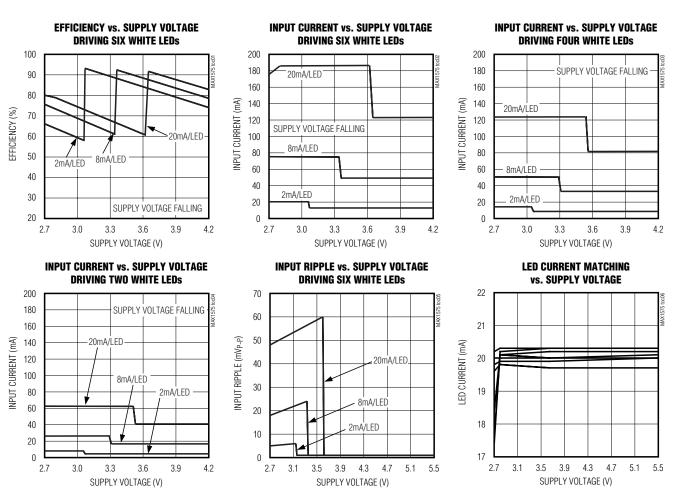
 $(V_{IN}=3.6V, V_{GND}=0V, ENM=ENS=IN, R_{SET}=6.81k\Omega, C_{IN}=C1=C2=C_{OUT}=1\mu F, T_A=-40^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IN Operating Voltage		2.7		5.5	V
Undervoltage-Lockout Threshold	V _{IN} falling	2.25	2.45	2.60	V
Undervoltage-Lockout Hysteresis			35		mV
OUT Overvoltage-Protection Threshold	V _{OUT} rising		5		V
NI- II Comple Compart	1MHz switching in 1.5x mode		2		A
No-Load Supply Current	No switching in 1x mode,10% setting		0.5		mA
Shutdown Supply Current	ENM = ENS = OUT = GND		0.1	2	μΑ
Soft-Start Time			2		ms
SET Bias Voltage			0.6		V
SET Leakage in Shutdown	ENM = ENS = GND		0.01	1	μΑ
CET Current Dence	$T_A = 0$ °C to +85°C	10		130	
SET Current Range	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	30		130	μΑ
SET-to-LED_ Current Ratio (ILED_ / ISET)	100% setting		234		A/A
LED Comment Assumption	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$	-8	±2	+8	%
LED Current Accuracy	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-9.5		+9.5	%
LED to LED Comment Metabling (Note 2)	$T_A = +25$ °C to $+85$ °C	-5	±1.5	+5	%
LED-to-LED Current Matching (Note 2)	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-6.5		+6.5	%
Maximum LED_ Sink Current	$R_{SET} = 4.53k\Omega$	27.4	30.0		mA
LED_ Dropout Voltage	(Note 3)		60	100	mV
LED_ 1x-to-1.5x Transition Threshold	V _{LED} falling	90	100	110	mV
LED Leakage in Shutdown	ENM = ENS = GND, V _{LED} = 5.5V		0.01	1	μΑ
Maximum OUT Current	V _{IN} ≥ 3.4V, V _{OUT} = 3.9V, 100% setting	120			mA
Ones Leen OLIT Peristance	1x mode (V _{IN} - V _{OUT}) / I _{OUT}		1	2.5	Ω
Open-Loop OUT Resistance	1.5x mode (1.5 x V _{IN} - V _{OUT}) / I _{OUT}		4.2	10	1 12
Switching Frequency			1		MHz
OUT Pulldown Resistance	ENM = ENS = GND		5		kΩ
ENM, ENS High Voltage	V _{IN} = 2.7V to 5.5V	1.6			V
ENM, ENS Low Voltage	V _{IN} = 2.7V to 5.5V			0.4	V
ENM, ENS Input Current	V _{EN} _ = 0V or 5.5V		0.01	1	μΑ
Shutdown Delay	From falling edge of ENM and ENS	1.0	2	3.3	ms

ELECTRICAL CHARACTERISTICS (continued)

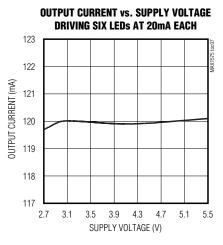
 $(V_{IN}=3.6V, V_{GND}=0V, ENM=ENS=IN, R_{SET}=6.81k\Omega, C_{IN}=C1=C2=C_{OUT}=1\mu F, T_A=-40^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Note 1)

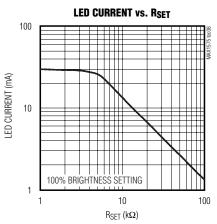
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{LO} (ENM, ENS) (Figure 1)		0.5		500	μs
t _{HI} (ENM, ENS) (Figure 1)		0.5			μs
Initial t _{HI} (ENM, ENS) (Figure 1)	Only required for first EN_ pulse	50			μs
Thermal-Shutdown Threshold			+160		°C
Thermal-Shutdown Hysteresis			20		°C

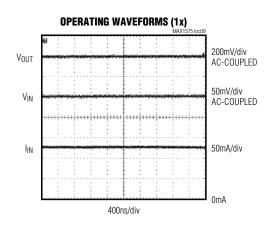

Note 1: Specifications to -40°C are guaranteed by design and not production tested.

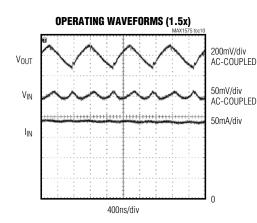
Note 2: LED current matching is defined as: (I_{LED} - I_{AVG}) / I_{AVG}

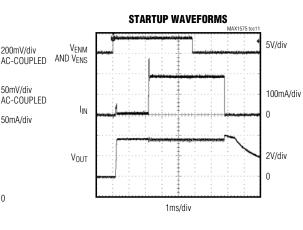
Note 3: Dropout voltage is defined as the LED_-to-GND voltage at which current into the LED drops 10% from the LED current at $V_{LED} = 0.2V$.

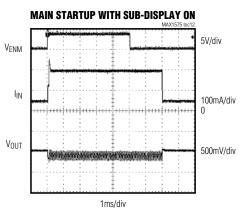

Typical Operating Characteristics

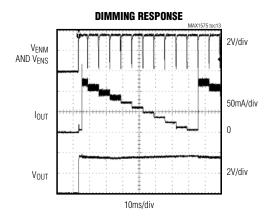

 $(V_{IN} = 3.6V, ENM = ENS = IN, circuit of Figure 2, T_A = +25$ °C, unless otherwise noted.)




Typical Operating Characteristics (continued)


 $(V_{IN} = 3.6V, ENM = ENS = IN, circuit of Figure 2, T_A = +25^{\circ}C, unless otherwise noted.)$





Pin Description

PIN	NAME	FUNCTION
1	C2P	Transfer-Capacitor 2 Positive Connection. Connect a 1µF ceramic capacitor from C2P to C2N.
2	OUT	Output. Connect a $1\mu F$ ceramic capacitor from OUT to GND. Connect OUT to the anodes of all the LEDs. OUT is internally pulled down with $5k\Omega$ during shutdown.
3	SET	Current-Set Input. Connect a resistor (R_{SET}) from SET to GND to set the maximum LED current. $I_{LED(MAX)} = 234 \times 0.6 \text{V} / R_{SET}$. SET is internally biased to 0.6 V. SET is high impedance during shutdown.
4	ENS	Enable and Dimming Control for LED5 and LED6 (Sub-Display). The first time ENS goes high (50µs min), LED5 and LED6 turn on at 100% brightness. Pulsing ENS low dims the LEDs in multiple steps. If ENS is held low for more than 2ms (typ), LED5 and LED6 turn off. When ENM and ENS are both held low for more than 2ms (typ), the IC goes into shutdown mode. See Figure 1.
5	ENM	Enable and Dimming Control for LED1–LED4 (Main Display). The first time ENM goes high (50µs min), LED1–LED4 turn on at 100% brightness. Pulsing ENM low dims the LEDs in multiple steps. If ENM is held low for more than 2ms (typ), LED1–LED4 turn off. When ENM and ENS are both held low for more than 2ms (typ), the IC goes into shutdown mode. See Figure 1.
6	LED6	Sub-Display LEDs Cathode Connection. Current flowing into LED_ is described in the ENS and SET
7	LED5	descriptions above. The charge pump regulates the lowest-enabled LED_voltage to 180mV. Connect LED_ to IN if the LED is not populated. LED_ is high impedance during shutdown.
8	LED4	
9	LED3	Main-Display LEDs Cathode Connection. Current flowing into LED_ is described in the ENM and SET
10	LED2	descriptions above. The charge pump regulates the lowest-enabled LED_ voltage to 180mV. Connect LED_ to IN if the LED is not populated. LED_ is high impedance during shutdown.
11	LED1	to 1111 the 222 to het populated. 223_ to high impodation datting dilated him
12	GND	Ground. Connect GND as close as possible to system ground and to the ground of the input bypass capacitor.
13	C1N	Transfer-Capacitor 1 Negative Connection. Connect a 1µF ceramic capacitor from C1P to C1N.
14	IN	Supply Voltage Input. Connect a 1µF ceramic capacitor from IN to GND. The input voltage range is 2.7V to 5.5V. IN is high impedance during shutdown.
15	C2N	Transfer-Capacitor 2 Negative Connection. Connect a 1µF ceramic capacitor from C2P to C2N.
16	C1P	Transfer-Capacitor 1 Positive Connection. Connect a 1µF ceramic capacitor from C1P to C1N.
_	EP	Exposed Paddle. Connect the exposed paddle to GND.

Detailed Description

The MAX1575 charge pump drives up to four white LEDs in the main display and up to two white LEDs in the sub-display with regulated constant current for uniform intensity. By utilizing adaptive 1x/1.5x charge-pump modes and very-low-dropout current regulators, it achieves high efficiency over the 1-cell lithium-battery input voltage range. 1MHz fixed-frequency switching allows for tiny external components and low input ripple.

1x to 1.5x Switchover

When V_{IN} is higher than V_{OUT} , the MAX1575 operates in 1x mode and V_{OUT} is pulled up to V_{IN} . The internal current regulators regulate the LED current. As V_{IN} drops, V_{LED} eventually falls below the switchover threshold of 100mV and the MAX1575 starts switching in 1.5x mode.

When the input voltage rises above V_{OUT} by about 50mV, the MAX1575 switches back to 1x mode.

Soft-Start

The MAX1575 includes soft-start circuitry to limit inrush current at turn-on. When starting up, the output capacitor is charged directly from the input with a ramped current source (with no charge-pump action) until the output voltage approaches the input voltage. Once this occurs, the charge pump determines if 1x or 1.5x mode is required. In the case of 1x mode, the soft-start is terminated and normal operation begins. During the soft-start time, the output current is set to 5% of the maximum set by RSET. In the case of 1.5x mode, soft-start operates until the lowest of LED1–LED6 reaches regulation. If an overload condition occurs, soft-start repeats every 2ms. If the output is shorted to ground (or <1.25V), the part reverts to soft-start and the ramped current source.

Setting the Output Current

The LED current at full (100%) brightness is set (up to 30mA) by a resistor, R_{SET}, as follows:

$$R_{SET} = \frac{0.6V \times 234}{I_{LED}}$$

ENM and ENS Dimming Controls

When the LEDs are enabled by driving ENM or ENS high, the LED current initially goes to I_{LED}.

Dimming for the main display is done by pulsing ENM low (500ns to 500µs pulse width). Dimming for the subdisplay is done by pulsing ENS low (500ns to 500µs pulse width). Each pulse reduces the LED current by 10%, so after one pulse the LED current is 0.9 x I_{LED}. The 10th pulse reduces the current by 5% so the LED current reduces from 0.1 x I_{LED} to 0.05 x I_{LED}. The 11th pulse sets the LED current back to I_{LED}. Figure 1 shows a timing diagram for EN_.

Because soft-start is longer than intitial t_{HI} , apply dimming pulses quickly upon startup (after initial t_{HI}) to avoid LED_ current transitioning through full brightness. If dimming control is not required, EN_ work as simple on/off controls. Drive ENM high to enable the main LEDs, or drive ENM low to turn off the main LEDs. Drive ENS high to enable the sub-LEDs, or drive ENS low to turn off the sub-LEDs. Drive both ENM and ENS low to put the IC in low-power shutdown mode.

Shutdown Mode

When both ENM and ENS are held low for 2ms or longer, the MAX1575 is shut down and put in a low-current mode. OUT is internally pulled to GND with $5k\Omega$ during shutdown.

Overvoltage Protection

If any LED fails as an open circuit, the output voltage is limited to approximately 5V by gating on/off the charge pump. In case any LED_ is floating or grounded, the MAX1575 operates in the same overvoltage-protection mode. To avoid overvoltage-protection mode when using fewer than six LEDs, connect any unused LED_ to IN.

Thermal Shutdown

The MAX1575 includes a thermal-limit circuit that shuts down the IC at approximately +160°C. The part turns on after the IC cools by approximately 20°C.

_Applications Information

Driving Fewer than Six LEDs

When driving fewer than six LEDs, connect any unused LED_ directly to IN (Figure 3). When connected in this manner, the corresponding LED driver is disabled.

Input Ripple

For LED drivers, input ripple is more important than output ripple. Input ripple depends on the source supply's impedance. Adding a lowpass filter to the input further reduces input ripple. Alternately, increasing C_{IN} to 2.2µF cuts input ripple in half with only a small increase in footprint. The 1x mode always has very low input ripple.

Figure 1. EN_ Timing Diagram

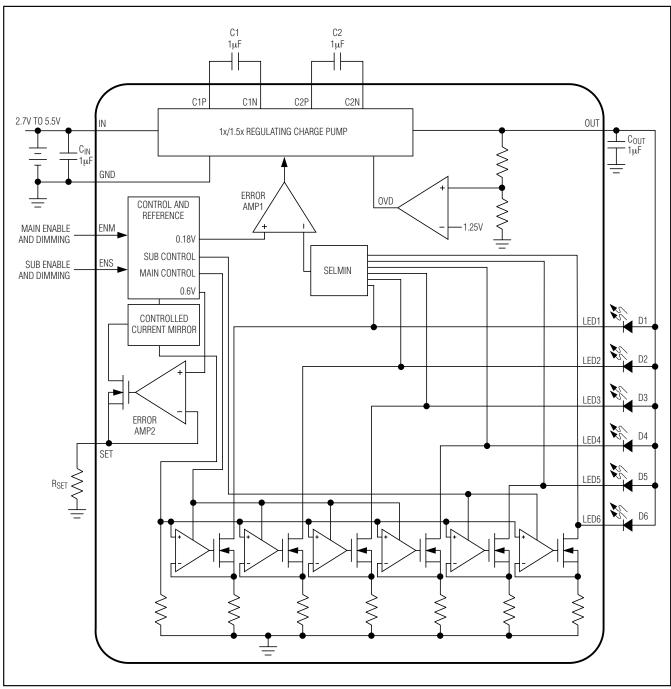
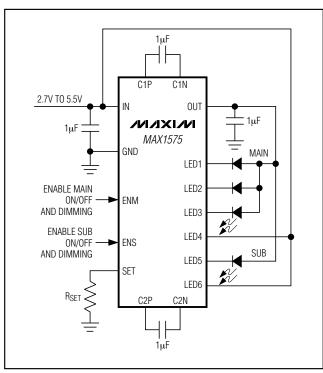


Figure 2. Functional Diagram and Typical Application Circuit



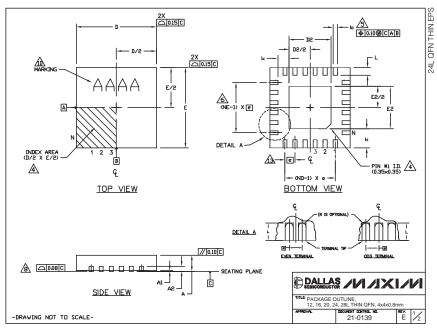

Figure 3. Driving Fewer than Six White LEDs

Table 1. Recommended Components

DESIGNATION	VALUE	MANUFACTURER	PART	DESCRIPTION
		Murata	GRM155R60J105K	1μF ±10%, 6.3V X5R ceramic capacitors (0402)
C _{IN} , C _{OUT} , C1, C2	1µF	Taiyo Yuden	JMK107BJ105KA	1μF ±10%, 6.3V X5R ceramic capacitors (0603)
		TDK	C1005X5R0J105M	1μF ±20%, 6.3V X5R ceramic capacitors (0402)
D1-D6		Nichia	NSCW215T	White LEDs
RSET	As required	Kamaya		1% resistor
INSEL	As required	Panasonic		1 /0 16515101

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

				COM	NDN	DIME	IIZN	ZNE									E	XPDS	SED	PAD	VAR	ITAI	DNS	
PKG	12	2L 4×	(4	16	L 4x	4	20	L 4×	4	2.	4L 4>	(4	28	3L 4×	(4	П	PKG.		D2			E5		DOWN
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	Ш	CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	ALLOVE
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	H	T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	20.0	0.05	0.0	0.02	0.05	0.0	20.0	0.05	0.0	0.02	0.05	0.0	0.02	0.05	H	T1244-4	1.95	2.10	2.25	1.95	510	2.25	ND
A2	+	.20 RE	-	_	20 RE	_		20 RE	_	-	.20 RE	-		20 RE		Н	T1644-3	1.95	2.10	2.25	1.95	510	2,25	YES
b	0.25	_	0.35	0.25	0.30	0.35		0.25	0.30	_	0.23	0.30	0.15	0.20	0.25	Н	T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3,90	4.00	4.10	3.90	4.00	4.10		4.00		3.90	4.00	4.10	3.90	4.00	4.10	H	T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
E	3.90	4.00	4.10	3.90	4.00	4.10		4.00	4.10		4.00	4.10	3.90	4.00	4.10	Н	T2044-3	1.95	2.10	2.25	1.95	510	2.25	ND
e k	0.25	D.80 BS	SU. _	0.25	65 BS	Ľ	0.25	50 BS	Ľ.	0.25	.50 BS	L. _	0.25	40 BS	i -	H	T2444-2 T2444-3	2.45	2.10	2.25	2.45	5.10	2.25	YES
L	0.45	0.55	0.65	0.45	0.55	0.65		0.55	0.65	0.30	0.40	0.50	0.20	0.40		Н	T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND IE2
N	0.45	12	0.65	0.45	16	0.03	0.45	20	0.65	0.30	24	0.50	0.30	28	0.50	H	T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	NO
	-				4		-	5		-	6		 	7	-	١.	1044 1	L.50	L.00	L./0	L.30	2.00	L./0	140
	1																							
ND NE	\vdash	3			-			5		 	6			7										
NE Jedec Var.	ES: DIMENS	3 VGGB	& TO	ERANC	4 VGGC	ONFORM		5 //GGD-:	-		_	-2		_										
NE Jediec Vor. NOTE 1. 2. 3.	DIMENS ALL DIV N IS T	3 VGGB SIONING MENSIO HE TOT	NS ARE	IN MI	4 WGGC ING CO LLIMET OF TER	ERS. AI MINALS	TO AS	5 VGGD-: SME Y1 ARE IN	4.5M— I DEGR	1994. EES.	6 WGGD-		•	7 VGGE										
NE Jedec Var.	DIMENS ALL DIV N IS T	3 VGGB SIONING MENSIO HE TOT CRMINAL	NS ARE TAL NUI _#1 IC PP-01:	IN MI MBER (ENTIFIE 2. DETA	4 VGGC ING CO LUMETI OF TER ER AND ILS OF	ERS. AI MINALS TERMI TERMI	TO AS	5 #GGD- SME Y1 ARE IN	14.5M— I DEGR NG COI	1994. EES. NVENTK RE OPT	6 WGGD-	ALL CD	NFORM UST BE	7 VGGE TO LOCAT	TED WITH	HIN								
NE Jedec Var.	DIMENS ALL DIV N IS TO THE TE JESD 9 THE ZO	3 VGGB HENSIO HE TOT RMINAL 15-1 S ONE INI	NS ARE TAL NUI PP-01: DICATED APPLIE	IN MI MBER (MENTIFIE 2. DETA). THE	4 WGGC ING CO LUMET OF TER ER AND ILS OF TERMIN	ERS. AI MINALS TERMI TERMII IAL #1	TO AS NGLES NAL NL NAL #1 IDENTI	5 #GGD-: SME Y1 ARE IN IMBERII IDENTI FIER M	14.5M— I DEGR NG COI FIER AI	1994. EES. NVENTIK RE OPT EITHEF	6 WGGD- ON SHA IONAL, R A MC	ALL CO BUT M BUD OR	NFORM UST BE MARKE	7 VGGE TO : LOCAT										
NE Jedec Var. NOTE 1. 2. 3. A	DIMENS ALL DIV N IS THE TE JESD 9 THE ZO DIMENS	3 VGGB HE TOT RMINAL 15-1 S SONE INI BION 6	NS ARE TAL NUI PP-01: DICATED APPLIE AL TIP.	IN MI MEDER (DENTIFIE 2. DETA 3. THE S TO I	4 WGGC ING CC LUMETI OF TER OF AND ILS OF TERMIN	ERS. AI MINALS TERMI TERMI VAL #1 ZED TE	TO AS NGLES NAL NL NAL #1 IDENTII	5 WGGD- SME Y1 ARE IN IMBERII IDENTI FIER M	I 4.5M— I DEGR ING COI FIER AI IAY BIE	1994. EES. NMENTIK RE OPT EITHEF ASURED	ON SHA	ALL CO BUT M BLD OR EEN O.:	NFORM UST BE MARKE 25 mm	7 VGGE TO LOCAL ED FEA	TURE.									
NE Jedec Var. NOTE 1. 2. 3. 4. 6.	DIMENS ALL DIP N IS TO THE TE JESD 9 THE ZO DIMENS FROM	3 VGGB HENSIO HE TOT FRMINAL SONE INI SION B TERMIN	NS ARE TAL NUI PP-01: DICATED APPLIE AL TIP.	E IN MI MENTIFIE 2. DETA 3. THE S TO I	4 WGGC ING CC LUMETI OF TER READO ALS OF TERMIN METALLI : NUME	ERS. AI MINALS TERMI TERMI IAL #1 ZED TE	TO AS VIGLES . NAL NL IDENTII RMINAL	5 #GGD-: SME Y1 ARE IN IMBERII IDENTI FIER M . AND	I 4.5NI— I DEGR NG COI FIER AI IAY BIE IS MEA	1994. EES. NMENTIK RE OPT EITHEF ASURED	ON SHA	ALL CO BUT M BLD OR EEN O.:	NFORM UST BE MARKE 25 mm	7 VGGE TO LOCAL ED FEA	TURE.									
NOTE 1. 2. 3. A. 5.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI	3 VGGB SIONING MENSIO HE TOT FRMINAL 15-1 S ONE INI SION B TERMIN D NE F	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. TEFER N IS PO	E IN MI MBER (DENTIFIE 2. DETA). THE IS TO I TO THE DSSIBLE	4 VGGC ING CC LUMETI OF TER OF AND ILS OF TERMIN METALLI : NUME : NUME	ERS. AI MINALS TERMI TERMI VAL #1 ZED TE VER OF SYMME	TO AS VIGLES NAL NIL VIL #1 IDENTII TRMINAL TERMIN	5 //GGD-	14.5M— I DEGR ING COI FIER AI IAY BIE IS MEA	1994. EES. NVENTIK RE OPT EITHER ASURED	ON SHATONAL, R A NO	ALL CDI BUT M NLD OR EEN O.:	NFORM UST BE MARKE 25 mm	TO LOCAL ED FEA	TURE.									
NOTE 1. 2. 3. A. 7. A.	DIMENS ALL DIP N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPI	3 VGGB NGGB NGCONING MENSIO HE TOT RMINAL 15-1 S ONE IN 15ONE	NS ARE TAL NUI #1 ID PP-012 DICATED APPLIE N IS PO APPLIE	E IN MI MBER (DENTIFIE 2. DETA 2. THE 2S TO I TO THE DSSIBLE S TO T	4 VGGC ING CC LUMETI OF TER AND ILS OF TERMIN METALLI : NUME : NUME : IN A THE EX	ERS. AMINALS TERMIT TER	NAL MIL NAL MI IDENTII TERMINAL TERMINAL HEAT	5 MGGD-	I 4.5M— I DEGR ING COI FIER AI IAY BIE IS MEA	1994. EES. NVENTIK RE OPT EITHEF ASURED H D A	ON SHA IONAL, R A MO BETWI	ALL CD BUT M BLD OR EEN O.:	NFORM UST BE MARKE 25 mm :SPECTI	TO LOCATED FEA	TURE.									
NOTE 1. 2. 3. A. 7. P. 9.	DIMENS ALL DIN N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPI GOPLA	3 VGGB KIONING MENSIO HE TOT CRMINAL 15-1 S DISONE INI TERMIN D NE F ULATION VARITY G CON	NS ARE TAL NUI #1 ID PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS	E IN MI MEDER (DENTIFIE 2. DETA 3. THE 3S TO 1 TO THE DSSIBLE S TO 1	MGGC ING CC LUMETO OF TERMIN METALLI INUME IN A THE EX	ERS. AI MINALS TERMI TERMI IAL #1 ZED TE ER OF SYMME POSED 0220,	TO AS VIGLES NAL NIL IDENTI RMINAL TERMIN TRICAL HEAT: EXCEPT	SME YI ARE IN INBERII IDENTI FIER M AND WALS C FASHIN SINK S	I 4.5NI— I DEGR NG COI FIER AI IAY BIE IS MEA ON EAC ON. ELUG AI T2444	1994. EES. NVENTIK RE OPT EITHEF ASURED H D A	ON SHA IONAL, R A MO BETWI	ALL CD BUT M BLD OR EEN O.:	NFORM UST BE MARKE 25 mm :SPECTI	TO LOCATED FEA	TURE.									
NOTE 1. 2. 3. 4. 5. 9.	DIMENS ALL DII N IS THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPE COPLAY	3 VGGB NGGB NGCONING MENSIO HE TOT CRMINAL 15-1 S ONE INI HE TOT CRMINAL ONE HE TOT CRMIN	NS ARE TAL NUI IF1 ID PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS OR PAC	E IN MI MBER (PENTIFIE 2. DETA 2. THE ES TO I TO THE DSSIBLE S TO I TO JE KAGE (4 VGGC ING CC LLIMETI FER AND FIERMIN METALLI IN NA HEE EX THE EX DRIENTA	ERS. AI MINALS TERMI TERMI TERMI ZED TE SYMME POSED 0220, ATION F	TO AS VIGLES NAL NIL IDENTIFICAL TERMINAL HEAT : EXCEPT	SME YI ARE IN INBERII IDENTI FIER M AND WALS C FASHIN SINK S	I 4.5NI— I DEGR NG COI FIER AI IAY BIE IS MEA ON EAC ON. ELUG AI T2444	1994. EES. NVENTIK RE OPT EITHEF ASURED H D A	ON SHA IONAL, R A MO BETWI	ALL CD BUT M BLD OR EEN O.:	NFORM UST BE MARKE 25 mm :SPECTI	TO LOCATED FEA	TURE.									
NOTE 1. 2. 3. 4. 6. 7. 11. 0	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND AND DEPOPER COPLAN DRAWIN MARKING	3 VGGB VGGB WENSIO HE TOT 5-1 S S SIONE IN TERMINA D NE F ULATION HARITY HG CON C IS FC	NS ARE TAL NUI PP-012 DICATED APPLIE APPLIE APPLIE TORMS DR PAC SHALL I	E IN MI MBER (MENTIFIE 2. DETA 2. THE S TO I TO THE DSSIBLE S TO I TO JE KAGE (NOT EX	4 WGGC LUMETI OF TERMIN METALLI : NUMB : NI A DRIENTI CCEED	ERS. AI MINALS TERMI TERMI VAL #1 ZED TE SYMME POSED 10220, ATION F	TO AS VIGLES NAL NIL IDENTIFICAL TERMINAL HEAT : EXCEPT	SME YI ARE IN INBERII IDENTI FIER M AND WALS C FASHIN SINK S	I 4.5NI— I DEGR NG COI FIER AI IAY BIE IS MEA ON EAC ON. ELUG AI T2444	1994. EES. NVENTIK RE OPT EITHEF ASURED H D A	ON SHA IONAL, R A MO BETWI	ALL CD BUT M BLD OR EEN O.:	NFORM UST BE MARKE 25 mm :SPECTI	TO LOCATED FEA	TURE.									
NOTE 1. 2. 3. 4. 7. 6. 11. 0. 11. 12. W	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPU GOPLAN DRAWIN ARKING COPLAN	3 VGGB WENSION MENSION ME TOTO MENSION	NS ARE TAL NUI #1 E #P-012 DICATE APPLIE APPLIE APPLIE TEFER N IS PO APPLIE APPLIE APPLIE TORMS OR PAC SHALL I L NOT LI NOT INES TO	E IN MI MESER (MENTIFIE 2. DETA 2. THE S TO I TO THE DSSIBLE S TO I TO JE KAGE (NOT EX EXCEE D SEE A	4 VGGC LUMETI OF TER AND ILS OF TERMIN METALLI E IN A RIENTA CEED I ND 0.1 T TRUE	ERS. AI MINALS TERMI TERMI IAL #1 IZED TE ER OF SYMME POSED 0220, ATION F 0.08mm C POSIT	I TO AS NGLES	5 MGGD- MGGD- MGGD- MARE IN MBERII IDENTI IDENTI IDENTI IFER M AND AND FASHIK S F FOR GCE OF	14.5N-1 DEGR ING COINTER AIR SE IS MEA	1994. EES. NVENTIK RE OPT EITHEF ASURED H D A	6 WGGD- ON SHA IONAL, R A MC BETWI	ALL CD BUT M NLD OR EEN O.: SIDE RE HE TER AND 1	NFORM UST BE MARKE 25 mm SPECTI MINALS, '2844-	7 7 7 VGGE TO LOCAT	TURE.			DA	I L A	AS A	1		X	1/1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX1575ETE MAX1575ETE-T