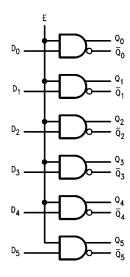


Pin Descriptions


•	
Pin Names	Description
D ₀ -D ₅	Data Inputs
E	Enable Input
$\frac{Q_0 - Q_5}{\overline{O}}$	Data Outputs
$\overline{Q}_0 - \overline{Q}_5$	Complementary
	Data Outputs

Truth Table

Inp	uts	Out	puts
D _n	E	Q _n	Q _n
Х	L	L	Н
L	Н	L	Н
Н	Н	Н	L

H = HIGH Voltage Level L = LOW Voltage Level

Logic Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})
Maximum Junction Temperature (T _J)
V _{EE} Pin Potential to Ground Pin
V _{TTL} Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

$-65^{\circ}C$ to $+150^{\circ}C$
+150°C
-7.0V to +0.5V
-0.5V to +6.0V
-0.5V to +6.0V
–50 mA
≥2000V

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	$0^{\circ}C$ to $+85^{\circ}C$
Industrial	-40°C to +85°C
Supply Voltage (V _{EE})	-5.7V to -4.2V

100324

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to $+85^{\circ}C$, $V_{TTL} = +4.5V$ to +5.5V

Symbol	Parameter	Min	Тур	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} =V _{IH (Max)}	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	IIIV	or V _{IL (Min)}	50Ω to $-2.0V$	
V _{OHC}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH(Min)}$	Loading with	
V _{OLC}	Output LOW Voltage			-1610	IIIV	or VIL (Max)	50Ω to $-2.0V$	
V _{IH}	Input HIGH Voltage	2.0		5.0	V	Guaranteed HIGH		
						Signal for All Inputs		
V _{IL}	Input LOW Voltage	0		0.8	V	Guaranteed LOW		
						Signal for All Inputs		
V _{CD}	Input Clamp Diode Voltage	-1.2			V	$I_{IN} = -18 \text{ mA}$		
IIH	Input HIGH Current					V _{IN} = +2.4V,		
	Data			20	μΑ	All Other Inputs $V_{IN} = G$	ND	
	Enable			120				
	Input HIGH Current			1.0	mA	V _{IN} = +5.5V,		
	Breakdown Test, All Inputs			1.0	IIIA	All Other Inputs = GND		
IIL	Input LOW Current					V _{IN} = +0.4V,		
	Data	-0.9			mA	All Other Inputs $V_{IN} = V_I$	н	
	Enable	-5.4						
I _{EE}	V _{EE} Power Supply Current	-70	-45	-22	mA	All Inputs V _{IN} = +4.0V		
I _{TTL}	V _{TTL} Power Supply Current		25	38	mA	All Inputs V _{IN} = GND		

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electric Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $V_{TTL} = +4.5V$ to +5.5V

Symbol	Parameter	$\mathbf{T_C} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		T _C =	+85°C	Units	Conditions
		Min	Max	Min	Max	Min	Max	Units	conditions
t _{PLH}	Propagation Delay	0.50	3.00	0.50	2.90	0.50	3.00	ns	
t _{PHL}	Data and Enable to Output	0.50	3.00	0.50	2.90	0.50	3.00	115	Figures 1, 2
t _{TLH}	Transition Time	0.45	1.80	0.45	1.80	0.45	1.80	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.00	0.45	1.00	0.45	1.00	115	

100324

Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics

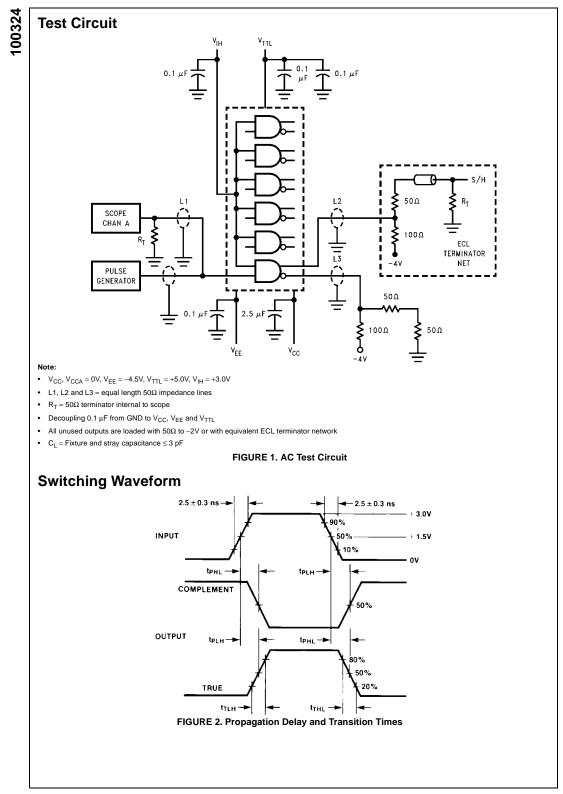
Symbol	Parameter	$\mathbf{T}_{\mathbf{C}} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
Cymbol	Falameter	Min	Max	Min	Max	Min	Max	Units	conditions
t _{PLH}	Propagation Delay	0.50	2.80	0.50	2.70	0.50	2.80	ns	
t _{PHL}	Data and Enable to Output	0.50	2.00	0.50	2.70	0.00	2.00	113	Figures 1, 2
t _{TLH}	Transition Time	0.45	1.70	0.45	1.70	0.45	1.70	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.70	0.45	1.70	0.45	1.70	115	
t _{OSHL}	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		0.95		0.95		0.95	ns	(Note 4)
	Data to Output Path								
t _{OSLH}	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		0.70		0.70		0.70	ns	(Note 4)
	Data to Output Path								
t _{ost}	Maximum Skew Opposite Edge								PLCC Only
	Output-to-Output Variation		1.60		1.60		1.60	ns	(Note 4)
	Data to Output Path								
t _{PS}	Maximum Skew								PLCC Only
	Pin (Signal) Transition Variation		1.20		1.20		1.20	ns	(Note 4)
	Data to Output Path								

Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same pack-aged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

www.fairchildsemi.com

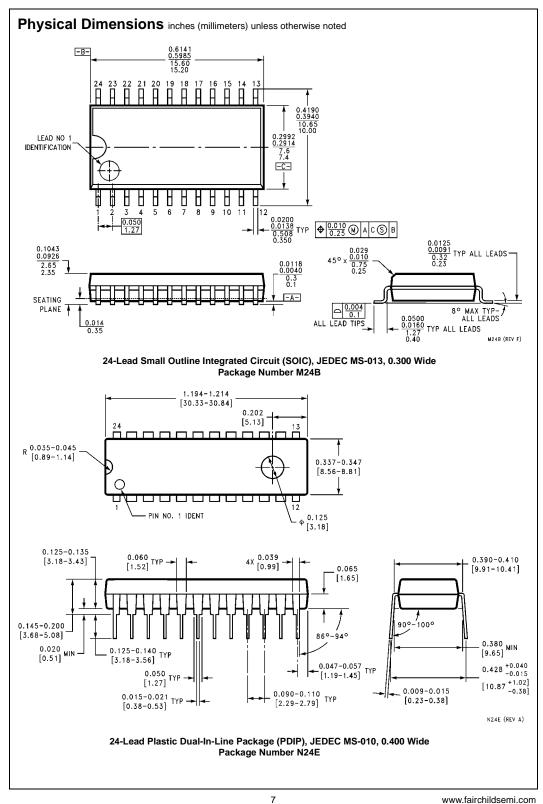
DC Electrical Characteristics (Note 5) $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = -40^{\circ}C$ to +85°C, $V_{TTL} = +4.5V$ to +5.5V

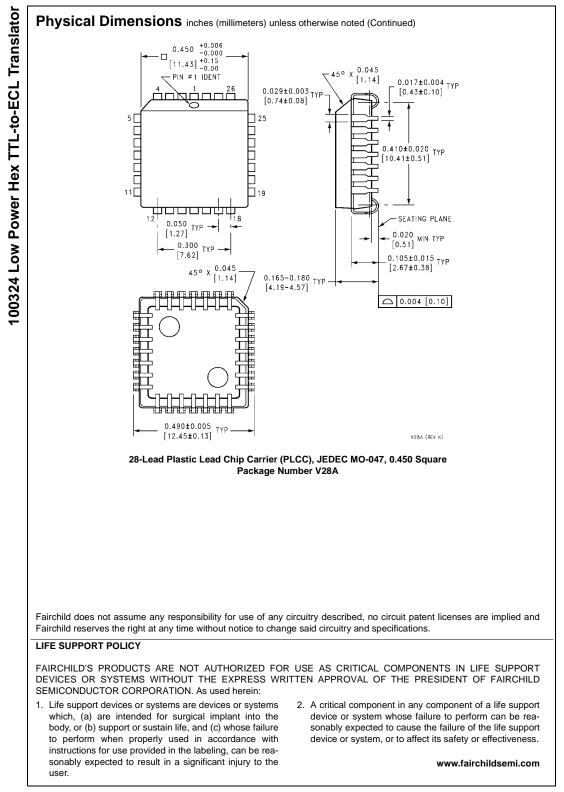
Symbol	Parameter	T _C =	–40°C	$T_C = 0^{\circ}C$ to $+85^{\circ}C$		Units	Conditions		
Symbol		Min	Max	Min	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} =V _{IH (Max)} Lo	pading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	IIIV	or V _{IL (Min)} 50	0Ω to -2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH(Min)}$ Lo	pading with	
V _{OLC}	Output LOW Voltage		-1565		-1610	mv	or V _{IL (Max)} 50	0Ω to -2.0V	
V _{IH}	Input HIGH Voltage	2.0	5.0	2.0	5.0	V	Guaranteed HIGH		
							Signal for All Inputs		
V _{IL}	Input LOW Voltage	0	0.8	0	0.8	V	Guaranteed LOW		
							Signal for All Inputs		
V _{CD}	Input Clamp Diode Voltage	-1.2		-1.2		V	$I_{IN} = -18 \text{ mA}$		
IIH	Input HIGH Current						V _{IN} = +2.4V,		
	Data		20		20	μA	All Other Inputs $V_{IN} =$	GND	
	Enable		120		120				
	Input HIGH Current		1.0		1.0	mA	V _{IN} = +5.5V,		
	Breakdown Test, All Inputs		1.0		1.0		All Other Inputs = GND		
I _{IL}	Input LOW Current						V _{IN} = +0.4V,		
	Data	-0.9		-0.9		mA	All Other Inputs $V_{IN} =$	VIH	
	Enable	-5.4		-5.4					
I _{EE}	V _{EE} Power Supply Current	-70	-22	-70	-22	mA	All Inputs V _{IN} = +4.0V		
I _{TTL}	V _{TTL} Power Supply Current		38		38	mA	All Inputs V _{IN} = GND		


Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

 $\mathsf{V}_{EE}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{CC}=\mathsf{V}_{CCA}=GND,\,\mathsf{V}_{TTL}=+4.5\mathsf{V}$ to $+5.5\mathsf{V}$


Symbol	Parameter	$T_C = -40^{\circ}C$		T _C = +25°C		$T_C = +85^{\circ}C$		Units	Conditions
	Faraneter	Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH} t _{PHL}	Propagation Delay Data and Enable to Output	0.50	2.80	0.50	2.70	0.50	2.80	ns	Figures 1, 2
t _{TLH} t _{THL}	Transition Times 20% to 80%, 80% to 20%	0.35	1.80	0.45	1.70	0.45	1.70	ns	Figures 1, 2


100324

www.fairchildsemi.com

6

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

100324QCX 100324QIX 100324SC 100324PC 100324QC 100324DC 100324QI 100324SCX