
4 Functional diagram

5 Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

1 4 5 10 21 1 111 4 5 5 5 1	- Pareri	
Symbol	Pin	Description
1DIR, 2DIR	1, 24	direction control input
1B0 to 1B7	2, 3, 5, 6, 8, 9, 11, 12	data input/output
2B0 to 2B7	13, 14, 16, 17, 19, 20, 22, 23	data input/output
GND	4, 10, 15, 21, 28, 34, 39, 45	ground (0 V)
V _{CC}	7, 18, 31, 42	supply voltage
1 OE , 2 OE	48, 25	output enable input (active LOW)
1A0 to 1A7	47, 46, 44, 43, 41, 40, 38, 37	data input/output
2A0 to 2A7	36, 35, 33, 32, 30, 29, 27, 26	data input/output

6 Functional description

Table 3. Function table ^[1]

Inputs		Outputs			
nOE	nDIR	nAn	nBn		
L	L	nAn = nBn	inputs		
L	Н	inputs	nBn = nAn		
Н	X	Z	Z		

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

7 Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7.0	V
VI	input voltage		[1]	-1.2	+7.0	V
Vo	output voltage	output in OFF-state or HIGH-state	[1]	-0.5	+5.5	V
I _{IK}	input clamping current	V _I < 0 V		-18	-	mA
lok	output clamping current	V _O < 0 V		-50	-	mA
Io	output current	output in LOW-state		-	128	mA
		output in HIGH-state		-64	-	mA
Tj	junction temperature		[2]	-	150	°C
T _{stg}	storage temperature			-65	+150	°C

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

8 Recommended operating conditions

Table 5. Operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		4.5	5.5	V
VI	input voltage		0	V _{CC}	V
V _{IH}	HIGH-level input voltage		2.0	-	V
V _{IL}	LOW-level input voltage		-	0.8	V
I _{OH}	HIGH-level output current		-32	-	mA
I _{OL}	LOW-level output current		-	64	mA
Δt/ΔV	input transition rise and fall rate		-	10	ns/V
T _{amb}	ambient temperature	in free air	-40	+85	°C

9 Static characteristics

Table 6. Static characteristics

Symbol	Parameter	Conditions		25 °C			-40 °C to	Unit	
				Min	Тур	Max	Min	Max	
V _{IK}	input clamping voltage	V _{CC} = 4.5 V; I _{IK} = -18 mA		-1.2	-0.9	-	-1.2	-	V
V _{OH}	HIGH-level	$V_I = V_{IL}$ or V_{IH}							
	output voltage	V _{CC} = 4.5 V; I _{OH} = -3 mA		2.5	2.9	-	2.5	-	٧
		V _{CC} = 5.0 V; I _{OH} = -3 mA		3.0	3.4	-	3.0	-	V
		V _{CC} = 4.5 V; I _{OH} = -32 mA		2.0	2.4	-	2.0	-	V
V _{OL}	LOW-level output voltage	V_{CC} = 4.5 V; I_{OL} = 64 mA; V_I = V_{IL} or V_{IH}		-	0.42	0.55	-	0.55	V
I _I	input leakage current	control pins; $V_{CC} = 5.5 \text{ V}$; $V_I = V_{CC} \text{ or GND}$		-	±0.01	±1.0	-	±1.0	μΑ
I _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}; V_{I} \text{ or } V_{O} \le 4.5 \text{ V}$		-	±5.0	±100	-	±100	μΑ
I _{O(pu/pd)}	power-up/ power-down output current	V_{CC} = 2.0 V; V_O = 0.5 V; V_I = GND or V_{CC} ; $n\overline{OE}$ = HIGH		-	±5.0	±50	-	±50	μА
l _{oz}	OFF-state	V_{CC} = 5.5 V; V_I = V_{IL} or V_{IH}							
	output current	output HIGH-state at V _O = 5.5 V		-	0.1	10	-	10	μA
		output LOW-state at V _O = 0 V		-	-0.1	-10	-	-10	μA
I _{CEX}	output high leakage current	HIGH-state; V_O = 5.5 V; V_{CC} = 5.5 V; V_I = GND or V_{CC}		-	5.0	50	-	50	μΑ
Io	output current	V _{CC} = 5.5 V; V _O = 2.5 V	[2]	-50	-92	-180	-50	-180	mA
I _{CC}	supply current	V_{CC} = 5.5 V; V_I = GND or V_{CC}							
		outputs HIGH-state		-	0.30	0.7	-	0.7	mA

74ABT16245B_Q100

All information provided in this document is subject to legal disclaimers.

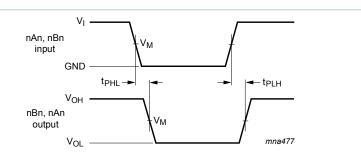
© Nexperia B.V. 2017. All rights reserved.

Symbol	Parameter	arameter Conditions		25 °C			-40 °C to +85 °C		
			Min	Тур	Max	Min	Max		
		outputs LOW-state	-	10	19	-	19	mA	
		outputs 3-state	-	0.30	0.7	-	0.7	mA	
ΔI_{CC}	additional supply current	per input pin; V_{CC} = 5.5 V; one data input at 3.4 V and other inputs at V_{CC} or GND	[3]						
		outputs enabled		400	700	-	700	μA	
		outputs disabled	-	100	250	-	250	μA	
		control pins; outputs disabled; one enable input at 3.4 V and other inputs at V_{CC} or GND	-	400	700	-	700	μA	
Cı	input capacitance	$V_I = 0 \text{ V or } V_{CC}$	-	4	-	_	-	pF	
C _{I/O}	input/output capacitance	outputs disabled; $V_O = 0 \text{ V or } V_{CC}$	-	7	-	-	-	pF	

^[1] This parameter is valid for any V_{CC} between 0 V and 2.1 V, with a transition time of up to 10 ms. From V_{CC} = 2.1 V to V_{CC} = 5 V ± 10 %, a transition time of up to 100 μ s is permitted.

10 Dynamic characteristics

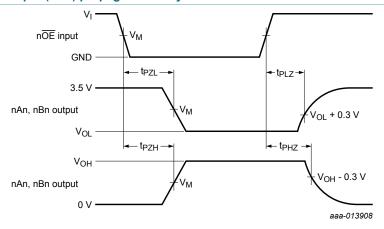
Table 7. Dynamic characteristics


GND = 0 V. For test circuit, see Figure 6.

Symbol	Parameter	Conditions	V	25 °C; _{CC} = 5.0 °	V	-40 °C to +85 °C; $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$		Unit
			Min	Тур	Max	Min	Max	
t _{PLH}	LOW to HIGH propagation delay	nAn to nBn; see <u>Figure 4</u>	1.0	2.0	3.2	1.0	3.5	ns
t _{PHL}	HIGH to LOW propagation delay	nAn to nBn; see Figure 4	1.0	2.3	3.5	1.0	4.0	ns
t _{PZH}	OFF-state to HIGH propagation delay	nOE to nAn or nBn; see <u>Figure 5</u>	1.0	3.0	4.4	1.0	5.1	ns
t _{PZL}	OFF-state to LOW propagation delay	nOE to nAn or nBn; see <u>Figure 5</u>	1.7	4.0	5.2	1.7	6.1	ns
t _{PHZ}	HIGH to OFF-state propagation delay	nOE to nAn or nBn; see <u>Figure 5</u>	1.7	3.5	4.9	1.7	5.4	ns
t _{PLZ}	LOW to OFF-state propagation delay	nOE to nAn or nBn; see Figure 5	1.5	3.2	4.4	1.5	5.0	ns

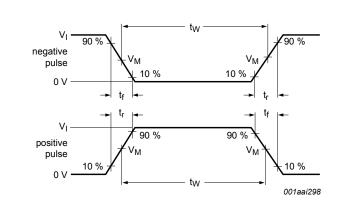
^[2] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

^[3] This is the increase in supply current for each input at 3.4 V.


10.1 Waveforms and test circuit

 $V_{M} = 1.5 V$

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.


Figure 4. Input (nAn) to output (nBn) propagation delay times

 $V_{M} = 1.5 V$

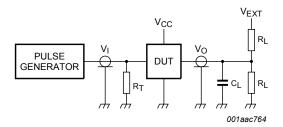

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Figure 5. 3-state output enable and disable times

 $V_{M} = 1.5 V$

a.Input pulse definition

Test data is given in Table 8.

Definitions test circuit:

R_I = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

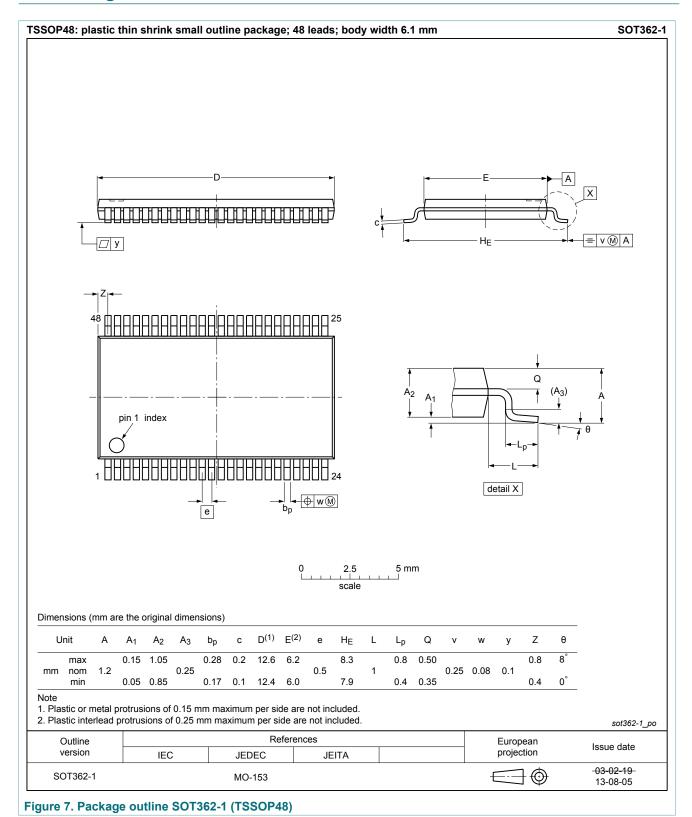

b.Test circuit

Figure 6. Test circuit for measuring switching times

Table 8. Test data

Input			Load		V _{EXT}			
V_{I}	fi	t _W	t _r , t _f	CL	R _L	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
3.0 V	1 MHz	500 ns	2.5 ns	50 pF	500 Ω	open	7.0 V	open

11 Package outline

74ABT16245B_Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

12 Abbreviations

Table 9. Abbreviations

Acronym	Description
BiCMOS	Bipolar Complementary Metal Oxide Semiconductor
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model

13 Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74ABT16245B_Q100 v.1	20170410	Product data sheet	-	-

14 Legal information

14.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions". [2] [3]
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own

74ABT16245B Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74ABT16245B-Q100

16-bit bus transceiver; 3-state

Contents

1	General description	1
2	Features and benefits	
3	Ordering information	1
4	Functional diagram	
5	Pinning information	
5.1	Pinning	4
5.2	Pin description	
6	Functional description	
7	Limiting values	
3	Recommended operating conditions	6
9	Static characteristics	
10	Dynamic characteristics	7
10.1	Waveforms and test circuit	
11	Package outline	10
12	Abbreviations	
13	Revision history	
14	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

74ABT16245BDG 74ABT16245BDG-T 74ABT16245BDL-T