2N4401

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic			Symbol	Min	Max	Unit
OFF CHARACTERISTICS				•	•	•
Collector-Emitter Breakdow	n Voltage (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	40	-	Vdc
Collector-Base Breakdown	Voltage	$(I_C = 0.1 \text{ mAdc}, I_E = 0)$	V _{(BR)CBO}	60	-	Vdc
Emitter-Base Breakdown V	oltage	(I _E = 0.1 mAdc, I _C = 0)	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current		(V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	I _{BEV}	-	0.1	μAdc
Collector Cutoff Current		(V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	I _{CEX}	-	0.1	μAdc
ON CHARACTERISTICS (N	lote 1)					
DC Current Gain		h _{FE}	20 40 80 100 40	- - 300 -	-	
Collector - Emitter Saturation	n Voltage	$(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$ $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	V _{CE(sat)}	- -	0.4 0.75	Vdc
Base – Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$)		V _{BE(sat)}	0.75 -	0.95 1.2	Vdc	
SMALL-SIGNAL CHARAC	TERISTICS					
Current-Gain - Bandwidth	Product (I	C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	f _T	250	_	MHz
Collector-Base Capacitance)	(V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	-	6.5	pF
Emitter-Base Capacitance		(V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{eb}	-	30	pF
Input Impedance	(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	1.0	15	kΩ
Voltage Feedback Ratio	($I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{re}	0.1	8.0	X 10 ⁻⁴
Small–Signal Current Gain $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$		h _{fe}	40	500	-	
Output Admittance	(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	1.0	30	μmhos
SWITCHING CHARACTER	ISTICS					
Delay Time $(V_{CC} = 30 \text{ Vdc}, V_{BE} = 2.0 \text{ Vdc},$		t _d	_	15	ns	
Rise Time	I_C = 150 mAdc, I	_{B1} = 15 mAdc)	t _r	-	20	ns
Storage Time	(V _{CC} = 30 Vdc, I	C = 150 mAdc,	t _s	-	225	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ m/}$	Adc)	t _f	_	30	ns

^{1.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

ORDERING INFORMATION

Device	Package	Shipping [†]
2N4401	TO-92	5000 Units / Bulk
2N4401G	TO-92 (Pb-Free)	5000 Units / Bulk
2N4401RLRA	TO-92	2000 / Tape & Reel
2N4401RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N4401RLRMG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box
2N4401RLRP	TO-92	2000 / Tape & Ammo Box
2N4401RLRPG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

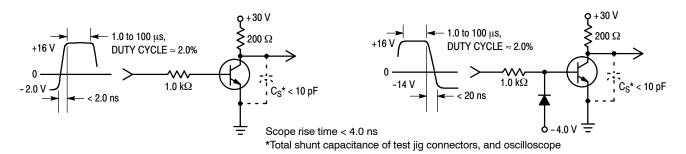


Figure 1. Turn-On Time

Figure 2. Turn-Off Time

Figure 4. Charge Data

TRANSIENT CHARACTERISTICS

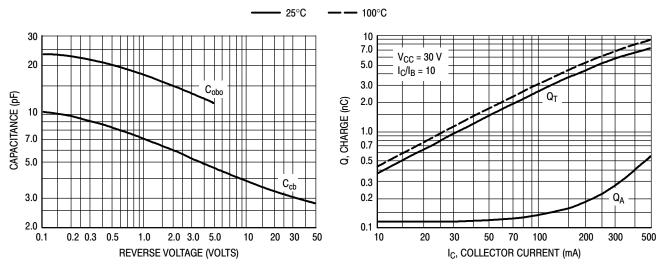
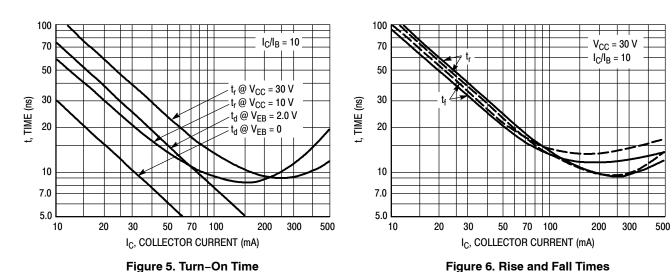
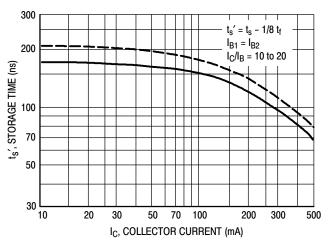
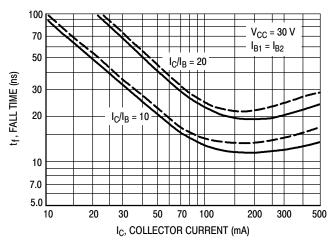
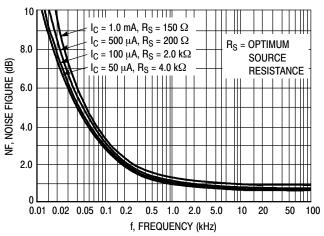




Figure 3. Capacitances

http://onsemi.com

2N4401

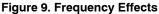

Figure 7. Storage Time

Figure 8. Fall Time

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE

 V_{CE} = 10 Vdc, T_A = 25°C; Bandwidth = 1.0 Hz

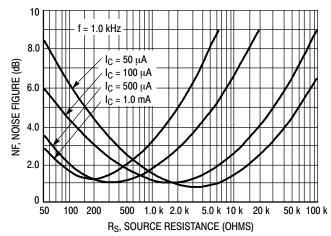
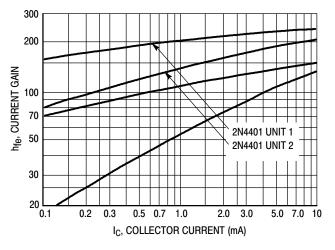


Figure 10. Source Resistance Effects


2N4401

h PARAMETERS

 V_{CE} = 10 Vdc, f = 1.0 kHz, T_A = 25°C

This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were

selected from the 2N4401 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

50 k 2N4401 UNIT 1 2N4401 UNIT 2 h_{ie}, INPUT IMPEDANCE (OHMS) 20 k 10 k 5.0 k 2.0 k 1.0 k 500 0.2 0.5 0.7 1.0 2.0 7.0 10 IC, COLLECTOR CURRENT (mA)

Figure 11. Current Gain

Figure 12. Input Impedance

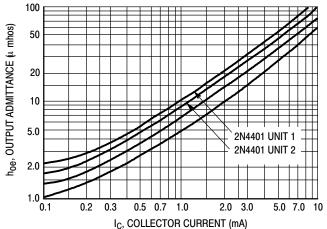


Figure 13. Voltage Feedback Ratio

Figure 14. Output Admittance

STATIC CHARACTERISTICS

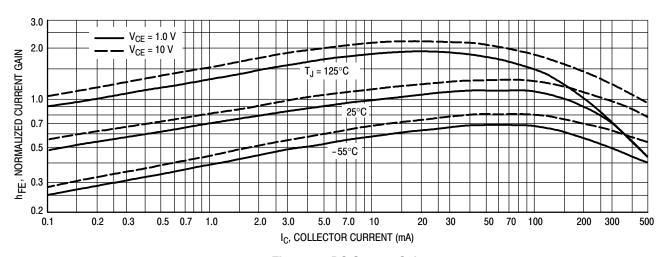


Figure 15. DC Current Gain

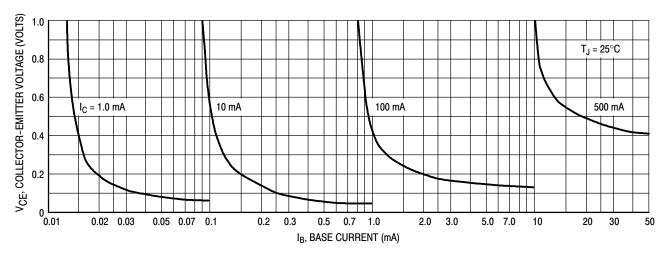


Figure 16. Collector Saturation Region

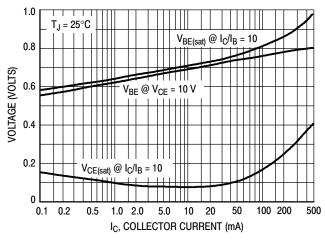
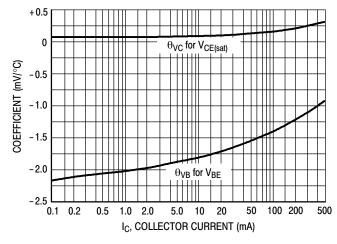
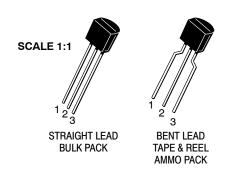
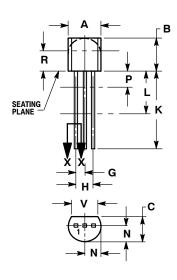


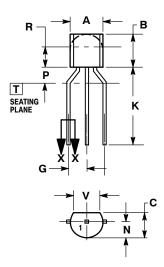
Figure 17. "On" Voltages


Figure 18. Temperature Coefficients

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.175	0.205	4.45	5.20		
В	0.170	0.210	4.32	5.33		
С	0.125	0.165	3.18	4.19		
D	0.016	0.021	0.407	0.533		
G	0.045	0.055	1.15	1.39		
Н	0.095	0.105	2.42	2.66		
J	0.015	0.020	0.39	0.50		
K	0.500		12.70			
L	0.250		6.35			
N	0.080	0.105	2.04	2.66		
P		0.100		2.54		
R	0.115		2.93			
٧	0.135		3.43			

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS			
DIM	MIN MAX			
Α	4.45	5.20		
В	4.32	5.33		
С	3.18	4.19		
D	0.40	0.54		
G	2.40	2.80		
J	0.39	0.50		
K	12.70			
N	2.04	2.66		
P	1.50	4.00		
R	2.93			
V	3.43			

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle	'	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 3	

TO-92 (TO-226) CASE 29-11

ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN
2.	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	PIN 1.	BASE 1		CATHODE
2.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	PIN 1.	ANODE 1	PIN 1.	EMITTER COLLECTOR BASE	PIN 1. 2.	
2.	ANODE GATE	PIN 1. 2.	COLLECTOR BASE	PIN 1. 2.	ANODE CATHODE	PIN 1. 2.	GATE	2.	NOT CONNECTED
2.	COLLECTOR	PIN 1. 2.	SOURCE GATE DRAIN	STYLE 23: PIN 1. 2. 3.	GATE SOURCE DRAIN	STYLE 24: PIN 1. 2. 3.	EMITTER COLLECTOR/ANODE CATHODE	STYLE 25: PIN 1. 2. 3.	MT 1 GATE
	V _{CC}	PIN 1. 2.	MT	STYLE 28: PIN 1. 2.	CATHODE ANODE GATE	STYLE 29: PIN 1. 2.		PIN 1. 2.	DRAIN
	GATE	PIN 1. 2.		STYLE 33: PIN 1. 2. 3.	RETURN	2.			

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle	'
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	' '
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 3

DOCUMENT	NUMBER:
08 A S R / 2022	R

PAGE 3 OF 3

ISSUE	REVISION	DATE
AM	ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA.	09 MAR 2007

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

<u>2N4401</u> <u>2N4401G</u> <u>2N4401RLRA</u> <u>2N4401RLRAG</u> <u>2N4401RLRM</u> <u>2N4401RLRMG</u> <u>2N4401RLRPG</u> <u>2N4401RLRPG</u> <u>2N4401RLRPG</u>