

Data Sheet

the SuperFlash technology uses less current to program and has a shorter erase time; therefore, the total energy consumed during any Erase or Program operation is less than alternative flash technologies.

SuperFlash technology provides fixed Erase and Program times, independent of the number of Erase/Program cycles that have occurred. Therefore the system software or hardware does not have to be modified or de-rated as is necessary with alternative flash technologies, whose Erase and Program times increase with accumulated Erase/Program cycles.

To meet high-density, surface-mount requirements, the GLS36VF1601G and GLS36VF1602G devices are offered in 48-ball TFBGA, 48-lead TSOP, and 56-ball LFBGA packages. See Figures 6, 7, and 8 for pin assignments.

Device Operation

Memory operation functions are initiated using standard microprocessor write sequences. A command is written by asserting WE# low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first.

Auto Low Power Mode

These devices also have the **Auto Lower Power** mode which puts them in a near-standby mode within 500 ns after data has been accessed with a valid Read operation. This reduces the typical I_{DD} active Read current to 4 μ A. While CE# is low, the devices exit Auto Low Power mode with any address transition or control signal transition used to initiate another Read cycle, with no access time penalty.

Concurrent Read/Write Operation

The dual bank architecture of these devices allows the Concurrent Read/Write operation whereby the user can read from one bank while programming or erasing in the other bank. For example, reading system code in one bank while updating data in the other bank. See Table 1 below for more information.

TABLE 1: Concurrent Read/Write State

Bank 1	Bank 2
Read	No Operation
Read	Write
Write	Read
Write	No Operation

TABLE 1: Concurrent Read/Write State

Bank 1	Bank 2
No Operation	Read
No Operation	Write

Note: For the purposes of this table, write means to perform Blockor Sector-Erase or Program operations as applicable to the appropriate bank.

The Read operation of the GLS36VF160xG is controlled by CE# and OE#, both of which have to be low for the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in a high impedance state when either CE# or OE# is high. Refer to Figure 9, the Read cycle timing diagram, for further details.

Program Operation

These devices are programmed on a word-by-word or byte-by-byte basis depending on the state of the BYTE# pin. Before programming, ensure that the sector which is being programmed is fully erased.

The Program operation is accomplished in three steps:

- 1. Initiate Software Data Protection using the threebyte load sequence.
- 2. Load address and data.
 - During the Program operation, the addresses are latched on the falling edge of either CE# or WE#, whichever occurs last. The data is latched on the rising edge of either CE# or WE#, whichever occurs first.
- Initiate the internal Program operation after the rising edge of the fourth WE# or CE#, whichever occurs first. The Program operation, once initiated, will be completed typically within 7 µs.

See Figures 10 and 11 for WE# and CE# controlled Program operation timing diagrams and Figure 25 for flow-charts. During the Program operation, the only valid reads are Data# Polling and Toggle Bit. During the internal Program operation, the host is free to perform additional tasks. Any commands issued during an internal Program operation are ignored.

Data Sheet

Sector-Erase/Block-Erase Operation

The Sector- or Block- Erase operation allows the system to erase the device on a sector-by-sector (or block-by-block) basis. The GLS36VF160xG offer both Sector-Erase and Block-Erase operations.

The sector architecture is based on a uniform sector size of 2 KWord. The Sector-Erase operation is initiated by executing a six-byte command sequence with a Sector-Erase command (50H) and sector address (SA) in the last bus cycle.

The Block-Erase mode is based on a uniform block size of 32 KWord. Block-Erase is initiated by executing a six-byte command sequence with Block-Erase command (30H) and block address (BA) in the last bus cycle. The sector or block address is latched on the falling edge of the sixth WE# pulse, while the command (50H or 30H) is latched on the rising edge of the sixth WE# pulse. The internal Erase operation begins after the sixth WE# pulse.

Any commands issued during the Sector- or Block-Erase operation are ignored except Erase-Suspend and Erase-Resume. See Figures 15 and 16 for timing waveforms.

Chip-Erase Operation

The GLS36VF1601G and GLS36VF1602G provide a Chip-Erase operation, which erases the entire memory array to the '1' state. This operation is useful when the entire device must be quickly erased.

The Chip-Erase operation is initiated by executing a sixbyte command sequence with Chip-Erase command (10H) at address 555H in the last byte sequence. The Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the Erase operation, the only valid Read is Toggle Bit or Data# Polling. Any commands issued during the Chip-Erase operation are ignored. See Table 6 for the command sequence, Figure 14 for timing diagram, and Figure 29 for the flowchart. When WP# is low, any attempt to Chip-Erase will be ignored.

Erase-Suspend/Erase-Resume Operations

The Erase-Suspend operation temporarily suspends a Sector- or Block-Erase operation thus allowing data to be read or programmed into any sector or block that is not engaged in an Erase operation. The operation is executed by issuing a one-byte command sequence with Erase-Suspend command (B0H). The device automatically enters read mode no more than 10 μs after the Erase-Suspend command had been issued. (TES maximum latency equals 10 μs .) Valid data can be read from any sector or block that is not suspended from an Erase operation. Reading at address location within erase-suspended sectors/blocks will output DQ2 toggling and DQ6 at '1'. While in Erase-Suspend mode, a Program operation is allowed except for the sector or block selected for Erase-Suspend.

To resume a suspended Sector-Erase or Block-Erase operation, the system must issue an Erase-Resume command. The operation is executed by issuing a one-byte command sequence with Erase Resume command (30H) at any address in the one-byte sequence.

Write Operation Status Detection

To optimize the system Write cycle time, the GLS36VF160xG provide two software means to detect the completion of a Write (Program or Erase) cycle The software detection includes two status bits: Data# Polling (DQ_7) and Toggle Bit (DQ_6) . The End-of-Write detection mode is enabled after the rising edge of WE#, which initiates the internal Program or Erase operation.

The actual completion of the nonvolatile write is asynchronous with the system. Therefore, Data# Polling or Toggle Bit maybe be read concurrent with the completion of the write cycle. If this occurs, the system may possibly get an incorrect result from the status detection process. For example, valid data may appear to conflict with either DQ_7 or DQ_6 . To prevent false results, upon detection of failures, the software routine should loop to read the accessed location an additional two times. If both reads are valid, then the device has completed the Write cycle, otherwise the failure is valid.

Data Sheet

Ready/Busy# (RY/BY#)

The GLS36VF160xG include a Ready/Busy# (RY/BY#) output signal. RY/BY# is an open drain output pin that indicates whether an Erase or Program operation is in progress. Since RY/BY# is an open drain output, it allows several devices to be tied in parallel to V_{DD} via an external pull-up resistor. After the rising edge of the final WE# pulse in the command sequence, the RY/BY# status is valid.

When RY/BY# is actively pulled low, it indicates that an Erase or Program operation is in progress. When RY/BY# is high (Ready), the devices may be read or left in standby mode.

Byte/Word (BYTE#)

The device includes a BYTE# pin to control whether the device data I/O pins operate x8 or x16. If the BYTE# pin is at logic "1" (V_{IH}) the device is in x16 data configuration: all data I/O pins DQ₀-DQ₁₅ are active and controlled by CE# and OE#.

If the BYTE# pin is at logic '0', the device is in x8 data configuration — only data I/O pins DQ_0 - DQ_7 are active and controlled by CE# and OE#. The remaining data pins DQ_8 - DQ_{14} are at Hi-Z, while pin DQ_{15} is used as the address input A_{-1} for the Least Significant Bit of the address bus.

Data# Polling (DQ₇)

When the GLS36VF160xG are in an internal Program operation, any attempt to read DQ_7 will produce the complement of true data. Once the Program operation is completed, DQ_7 will produce valid data.

During internal Erase operation, any attempt to read DQ_7 will produce a '0'. Once the internal Erase operation is completed, DQ_7 will produce a '1'. The Data# Polling is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector-, Block-, or Chip-Erase, the Data# Polling is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 12 for Data# Polling (DQ_7) timing diagram and Figure 26 for a flowchart.

Toggle Bits (DQ₆ and DQ₂)

During the internal Program or Erase operation, any consecutive attempts to read DQ_6 will produce alternating '1's and '0's, i.e., toggling between '1' and '0'. When the internal Program or Erase operation is completed, the DQ_6 bit will stop toggling, and the device is then ready for the next operation. For Sector-, Block-, or Chip-Erase, the toggle bit (DQ_6) is valid after the rising edge of sixth WE# (or CE#) pulse. DQ_6 will be set to '1' if a Read operation is attempted on an Erase-Suspended Sector or Block. If Program operation is initiated in a sector/block not selected in Erase-Suspend mode, DQ_6 will toggle.

An additional Toggle Bit is available on DQ_2 , which can be used in conjunction with DQ_6 to check whether a particular sector or block is being actively erased or erase-suspended. Table 2 shows detailed bit status information. The Toggle Bit (DQ_2) is valid after the rising edge of the last WE# (or CE#) pulse of Write operation. See Figure 13 for Toggle Bit timing diagram and Figure 26 for a flowchart.

TABLE 2: Write Operation Status

Status		DQ ₇	DQ ₆	DQ ₂	RY/BY#
Normal Operation	Standard Program	DQ7#	Toggle	No Toggle	0
	Standard Erase	0	Toggle	Toggle	0
Erase- Suspend Mode	Read From Erase Suspended Sector/Block	1	1	Toggle	1
	Read From Non-Erase Suspended Sector/Block	Data	Data	Data	1
	Program	DQ7#	Toggle	N/A	0

T2.1 1342

Note: DQ₇, DQ₆, and DQ₂ require a valid address when reading status information. The address must be in the bank where the operation is in progress in order to read the operation status. If the address is pointing to a different bank (not busy), the device will output array data.

Data Sheet

Data Protection

The GLS36VF160xG provide both hardware and software features to protect nonvolatile data from inadvertent writes.

Hardware Data Protection

Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a Write cycle.

 V_{DD} Power Up/Down Detection: The Write operation is inhibited when V_{DD} is less than 1.5V.

<u>Write Inhibit Mode:</u> Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down.

Hardware Block Protection

The GLS36VF1601G and GLS36VF1602G provide hardware block protection which protects the outermost 8 KWord in the smaller bank. The block is protected when WP# is held low. See Figures 2, 3, 4, and 5 for Block-Protection location.

Block protection is disabled by driving WP# high. This allows data to be erased or programmed into the protected sectors. WP# must be held high prior to issuing the Write command and remain stable until after the entire Write operation has completed. If WP# is left floating, it is internally held high via a pull-up resistor, and the Boot Block is unprotected, enabling Program and Erase operations on that block.

Hardware Reset (RST#)

The RST# pin provides a hardware method of resetting the devices to read array data. When the RST# pin is held low for at least T_{RP} , any in-progress operation will terminate and return to Read mode (see). When no internal Program/ Erase operation is in progress, a minimum period of T_{RHR} is required after RST# is driven high before a valid Read can take place. See Figures 22 and 21 for more information.

The interrupted Erase or Program operation must be re-initiated after the device resumes normal operation mode to ensure data integrity.

Software Data Protection (SDP)

The GLS36VF160xG devices implement the JEDEC approved Software Data Protection (SDP) scheme for all data alteration operations, such as Program and Erase.

These devices are shipped with the Software Data Protection permanently enabled. See Table 6 for the specific software command codes.

All Program operations require the inclusion of the threebyte sequence. The three-byte load sequence is used to initiate the Program operation, providing optimal protection from inadvertent Write operations. SDP for Erase operations is similar to Program, but a six-byte load sequence is required for Erase operations.

During SDP command sequence, invalid commands will abort the device to read mode within T_{RC} . The contents of DQ₁₅-DQ₈ can be V_{IL} or V_{IH} , but no other value, during any SDP command sequence.

Common Flash Memory Interface (CFI)

These devices contain Common Flash Memory Interface (CFI) information that describes the characteristics of the device. In order to enter the CFI Query mode, the system must write a three-byte sequence, using the CFI Query command, to address BKx555H in the last byte sequence. The system can also use the one-byte sequence with address BKx55H and Data Bus 98H to enter this mode. See Figure 18 for CFI Entry and Read timing diagram. Once the device enters the CFI Query mode, the system can read CFI data at the addresses given in Tables 7 through 9.

The system must write the CFI Exit command to return to Read mode from the CFI Query mode.

Security ID

The GLS36VF160xG offer a 136-word Security ID space. The Secure ID space is divided into two segments — one 128-bit, factory-programmed, segment and one 256-Byte, user programmed segment. The first segment is programmed and locked at Greenliant and contains a 128 bit Unique ID which uniquely identifies the device. The user segment is left un-programmed for the customer to program as desired.

The user segment of the Security ID can be programmed using the Security ID Program command. End-of-Write status is checked by reading the toggle bits. Data# Polling is not used for Security ID End-of-Write detection.

Once the programming is complete, lock the Sec ID by issuing the User Sec ID Program Lock-Out command. Locking the Sec ID disables any corruption of this space. Note that regardless of whether or not the Sec ID is locked, the Sec ID segments can not be erased.

Data Sheet

The Secure ID space can be queried by executing a three-byte command sequence with Query Sec ID command (88H) at address 555H in the last byte sequence. See Figure 20 for timing diagram. To exit this mode, the Exit Sec ID command should be executed. Refer to Table 6 for more details.

Product Identification

The Product Identification mode identifies the devices as GLS36VF1601G or GLS36VF1602G and the manufacturer as Greenliant. For details, see Table 3 for software operation, Figure 17 for the Software ID Entry and Read timing diagram, and Figure 27 for the Software ID Entry command sequence flowchart.

The addresses A_{19} and A_{18} indicate a bank address. When the addressed bank is switched to Product Identification mode, it is possible to read another address from the same bank without issuing a new Software ID Entry command.

TABLE 3: Product Identification

	Address	Data
Manufacturer's ID	BK0000H	00BFH
Device ID		
GLS36VF1601G	BK0001H	7343H
GLS36VF1602G	BK0001H	7344H

T3.0 1342

Note: BK = Bank Address (A₁₉-A₁₈)

Product Identification Mode Exit/CFI Mode Exit

In order to return to the standard Read mode, the Software Product Identification mode must be exited. The exit is accomplished by issuing the Software ID Exit command sequence, which returns the device to the Read mode. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that causes the device to behave abnormally. Please note that the Software ID Exit/CFI Exit command is ignored during an internal Program or Erase operation. See Table 6 for the software command code, Figure 19 for timing waveform and Figure 28 for a flowchart.

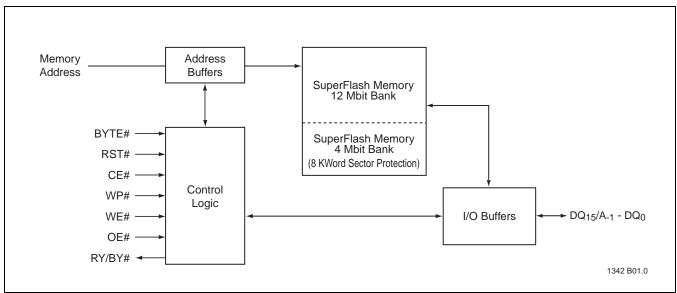


FIGURE 1: Functional Block Diagram

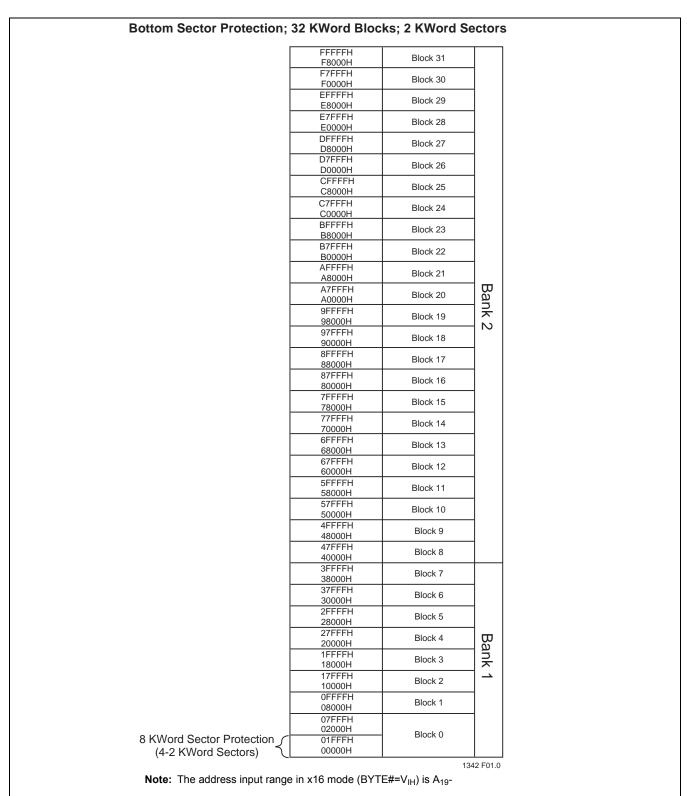


FIGURE 2: GLS36VF1601G, 1M x16 Concurrent SuperFlash Dual-Bank Memory Organization

Bottom Sector Protection; 64 KByte Blocks; 4 KByte Sectors

1FFFFFH 1F0000H	Block 31	
1EFFFFH 1E0000H	Block 30	
1DFFFFH 1D0000H	Block 29	
1CFFFFH 1C0000H	Block 28	
1BFFFFH 1B0000H	Block 27	
1AFFFFH 1A0000H	Block 26	
19FFFFH 190000H	Block 25	
18FFFFH 180000H	Block 24	
17FFFFH 170000H	Block 23	
16FFFFH 160000H	Block 22	
15FFFFH 150000H	Block 21	
14FFFFH 140000H	Block 20	
13FFFFH 130000H	Block 19	Bank 2
12FFFFH 120000H	Block 18	\(\hat{\sigma}\)
11FFFFH 110000H	Block 17	
10FFFFH 100000H	Block 16	
0FFFFH 0F0000H	Block 15	
0EFFFFH 0E0000H	Block 14	
ODFFFFH OD0000H	Block 13	
0CFFFFH 0C0000H	Block 12	
0BFFFFH 0B0000H	Block 11	
0AFFFFH 0A0000H	Block 10	
09FFFFH 090000H	Block 9	
08FFFFH 080000H	Block 8	
07FFFFH 070000H	Block 7	
06FFFFH 060000H	Block 6	7
05FFFFH 050000H	Block 5	7
04FFFH 040000H	Block 4	В
03FFFFH 030000H	Block 3	anl
02FFFFH 020000H	Block 2	72
01FFFFH 010000H	Block 1	7
00FFFFH 004000H 003FFFH	Block 0	
000000H		342 F02.0

16 KByte Sector Protection (4-4 KByte Sectors)

Note: The address input range in x8 mode (BYTE#=V_{IL})

FIGURE 3: GLS36VF1601G, 2M x8 Concurrent SuperFlash Dual-Bank Memory Organization

Top Block Protection; 32 KWord Blocks; 2 KWord Sectors

8 KWord Block Protection (4 - 2 KWord Sectors)

	Block 31	FFFFFH FE000H
		FDFFFH
\dashv		F8000H F7FFFH
	Block 30	F0000H
\neg		EFFFFH
m	Block 29	E8000H
Bank 2		E7FFFH
5	Block 28	E0000H
$\neg \succ$	DI 1 07	DFFFFH
12	Block 27	D8000H
	Dlook 26	D7FFFH
	Block 26	D0000H
	Block 25	CFFFFH
	DIUCK 25	C8000H
	Block 24	C7FFFH
	DIUCK 24	C0000H
	Block 23	BFFFFH
_	Blook 20	B8000H
	Block 22	B7FFFH
_	DIJON ZZ	B0000H
	Block 21	AFFFFH
-		A8000H
	Block 20	A7FFFH
\dashv		A0000H
	Block 19	9FFFFH
\dashv		98000H 97FFFH
	Block 18	90000H
_		8FFFFH
	Block 17	88000H
\neg		87FFFH
	Block 16	80000H
	DI 1.45	7FFFFH
	Block 15	78000H
	Block 14	77FFFH
	DIUCK 14	70000H
	Block 13	6FFFFH
⊢	2.001.10	68000H
Bank	Block 12	67FFFH
⊣ 5		60000H
~	Block 11	5FFFFH
⊢		58000H 57FFFH
	Block 10	50000H
\dashv		4FFFFH
	Block 9	48000H
\neg	Divid 0	47FFFH
	Block 8	40000H
7	Plost 7	3FFFFH
	Block 7	38000H
1	Block 6	37FFFH
_	DIOOK 0	30000H
	Block 5	2FFFFH
_		28000H
	Block 4	27FFFH
_		20000H
	Block 3	1FFFFH 18000H
\dashv		17FFFH
	Block 2	10000H
-		0FFFFH
	Block 1	08000H
\dashv	DI	07FFFH
	Block 0	00000H

Note: The address input range in x16 mode (BYTE#= V_{IH}) is

FIGURE 4: GLS36VF1602G, 1M x16 Concurrent SuperFlash Dual-Bank Memory Organization

Data Sheet

COLS	ks; 4 KByte Se	04 NDYTE BIOC
		1FFFFFH
	Block 31	1FC000H
	2.001.01	1FBFFFH
		1F0000H
	Block 30	1EFFFFH
		1E0000H 1DFFFFH
ω	Block 29	1D0000H
<u>a</u>	DI 1 00	1CFFFFH
Bank	Block 28	1C0000H
2	Block 27	1BFFFFH
	5.001(2)	1B0000H
	Block 26	1AFFFFH
		1A0000H 19FFFFH
	Block 25	190000H
	Dis-sis 0.4	18FFFFH
	Block 24	180000H
	Block 23	17FFFFH
		170000H
	Block 22	16FFFFH
		160000H 15FFFFH
	Block 21	150000H
	Block 20	14FFFFH
	DIUUK ZU	140000H
	Block 19	13FFFFH
		130000H
	Block 18	12FFFFH 120000H
	DI 1 47	11FFFFH
	Block 17	110000H
	Block 16	10FFFFH
	DIOOK 10	100000H
	Block 15	0FFFFFH
		0F0000H 0EFFFFH
	Block 14	0E0000H
ω	Block 13	0DFFFFH
월	DIUCK 13	0D0000H
Bank	Block 12	0CFFFFH
→		0C0000H
	Block 11	0BFFFFH 0B0000H
	DI	0AFFFFH
	Block 10	0A0000H
	Block 9	09FFFFH
	DIOOK 3	090000H
	Block 8	08FFFFH
		080000H
	Block 7	07FFFFH 070000H
	Block 6	06FFFFH
	Block 6	060000H
	Block 5	05FFFFH
		050000H
	Block 4	04FFFFH 040000H
	Dia-t- 0	03FFFFH
	Block 3	030000H
	Block 2	02FFFFH
		020000H
	Block 1	01FFFFH 010000H
- 1	Block 0	00FFFFH 000000H
- 1		

FIGURE 5: GLS36VF1602G, 2M x8 Concurrent SuperFlash Dual-Bank Memory Organization

Note: The address input range in x8 mode (BYTE#= V_{IL}) is

1342 F04.0

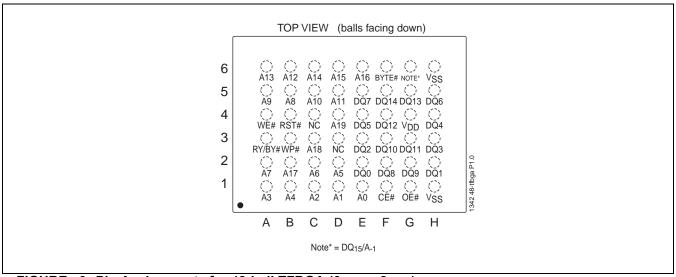


FIGURE 6: Pin Assignments for 48-ball TFBGA (6mm x 8mm)

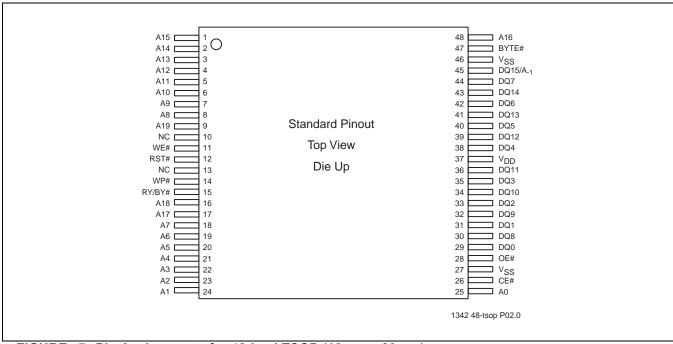


FIGURE 7: Pin Assignments for 48-lead TSOP (12mm x 20mm)

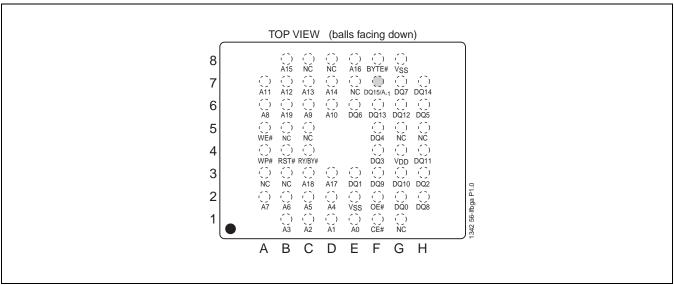


FIGURE 8: Pin Assignments for 56-lead LFBGA (8mm x 10mm)

TABLE 4: Pin Description

Symbol	Name	Functions
A ₁₉ -A ₀	Address Inputs	To provide memory addresses. During Sector-Erase and Hardware Sector Protection, A_{19} - A_{11} address lines will select the sector. During Block-Erase A_{19} - A_{15} address lines will select the block.
DQ ₁₄ -DQ ₀	Data Input/Output	To output data during Read cycles and receive input data during Write cycles Data is internally latched during a Write cycle. The outputs are in tri-state when OE# or CE# is high.
DQ ₁₅ /A ₋₁	Data Input/Output and LBS Address	DQ_{15} is used as data I/O pin when in x16 mode (BYTE# = "1") A ₋₁ is used as the LSB address pin when in x8 mode (BYTE# = "0")
CE#	Chip Enable	To activate the device when CE# is low.
OE#	Output Enable	To gate the data output buffers
WE#	Write Enable	To control the Write operations
RST#	Hardware Reset	To reset and return the device to Read mode
RY/BY#	Ready/Busy#	To output the status of a Program or Erase operation RY/BY# is a open drain output, so a $10K\Omega$ - $100K\Omega$ pull-up resistor is required to allow RY/BY# to transition high indicating the device is ready to read.
WP#	Write Protect	To protect and unprotect top or bottom 8 KWord (4 outermost sectors) from Erase or Program operation.
BYTE#	Word/Byte Configuration	To select 8-bit or 16-bit mode.
V_{DD}	Power Supply	To provide 2.7-3.6V power supply voltage
V_{SS}	Ground	
NC	No Connection	Unconnected pins

T4.0 1342

Data Sheet

TABLE 5: Operation Modes Selection

					DQ ₁₅ -DQ ₈		
Mode ¹	CE#	OE#	WE#	DQ_7 - DQ_0	BYTE# = V _{IH}	BYTE# = V _{IL}	Address
Read	V_{IL}	V_{IL}	V_{IH}	D _{OUT}	D _{OUT}	DQ_{14} - DQ_{8} = High Z	A _{IN}
Program	V_{IL}	V_{IH}	V_{IL}	D _{IN}	D _{IN}	$DQ_{15} = A_{-1}$	A _{IN}
Erase	V _{IL}	V _{IH}	V _{IL}	X ²	Х	High Z	Sector or Block address, 555H for Chip-Erase
Standby	V_{IHC}	Х	Х	High Z	High Z	High Z	Х
Write Inhibit	Х	V_{IL}	Х	High Z / D _{OUT}	High Z / D _{OUT}	High Z	Х
	Х	Χ	V_{IH}	High Z / D _{OUT}	High Z / D _{OUT}	High Z	X
Product Identification							
Software Mode	V _{IL}	V_{IL}	V _{IH}	Manufacturer's ID (BFH)	Manufacturer's ID (00H)	High Z	See Table 6
				Device ID ³	Device ID ³	High Z	

T5.2 1342

3. Device ID = GLS36VF1601G = 7343H, GLS36VF1602G = 7344H

^{1.} RST# = V_{IH} for all described operation modes

^{2.} X can be V_{IL} or V_{IH} , but no other value.

Data Sheet

TABLE 6: Software Command Sequence

Command	1st I	Bus	2nd	Bus	3rd	Bus	4th	Bus	5th	Bus	6th	Bus
Sequence	Write	Cycle	Write	Cycle	Write	Cycle	Write	Cycle	Write	Cycle	Write	Cycle
	Addr ¹	Data ²	Addr ¹	Data ²	Addr ¹	Data ²	Addr ¹	Data ²	Addr ¹	Data ²	Addr ¹	Data ²
Program	555H	AAH	2AAH	55H	555H	A0H	WA ³	Data				
Sector-Erase	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	SA _X ⁴	50H
Block-Erase	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	BA _X ⁴	30H
Chip-Erase	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	555H	10H
Erase-Suspend	XXXXH	вон										
Erase-Resume	XXXXH	30H										
Query Sec ID ⁵	555H	AAH	2AAH	55H	555H	88H						
User Security ID Program	555H	AAH	2AAH	55H	555H	A5H	SIWA ⁶	Data				
User Security ID Program Lock-out ⁷	555H	AAH	2AAH	55H	555H	85H	XXH	0000H				
Software ID Entry ⁸	555H	AAH	2AAH	55H	BK _X ⁹ 555H	90H						
CFI Query Entry	555H	AAH	2AAH	55H	BK _X ⁹ 555H	98H						
CFI Query Entry	BK _X ⁹ 55H	98H										
Software ID Exit/ CFI Exit/ Sec ID Exit ^{10,11}	555H	AAH	2AAH	55H	555H	F0H						
Software ID Exit/ CFI Exit/ Sec ID Exit ^{10,11}	XXH	F0H										

T6.0 1342

- 1. Address format A₁₀-A₀ (Hex), Addresses A₁₉-A₁₁ can be V_{IL} or V_{IH}, but no other value, for the command sequence when in x16 mode. When in x8 mode, Addresses A₁₉-A₁₂, Address A₋₁ and DQ₁₄-DQ₈ can be V_{IL} or V_{IH}, but no other value, for the command sequence.
- 2. DQ₁₅-DQ₈ can be V_{IL} or V_{IH}, but no other value, for the command sequence
- 3. WA = Program word/byte address
- 4. SA_X for Sector-Erase; uses A_{19} - A_{11} address lines BA_X for Block-Erase; uses A_{19} - A_{15} address lines
- 5. For GLS36VF1601G,

Greenliant ID is read with $A_3 = 0$ (Address range = 00000H to 00007H),

User ID is read with $A_3 = 1$ (Address range = = 00008H to 00087H).

Lock Status is read with A_7 - A_0 = 000FFH. Unlocked: DQ_3 = 1 / Locked: DQ_3 = 0.

For GLS36VF1602G,

Greenliant ID is read with A_3 = 0 (Address range = C0000H to C0007H),

User ID is read with $A_3 = 1$ (Address range = = C0008H to C0087H).

Lock Status is read with A_7 - A_0 = C00FFH. Unlocked: DQ_3 = 1 / Locked: DQ_3 = 0.

6. SIWA = User Security ID Program word/byte address

For GLS36VF1601G, valid Word-Addresses for User Sec ID are from 00008H to 00087H.

For GLS36VF1602G, valid Word-Addresses for User Sec ID are from C0008H to C0087H.

All 4 cycles of User Security ID Program and Program Lock-out must be completed before going back to Read-Array mode.

- The User Security ID Program Lock-out command must be executed in x16 mode (BYTE#=V_{IH}).
- 8. The device does not remain in Software Product Identification mode if powered down.
- 9. A_{19} and A_{18} = BK_X (Bank Address): address of the bank that is switched to Software ID/CFI Mode With A_{17} - A_{1} = 0;Greenliant Manufacturer's ID = 00BFH, is read with A_{0} = 0

GLS36VF1601G Device ID = 7343H, is read with A0 = 1 GLS36VF1602G Device ID = 7344H, is read with A0 = 1

10. Both Software ID Exit operations are equivalent

Data Sheet

11. If users never lock after programming, User Sec ID can be programmed over the previously unprogrammed bits (data=1) using the User Sec ID mode again (the programmed "0" bits cannot be reversed to "1"). For GLS36VF1601G, valid Word-Addresses for User Sec ID are from 00008H to 00087H. For GLS36VF1602G, valid Word-Addresses for User Sec ID are from C0008H to C0087H.

TABLE 7: CFI Query Identification String¹

Address	Address			
x16 Mode	x8 Mode	Data ²	Description	
10H	20H	0051H	Query Unique ASCII string "QRY"	
11H	22H	0052H		
12H	24H	0059H		
13H	26H	0002H	Primary OEM command set	
14H	28H	0000H		
15H	2AH	0000H	Address for Primary Extended Table	
16H	2CH	0000H		
17H	2EH	0000H	Alternate OEM command set (00H = none exists)	
18H	30H	0000H		
19H	32H	0000H	Address for Alternate OEM extended Table (00H = none exits)	
1AH	34H	0000H		
. 5	051 11 11	100.5		T7.0 1342

1. Refer to CFI publication 100 for more details.

TABLE 8: System Interface Information

Address x16 Mode	Address x8 Mode	Data ¹	Description
1BH	36H	0027H	V _{DD} Min (Program/Erase)
			DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts
1CH	38H	0036H	V _{DD} Max (Program/Erase) DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts
1DH	3AH	0000H	V_{PP} min (00H = no V_{PP} pin)
1EH	3CH	0000H	V_{PP} max (00H = no V_{PP} pin)
1FH	3EH	0004H	Typical time out for Program 2^{N} µs (2^{4} = 16 µs)
20H	40H	0000H	Typical time out for min size buffer program 2 ^N µs (00H = not supported)
21H	42H	0004H	Typical time out for individual Sector/Block-Erase 2 ^N ms (2 ⁴ = 16 ms)
22H	44H	0006H	Typical time out for Chip-Erase 2 ^N ms (2 ⁶ = 64 ms)
23H	46H	0001H	Maximum time out for Program 2^N times typical $(2^1 \times 2^4 = 32 \mu s)$
24H	48H	0000H	Maximum time out for buffer program 2 ^N times typical
25H	4AH	0001H	Maximum time out for individual Sector-/Block-Erase 2 ^N times typical (2 ¹ x 2 ⁴ = 32 ms)
26H	4CH	0001H	Maximum time out for Chip-Erase 2 ^N times typical (2 ¹ x 2 ⁶ = 128 ms)

T8.0 1342

^{2.} In x8 mode, only the lower byte of data is output.

^{1.} In x8 mode, only the lower byte of data is output.

Data Sheet

TABLE 9: Device Geometry Information

Address x16 Mode	Address x8 Mode	Data ¹	Description
27H	4EH	0015H	Device size = 2 ^N Bytes (15H = 21; 2 ²¹ = 2 MByte)
28H	50H	0002H	Flash Device Interface description; 0002H = x8/x16 asynchronous interface
29H	52H	0000H	
2AH	54H	0000H	Maximum number of bytes in multi-byte write = 2 ^N (00H = not supported)
2BH	56H	0000H	
2CH	58H	0002H	Number of Erase Sector/Block sizes supported by device
2DH	5AH	00FFH	Sector Information (y + 1 = Number of sectors; z x 256B = sector size)
2EH	5CH	0001H	y = 511 + 1 = 512 sectors (01FFH = 512)
2FH	5EH	0010H	
30H	60H	0000H	z = 16 x 256 Bytes = 4 KByte/sector (0010H = 16)
31H	62H	001FH	Block Information (y + 1 = Number of blocks; z x 256B = block size)
32H	64H	0000H	y = 31 + 1 = 32 blocks (001FH = 31)
33H	66H	0000H	
34H	68H	0001H	z = 256 x 256 Bytes = 64 KByte/block (0100H = 256)

^{1.} In x8 mode, only the lower byte of data is output.

T9.1 1342

Data Sheet

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential	0.5V to V _{DD} +0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential	2.0V to V _{DD} +2.0V
Package Power Dissipation Capability (T _A = 25°C)	
Surface Mount Solder Reflow Temperature	260°C for 10 seconds
Output Short Circuit Current	50 mA

Operating Range:

Range	Ambient Temp	V_{DD}
Commercial	0°C to +70°C	2.7-3.6V
Industrial	-40°C to +85°C	2.7-3.6V

AC Conditions of Test

Input Rise/Fall Time 5 ns
Output Load
See Figures 23 and 24

Data Sheet

TABLE 10: DC Operating Characteristics $V_{DD} = 2.7-3.6V$

				Limits			
Symbol	Parameter	Freq	Min	Max	Units	Test Conditions	
I _{DD} ¹	Active V _{DD} Current						
	Read	5 MHz		15	mA	_ - CE#=V _{II.} WE#=OE#=V _{IH}	
		1 MHz		4	mA	CE#-VIL, VVE#-OE#-VIH	
	Program and Erase			30	mA	CE#=WE#=V _{IL} , OE#=V _{IH}	
	Concurrent Read/Write	5 MHz		45	mA	CE#=V _{IL} OE#=V _{IH}	
		1 MHz		35	mA	CE#-VIL, OE#-VIH	
I _{SB}	Standby V _{DD} Current			20	μΑ	CE#, RST#=V _{DD} ±0.3V	
I _{ALP}	Auto Low Power V _{DD} Current			20	μΑ	CE#=0.1V, V _{DD} =V _{DD} Max WE#=V _{DD} -0.1V Address inputs=0.1V or V _{DD} -0.1V	
I _{RT}	Reset V _{DD} Current			20	μΑ	RST#=GND	
I _{LI}	Input Leakage Current			1	μΑ	V_{IN} =GND to V_{DD} , V_{DD} = V_{DD} Max	
I_{LIW}	Input Leakage Current on WP# pin and RST# pin			10	μΑ	WP#=GND to V_{DD} , V_{DD} = V_{DD} Max RST#=GND to V_{DD} , V_{DD} = V_{DD} Max	
I_{LO}	Output Leakage Current			1	μΑ	V_{OUT} =GND to V_{DD} , V_{DD} = V_{DD} Max	
V _{IL}	Input Low Voltage			0.8	V	V _{DD} =V _{DD} Min	
V_{ILC}	Input Low Voltage (CMOS)			0.3	V	V _{DD} =V _{DD} Max	
V_{IH}	Input High Voltage		$0.7\ V_{DD}$	V _{DD} +0.3	V	V _{DD} =V _{DD} Max	
V_{IHC}	Input High Voltage (CMOS)		V_{DD} -0.3	V _{DD} +0.3	V	V _{DD} =V _{DD} Max	
V _{OL}	Output Low Voltage			0.2	V	I _{OL} =100 μA, V _{DD} =V _{DD} Min	
V_{OH}	Output High Voltage		V_{DD} -0.2		V	I_{OH} =-100 μA , V_{DD} = V_{DD} Min	

^{1.} Address input = V_{ILT}/V_{IHT}, V_{DD}=V_{DD} Max (See Figure 23)

T10.1 1342

TABLE 11: Recommended System Power-up Timings

Symbol	Parameter	Minimum	Units
T _{PU-READ} ¹	Power-up to Read Operation	100	μs
T _{PU-WRITE} ¹	Power-up to Write Operation	100	μs

T11.0 1342

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

TABLE 12: Capacitance (T_A = 25°C, f=1 Mhz, other pins open)

Parameter	Description	Test Condition	Maximum
C _{I/O} ¹	I/O Pin Capacitance	$V_{I/O} = 0V$	10 pF
C _{IN} ¹	Input Capacitance	$V_{IN} = 0V$	10 pF

T12.0 1342

TABLE 13: Reliability Characteristics

Symbol	Parameter	Minimum Specification	Units	Test Method
N _{END} ¹	Endurance	10,000	Cycles	JEDEC Standard A117
T _{DR} ¹	Data Retention	100	Years	JEDEC Standard A103
I _{LTH} ¹	Latch Up	100 + I _{DD}	mA	JEDEC Standard 78

T13.0 1342

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

Data Sheet

AC CHARACTERISTICS

TABLE 14: Read Cycle Timing Parameters V_{DD} = 2.7-3.6V

Symbol	Parameter	Min	Max	Units
T _{RC}	Read Cycle Time	70		ns
T _{CE}	Chip Enable Access Time		70	ns
T _{AA}	Address Access Time		70	ns
T _{OE}	Output Enable Access Time		35	ns
T _{CLZ} ¹	CE# Low to Active Output	0		ns
T _{OLZ} ¹	OE# Low to Active Output	0		ns
T _{CHZ} ¹	CE# High to High-Z Output		16	ns
T _{OHZ} ¹	OE# High to High-Z Output		16	ns
T _{OH} ¹	Output Hold from Address Change	0		ns
T _{RP} ¹	RST# Pulse Width	500		ns
T _{RHR} ¹	RST# High before Read	50		ns
T _{RY} ^{1,2}	RST# Pin Low to Read Mode		20	μs

T14.1 1342

TABLE 15: Program/Erase Cycle Timing Parameters

Symbol	Parameter	Min	Max	Units
T _{BP}	Program Time		10	μs
T _{AS}	Address Setup Time	0		ns
T _{AH}	Address Hold Time	40		ns
T _{CS}	WE# and CE# Setup Time	0		ns
T _{CH}	WE# and CE# Hold Time	0		ns
T _{OES}	OE# High Setup Time	0		ns
T _{OEH}	OE# High Hold Time	10		ns
T _{CP}	CE# Pulse Width	40		ns
T _{WP}	WE# Pulse Width	40		ns
T _{WPH} ¹	WE# Pulse Width High	30		ns
T _{CPH} ¹	CE# Pulse Width High	30		ns
T _{DS}	Data Setup Time	30		ns
T _{DH} ¹	Data Hold Time	0		ns
T _{IDA} ¹	Software ID Access and Exit Time		150	ns
T _{SE}	Sector-Erase		25	ms
T _{BE}	Block-Erase		25	ms
T _{SCE}	Chip-Erase		50	ms
T _{ES}	Erase-Suspend Latency		10	μs
T _{BY} ^{1,2}	RY/BY# Delay Time		90	ns
T _{BR} ¹	Bus Recovery Time		0	μs

T15.1 1342

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{2.} This parameter applies to Sector-Erase, Block-Erase, and Program operations. This parameter does not apply to Chip-Erase operations.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

This parameter applies to Sector-Erase, Block-Erase, and Program operations. This parameter does not apply to Chip-Erase operations.

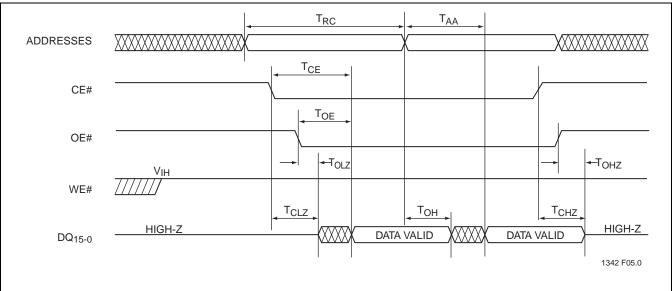


FIGURE 9: Read Cycle Timing Diagram

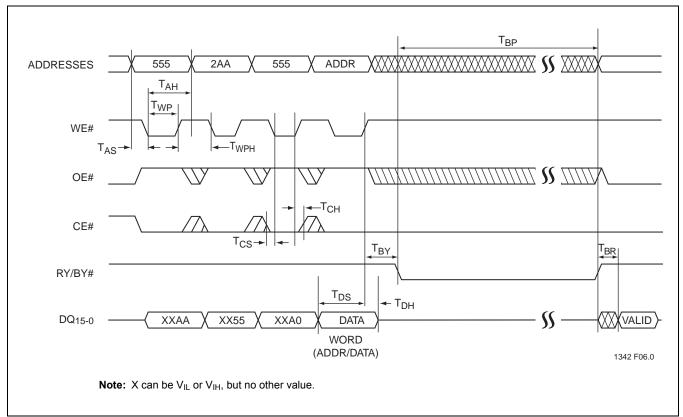


FIGURE 10: WE# Controlled Program Cycle Timing Diagram

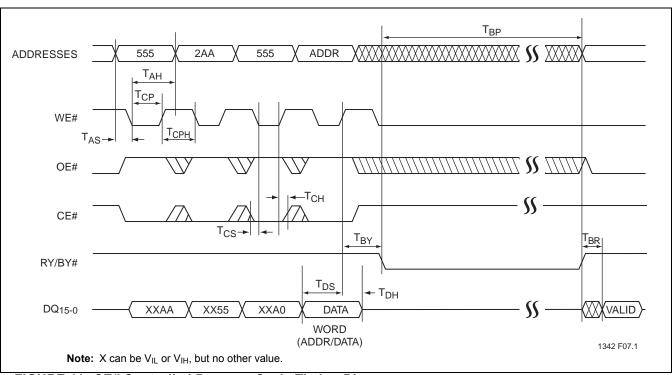


FIGURE 11: CE# Controlled Program Cycle Timing Diagram

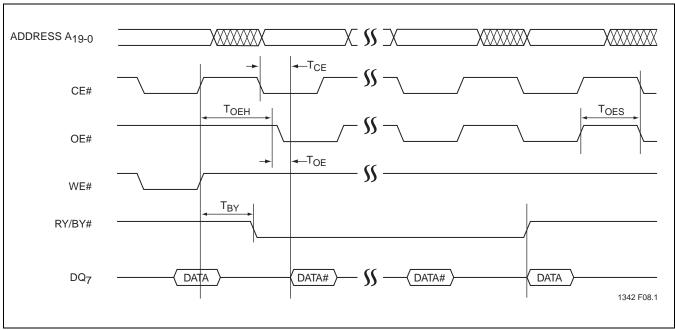


FIGURE 12: Data# Polling Timing Diagram

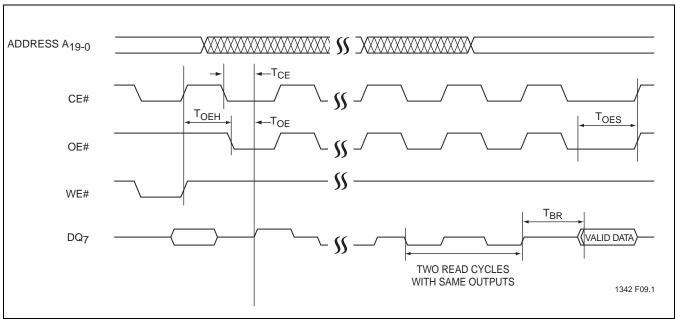


FIGURE 13: Toggle Bit Timing Diagram

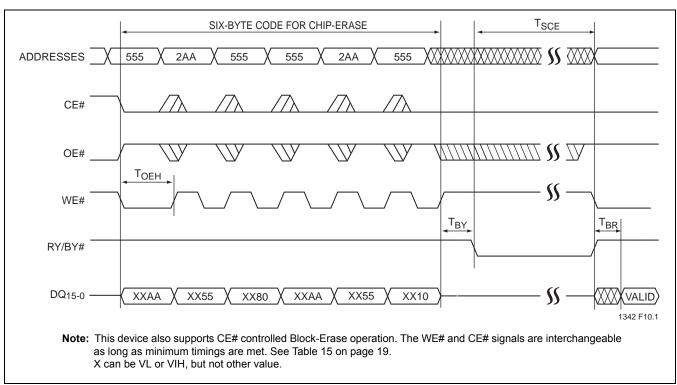


FIGURE 14: WE# Controlled Chip-Erase Timing Diagram

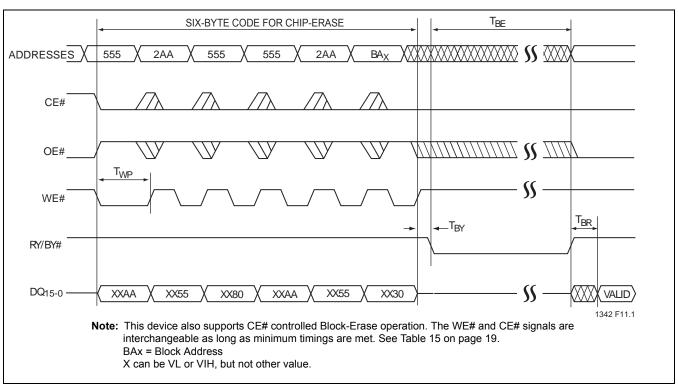


FIGURE 15: WE# Controlled Block-Erase Timing Diagram

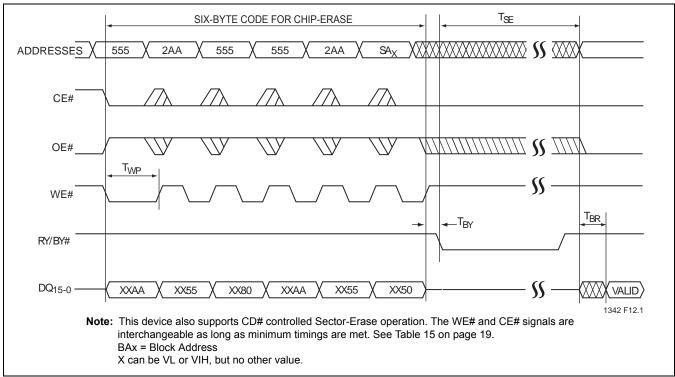


FIGURE 16: WE# Controlled Sector-Erase Timing Diagram

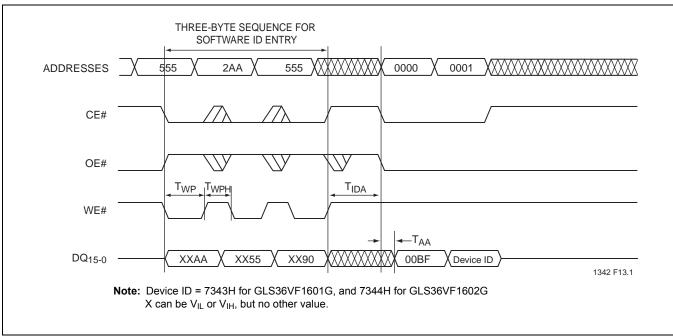


FIGURE 17: Software ID Entry and Read

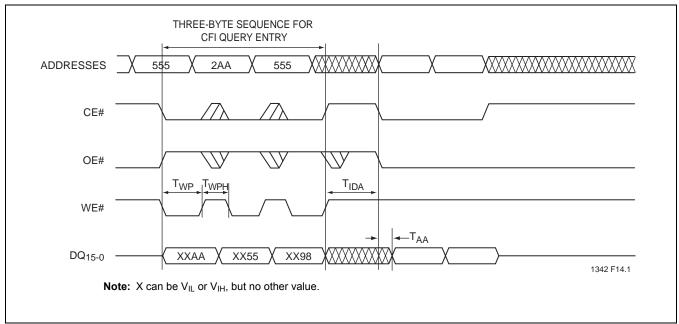


FIGURE 18: CFI Entry and Read

FIGURE 19: Software ID Exit/CFI Exit

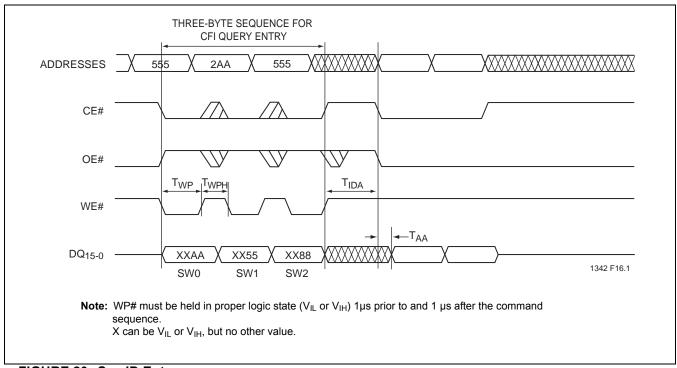


FIGURE 20: Sec ID Entry

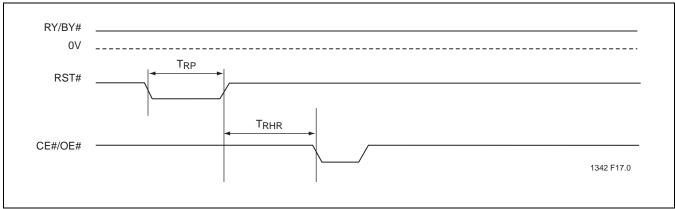


FIGURE 21: RST# Timing Diagram (When no internal operation is in progress)

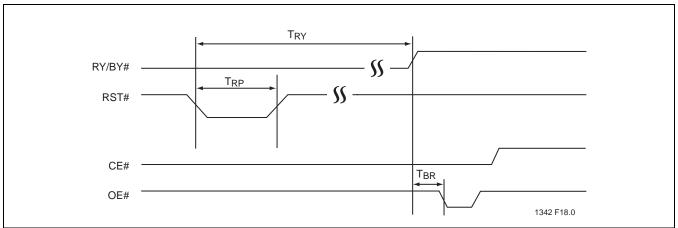
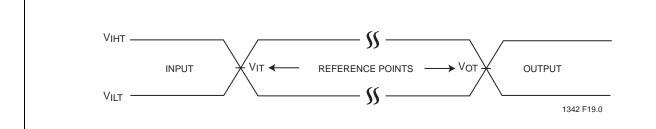



FIGURE 22: RST# Timing Diagram (During Sector- or Block-Erase operation)

Data Sheet

AC test inputs are driven at V_{IHT} (0.9 V_{DD}) for a logic "1" and V_{ILT} (0.1 V_{DD}) for a logic "0". Measurement reference points for inputs and outputs are V_{IT} (0.5 V_{DD}) and V_{OT} (0.5 V_{DD}). Input rise and fall times (10% \leftrightarrow 90%) are <5 ns.

 $\begin{aligned} \textbf{Note:} & \ \ V_{\text{IT}} - V_{\text{INPUT}} \ \text{Test} \\ & \ \ \ V_{\text{OT}} - V_{\text{OUTPUT}} \ \text{Test} \\ & \ \ \ V_{\text{IHT}} - V_{\text{INPUT}} \ \text{HIGH Test} \\ & \ \ \ \ V_{\text{ILT}} - V_{\text{INPUT}} \ \text{LOW Test} \end{aligned}$

FIGURE 23: AC Input/Output Reference Waveforms

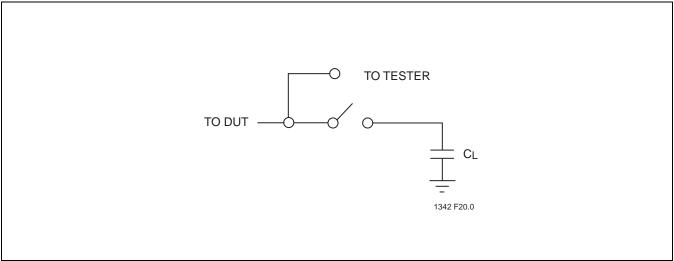


FIGURE 24: A Test Load Example

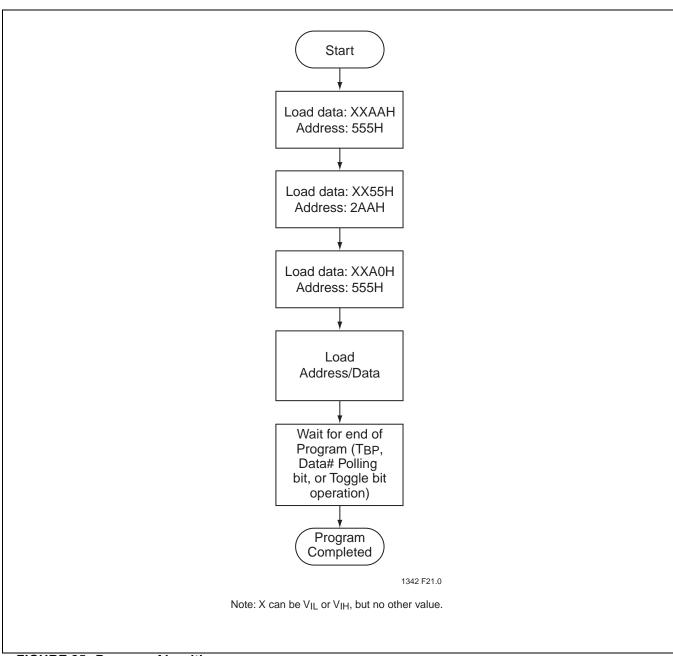


FIGURE 25: Program Algorithm

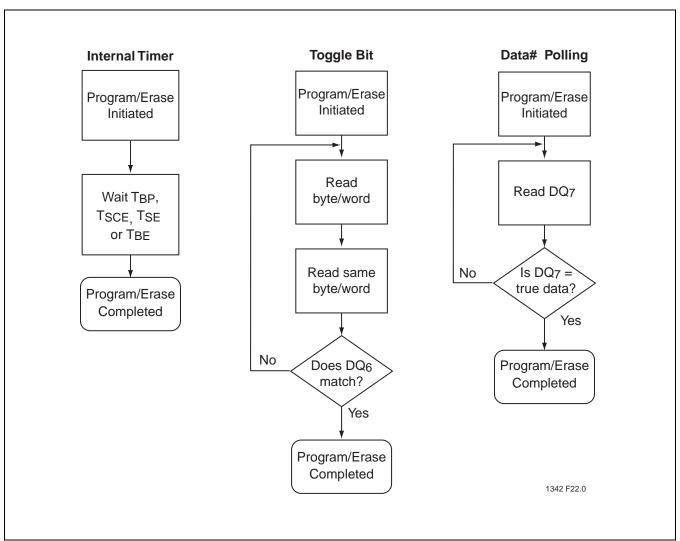


FIGURE 26: Wait Options

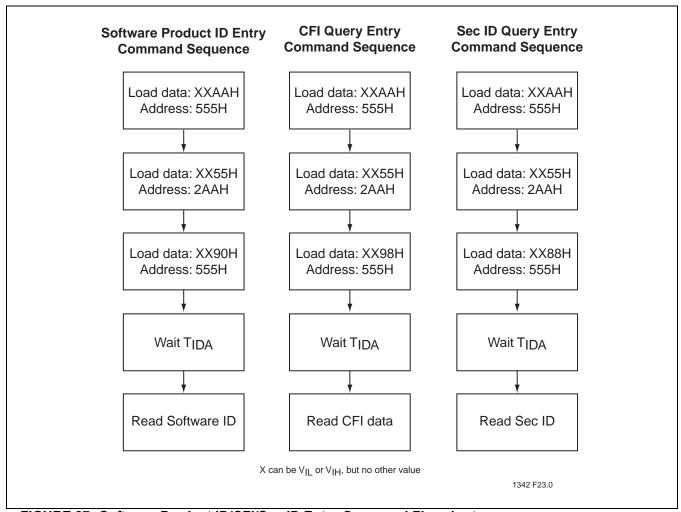


FIGURE 27: Software Product ID/CFI/Sec ID Entry Command Flowcharts

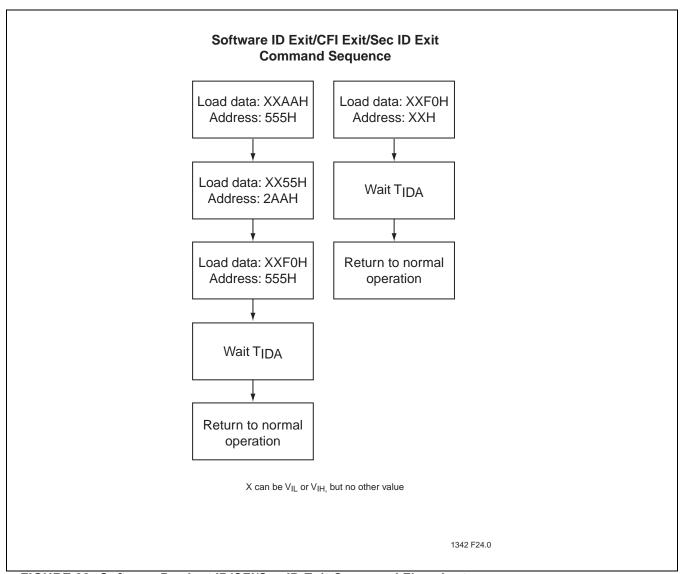


FIGURE 28: Software Product ID/CFI/Sec ID Exit Command Flowcharts

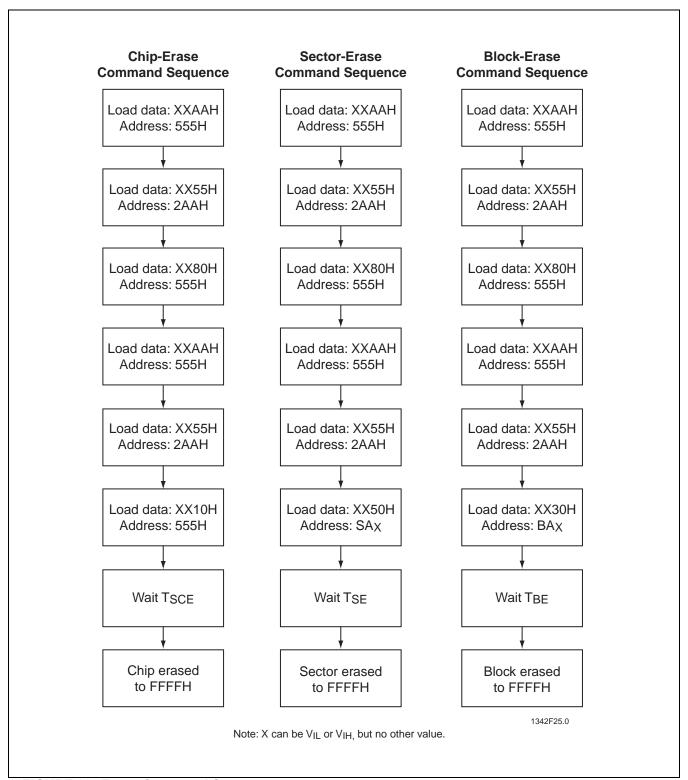
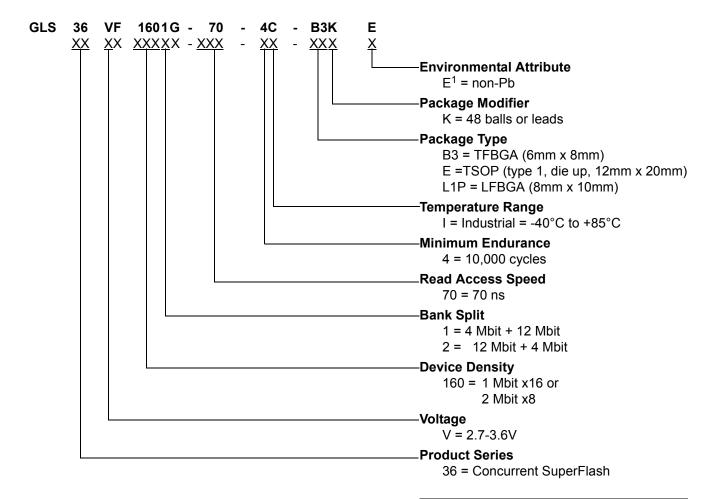



FIGURE 29: Erase Command Sequence

Data Sheet

PRODUCT ORDERING INFORMATION

Environmental suffix "E" denotes non-Pb solder. Greenliant non-Pb solder devices are "RoHS Compliant"

Valid combinations for GLS36VF1601G

GLS36VF1601G-70-4C-B3KE GLS36VF1601G-70-4C-EKE GLS36VF1601G-70-4C-L1PE GLS36VF1601G-70-4I-B3KE GLS36VF1601G-70-4I-EKE GLS36VF1601G-70-4I-L1PE

Valid combinations for GLS36VF1602G

GLS36VF1602G-70-4C-B3KE GLS36VF1602G-70-4C-EKE GLS36VF1602G-70-4C-L1PE GLS36VF1602G-70-4I-B3KE GLS36VF1602G-70-4I-EKE GLS36VF1602G-70-4I-L1PE

Note: Valid combinations are those products in mass production or will be in mass production. Consult your Greenliant sales representative to confirm availability of valid combinations and to determine availability of new combinations.

PACKAGING DIAGRAMS

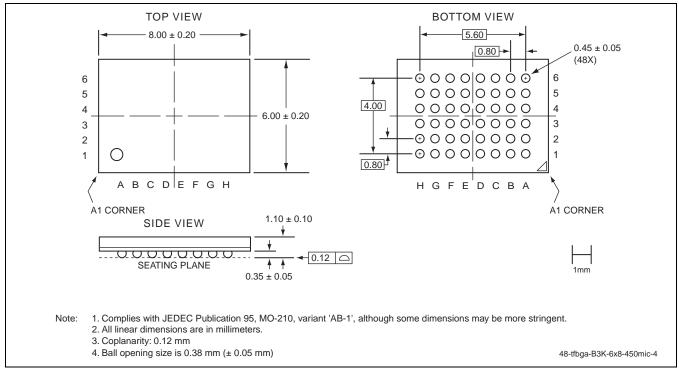


FIGURE 30: 48-ball Thin-profile, Fine-pitch Ball Grid Array (TFBGA) 6mm x 8mm Greenliant Package Code: B3K

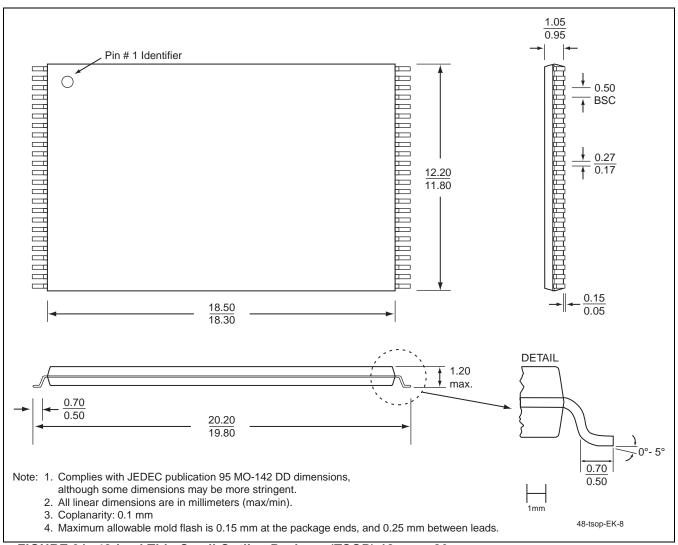


FIGURE 31: 48-lead Thin Small Outline Package (TSOP) 12mm x 20mm Greenliant Package Code: EK

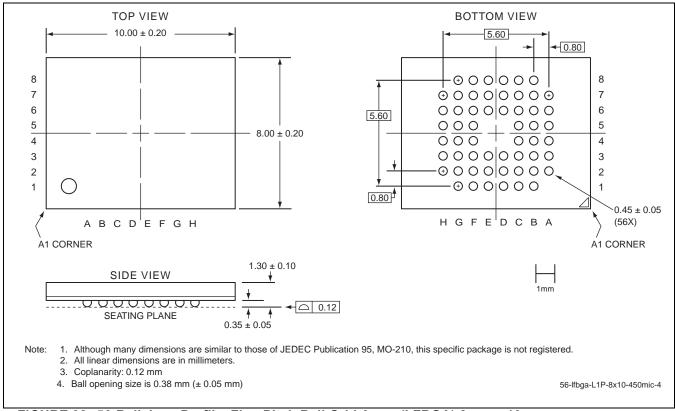


FIGURE 32: 56-Ball, Low-Profile, Fine-Pitch Ball Grid Array (LFBGA) 8mm x 10mm **Greenliant Package Code: L1P**

TABLE 16: Revision History

Number	Description		
00	•	Initial release of data sheet	Dec 2006
01	•	Edited Tby TY/BY# Delay Time in Table 15 on page 19 from 90ns Min to 90ns Max	Nov 2009
02	•	Transferred from SST to Greenliant	May 2010
03	•	Corrected XX50 and XX30 values in Figures 15 and 16 on page 23.	Nov 2010

© 2010 Greenliant Systems, Ltd. All rights reserved.

Greenliant, the Greenliant logo and NANDrive are trademarks of Greenliant Systems, Ltd.

All trademarks and registered trademarks are the property of their respective owners.

These specifications are subject to change without notice.

CSF is a trademark and SuperFlash is a registered trademark of Silicon Storage Technology, Inc., a wholly owned subsidiary of Microchip Technology Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Greenliant:

<u>GLS36VF1601G-70-4I-B3KE</u> <u>GLS36VF1601G-70-4I-EKE</u> <u>GLS36VF1601G-70-4I-L1PE</u> <u>GLS36VF1601G-70-4I-EKE-T</u> <u>GLS36VF1601G-70-4I-B3KE-T</u> <u>GLS36VF1601G-70-4I-EKE-T</u>