2N3904

ELECTRICAL CHARACTERISTICS (Values are at T_A = 25°C unless otherwise noted.)

Symbol	Parametr	Conditions	Min	Max	Unit
FF CHARACTER	RISTICS	•	•	•	·•
V _{(BR)CEO}	Collector - Emitter Breakdown Voltage	$I_C = 1.0 \text{ mA}, I_B = 0$	40	-	V
V _{(BR)CBO}	Collector - Base Breakdown Voltage	$I_C = 10 \mu A, I_E = 0$	60	-	V
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	6.0	-	V
I _{BL}	Base Cutoff Current	V _{CE} = 30 V, V _{EB} = 3 V	-	50	nA
I _{CEX}	Collector Cut-Off Current	V _{CE} = 30 V, V _{EB} = 3 V	-	50	nA
N CHARACTERI	STICS (Note 3)				
h _{FE}	DC Current Gain	I _C = 0.1 mA, V _{CE} = 1.0 V	40	_	-
		I _C = 1.0 mA, V _{CE} = 1.0 V	70	-	
		I _C = 10 mA, V _{CE} = 1.0 V	100	300	
		$I_C = 50 \text{ mA}, V_{CE} = 1.0 \text{ V}$	60	-	
		I _C = 100 mA, V _{CE} = 1.0 V	30	-	
$V_{CE(sat)}$	Collector - Emitter Saturation Voltage	I _C = 10 mA, I _B = 1.0 mA	-	0.2	V
		$I_C = 50.0 \text{ mA}, I_B = 5.0 \text{ mA}$	-	0.3	
$V_{BE(sat)}$	Base - Emitter Saturation Voltage	I _C = 10.0 mA, I _B = 1.0 mA	0.65	0.85	V
		$I_C = 50.0 \text{ mA}, I_B = 5.0 \text{ mA}$	-	0.95	1
MALL-SIGNAL	CHARACTERISTICS	•	•	•	•
f _T	Current - Gain - Bandwidth Product	$I_C = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	300	_	MHz
C_{obo}	Output Capacitance	V _{CB} = 5.0 V, I _E = 0, f = 100 kHz	_	4.0	pF
C _{ibo}	Input Capacitance	V _{EB} = 0.5 V, I _C = 0, f = 100 kHz	_	8.0	pF
NF	Noise Figure	I_{C} = 100 μ A, V_{CE} = 5.0 V, R_{S} = 1.0 k Ω , f = 10 Hz to 15.7 kHz	-	5.0	dB
WITCHING CHA	RACTERISTICS	•	_	-	-
t _d	Delay Time	V _{CC} = 3.0 V, V _{BE} = 0.5 V, I _C = 10 mA, I _{B1} = 1.0 mA	-	35	ns
t _r	Rise Time		-	35	ns
t _s	Storage Time	$V_{CC} = 3.0 \text{ V, } I_{C} = 10 \text{ mA,}$ $I_{B1} = I_{B2} = 1.0 \text{ mA}$	-	200	ns
t _f	Fall Time		_	50	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 300 μs; Duty Cycle ≤ 2%.

2N3904

TYPICAL PERFORMANCE CHARACTERISTICS

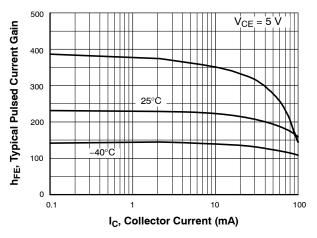


Figure 1. Typical Pulsed Current Gain vs. Collector Current

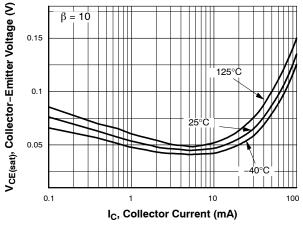


Figure 2. Collector-Emitter Saturation Voltage vs. Collector Current

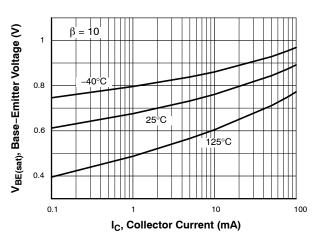


Figure 3. Base–Emitter Saturation Voltage vs. Collector Current

Figure 4. Base-Emitter On Voltage vs. Collector Current

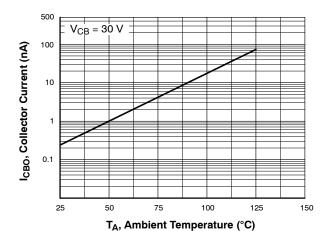


Figure 5. Collector Cut-Off Current vs. Ambient Temperature

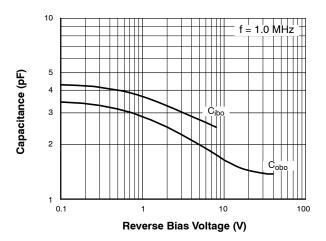


Figure 6. Capacitance vs. Reverse Bias Voltage

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

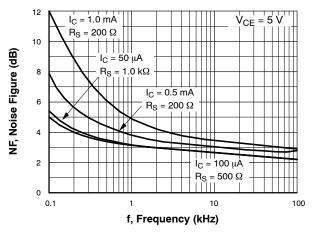


Figure 7. Noise Figure vs. Frequency

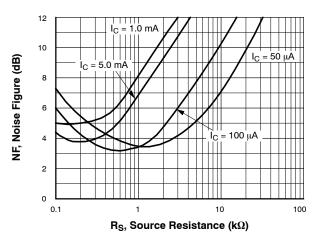


Figure 8. Noise Figure vs. Source Resistance

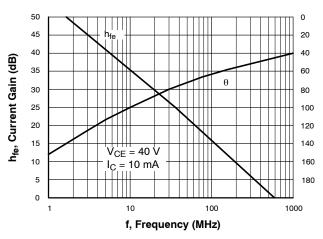


Figure 9. Current Gain and Phase Angle vs. Frequency

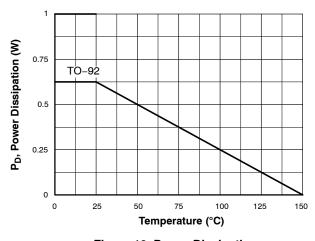


Figure 10. Power Dissipation vs. Ambient Temperature

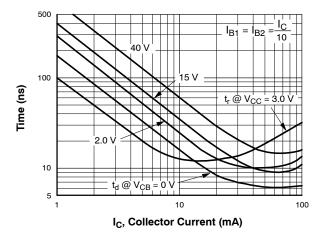


Figure 11. Turn-On Time vs. Collector Current

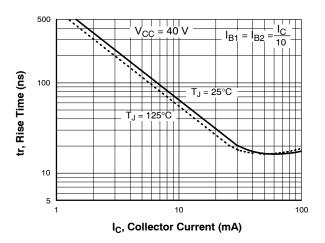


Figure 12. Rise Time vs. Collector Current

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

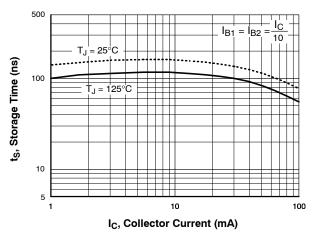


Figure 13. Storage Time vs. Collector Current

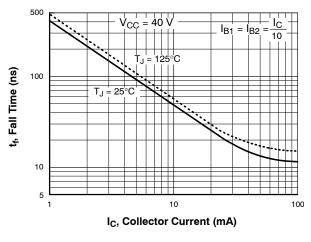


Figure 14. Fall Time vs. Collector Current

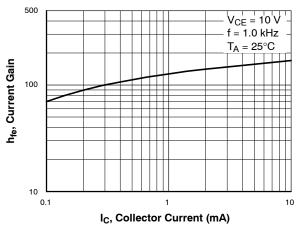


Figure 15. Current Gain

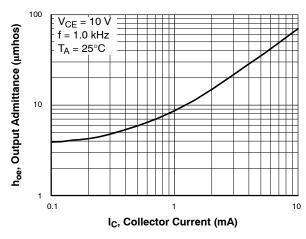


Figure 16. Output Admittance

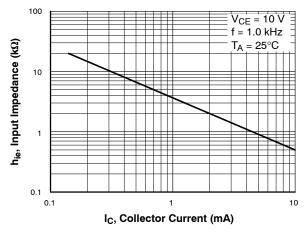


Figure 17. Input Impedance

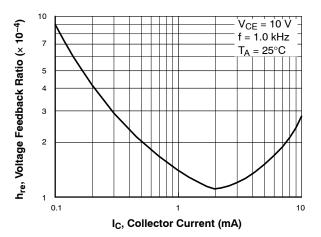


Figure 18. Voltage Feedback Ratio

2N3904

TEST CIRCUITS

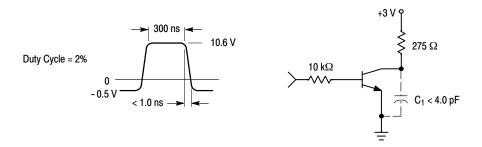


Figure 19. Delay and Rise Time Equivalent Test Circuit

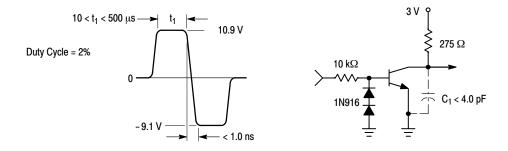
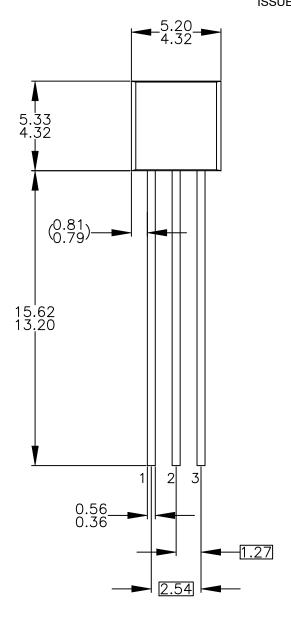
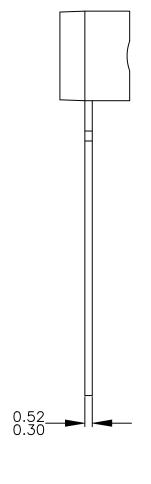


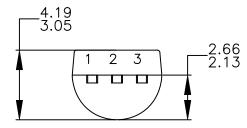
Figure 20. Storage and Fall Time Equivalent Test Circuit


ORDERING INFORMATION


Device	Package	Shipping [†]
2N3904BU	TO-92-3 LF (Pb-Free)	10000 Units / Bulk Bag
2N3904TA	TO-92-3 LF (Pb-Free)	2000 Units / Fan-Fold
2N3904TAR	TO-92-3 LF (Pb-Free)	2000 Units / Fan-Fold
2N3904TF	TO-92-3 LF (Pb-Free)	2000 Units / Tape & Reel
2N3904TFR	TO-92-3 LF (Pb-Free)	2000 Units / Tape & Reel

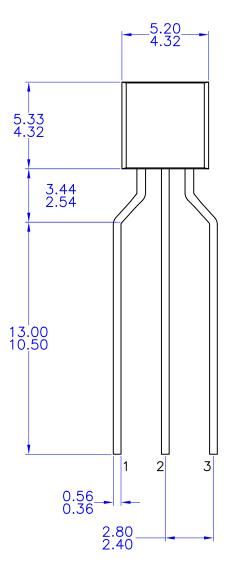
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

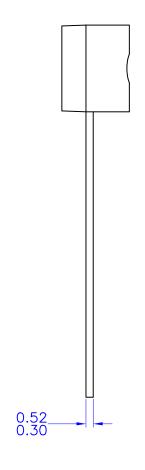
TO-92 3 4.825x4.76 CASE 135AN ISSUE O


DATE 31 JUL 2016

NOTES: UNLESS OTHERWISE SPECIFIED

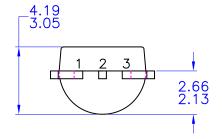
- DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS. A)
- ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M—2009.


DOCUMENT NUMBER: 98AON13880G		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 3 4.825X4.76	•	PAGE 1 OF 1	


ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 3 4.83x4.76 LEADFORMED

CASE 135AR ISSUE O


DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DRAWING CONFORMS TO ASME Y14.5M-1994

DOCUMENT NUMBER: 98AON13879G Electronic versions are uncontrolled except when accessed directly from the Docume Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in rec		, ,	
DESCRIPTION:	: TO-92 3 4.83X4.76 LEADFORMED		PAGE 1 OF 1

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

2N3904BU 2N3904TAR 2N3904TFR 2N3904TA 2N3904TF