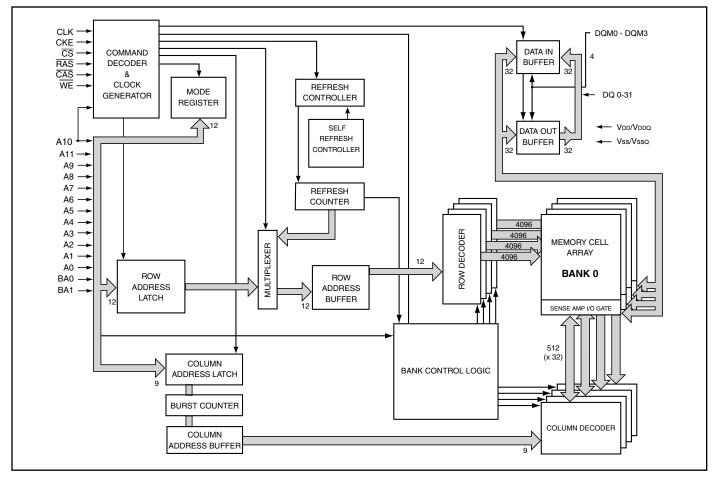


DEVICE OVERVIEW


The 256Mb SDRAM is a high speed CMOS, dynamic random-access memory designed to operate in 3.3V VDD and 3.3V VDDQ memory systems containing 268,435,456 bits. Internally configured as a quad-bank DRAM with a synchronous interface. Each 67,108,864-bit bank is organized as 4,096 rows by 512 columns by 32 bits.

The 256Mb SDRAM includes an AUTO REFRESH MODE, and a power-saving, power-down mode. All signals are registered on the positive edge of the clock signal, CLK. All inputs and outputs are LVTTL compatible.

The 256Mb SDRAM has the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks to hide precharge time and the capability to randomly change column addresses on each clock cycle during burst access. A self-timed row precharge initiated at the end of the burst sequence is available with the AUTO PRECHARGE function enabled. Precharge one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation.

SDRAM read and write accesses are burst oriented starting at a selected location and continuing for a programmed number of locations in a programmed sequence. The registration of an ACTIVE command begins accesses, followed by a READ or WRITE command. The ACTIVE command in conjunction with address bits registered are used to select the bank and row to be accessed (BA0, BA1 select the bank; A0-A11 select the row). The READ or WRITE commands in conjunction with address bits registered are used to select the starting column location for the burst access.

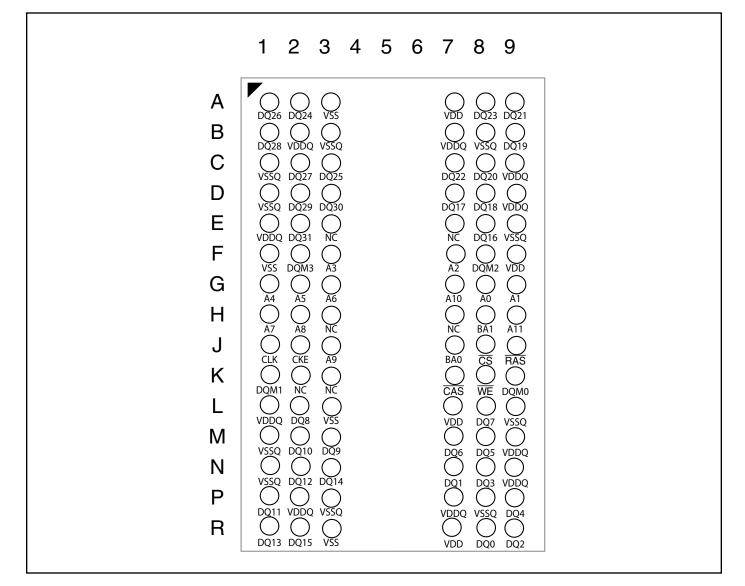
Programmable READ or WRITE burst lengths consist of 1, 2, 4 and 8 locations or full page, with a burst terminate option.

FUNCTIONAL BLOCK DIAGRAM (FOR 2Mx32x4 BANKS)

PIN CONFIGURATIONS 86 pin TSOP - Type II for x32

VID 1 • 88 1 Viss DOB 2 88 1 VissO DOI 1 4 88 1 VissO DOI 1 1 75 1 VissO DOA 11 8 77 1 1 009 VissO 11 7 1 009 1 1 1 009 VissO 112 75 1 1 000 1 1 1 000 VissO 112 75 1 1 000 1 1 1 000 VissO 112 15 72 1 1 1 000 1 1 1 1 000 1 1 1 <td< th=""><th></th><th></th><th></th></td<>			
DOOD III 2 86 DO15 Vox00 III 3 86 DVsc0 DO1 III 4 86 DO14 DO2 III 5 88 DO14 DO3 III 6 81 DVsc0 DO3 III 7 80 DO12 DO4 III 8 TO10 TO10 DO5 III 10 TO1 DO30 DO6 III 10 TO1 DO30 DO6 III 10 TO1 DO40 DO6 III 11 TO DO40 DO6 III 11 TO DO40 Voc0 III 12 TO DO40 NC <iii< td=""> 14 TO NC DO40M III 16 TO NC DO40M III 12 6 A DO40M IIII 12 6 A<!--</th--><th></th><th></th><th></th></iii<>			
Voco 3 84 Veso Voto 14 88 Do14 D02 5 82 Do13 Veso 81 DVoto Do14 D03 7 80 Do12 D04 8 7 Do14 D04 8 7 Do14 D04 8 7 Do14 D04 18 7 Do14 Veso 19 78 Dveso D05 10 77 Do210 D06 11 76 Do29 Veso 12 75 Veso D06 11 76 Do29 Veso 10 71 Do31 Veso 10 71 Do34 Veso 11 71 Do34 Veso 10	VDD 🔳	1 • 86	Vss
DO1 4 88 D014 D02 5 82 D013 D03 6 81 Voc0 D03 7 80 D012 D04 8 70 D013 D04 8 70 D012 D04 8 70 D013 V050 9 73 Vss0 D06 11 76 D059 V050 12 75 Vso0 D07 13 74 D08 D040 16 71 D0611 V050 15 72 Vss D040 16 71 D00411 CAS 19 68 OCK CAS 19 68 OCK CAS 19 68 OCK A11 21 66 A8 A21 46 A8 A8 A31 22 61 A8 A31 23 46 A8 A4 3 A6 A		2 85	DQ15
DO2 5 82 DO13 VSSQ 6 81 VSQ $DO3$ 7 80 DO12 $DC4$ 8 73 DO11 $DC4$ 9 78 DO12 $DG6$ 10 77 DO10 $DC6$ 11 76 DO9 $VSSQ$ 12 75 VSQ $DC6$ 11 76 DO9 $VSSQ$ 15 72 VSS $DOM0$ 16 71 DO01 VCC 15 72 VSS $DOM0$ 16 71 DOM1 $VCCT$ 13 71 DOM1 $VCCT$ 14 73 DNC $VSSQ$ 16 71 DOM1 $VCCT$ 19 88 DCK $VSSQ$ 16 71 DO10 $VSSQ$ 12 20 61 $AS 10 22 65 AS AS 10 22 65 AS$	VDDQ 🗖	3 84	UssQ VssQ
VacQ 6 81 11 VocQ DQ3 11 7 80 11 DQ12 DQ4 11 8 79 11 DQ111 DQ6 110 77 11 VacQ DQ6 111 76 11 DQ9 Ubac 112 75 11 VacQ DQ7 113 74 11 DQ8 DQ7 114 73 11 VacQ Vac 144 73 11 VacQ Vac 15 72 11 VacQ Vac 16 71 11 DQM11 Vac 16 71 11 DQM11 Vac 16 71 11 DQM11 Vac 16 72 11 VacQ Vac 11 121 66 11 AcQ Vac 11 121 66 12 CAS 119 68 11 AcQ 12 CAS 12 66 11 AcQ 14 A10 12 13 64 11 AcQ A11 12 68	DQ1 [4 83	DQ14
DOA 1 DO12 DOA 1 8 70 DOA 1 9 78 DOA 10 77 10 DOA 11 76 1000 DOA 13 74 1000 VSC 12 75 1000 NC 14 73 1000 VDO 16 71 1000 DOM 16 71 1000 CAS 18 60 1000 NC 16 71 1000 CAS 18 60 1000 RAS 19 66 1000 RAS 11 21 66 1000 RAS 11 21 66 1000 RAS 12 66 1000 60 A11 21 66 1000 60 A11 23 64 1000 60 A11 23 64 1000 60 DOA 25 62 100	DQ2 🔳	5 82	DQ13
D04 I 8 70 D011 V000 9 78 Vss0 D05 10 77 D010 D06 11 70 D029 Vss0 12 70 D08 D07 13 74 D08 NC 14 72 Vss0 D0400 16 71 D041 C 17 70 NC D0400 16 71 D041 C 17 70 NC C 20 61 NC C 21 70 10 NC C 22 65 A8 A8 D1 24 61 A4 A4 D2 27 60 A3 A4 D2 27 61 D44	VssQ	6 81	VDDQ
VB00 9 70 VSS0 D05 10 77 D010 D06 11 70 D09 VSS0 12 70 Voc0 USS0 12 70 D08 VSS0 12 70 D08 NC 14 70 D08 VSS0 16 71 D0401 VSS0 16 71 NC VSS0 18 19 60 10 VSS0 18 19 60 10 VSS0 12 20 61 10 A11 12 10 41 10 VS0 12 21	DQ3	7 80	DQ12
DOGS 10 77 DO(10) DOGS 11 76 DO(9) VSSQ 12 76 DVspQ DOT 13 74 DO8 DOT 14 71 DO8 Vob 15 72 DVss DQMO 16 71 DQM1 VE 17 70 NC CASS 18 69 NC FASS 19 68 CLK CS 20 67 CKE A11 21 66 A8 A24 64 A7 A30 22 63 A8 A11 24 64 A7 A4 22 63 A8 A0 25 62 A5 A1 24 61 A7 A2 27 60 A3 DOM2 28 59 DOM3 DOM3 57 NC DO31 DOM3 57 NC DO31	DQ4	8 79	DQ11
DOG 11 76 DOG VISIO 12 75 Vibi0 NC 13 74 DOG NC 14 73 NC Vob [] 15 72 Visio DOMO<[] 16 71 DOM1 WE 17 70 NC CAS 18 69 NC FAS 19 68 CK CAS 12 67 NC FAS 19 68 A9 A11 21 61 A9 BA0 22 65 A8 A11 24 61 A9 A2 27 60 A4 A0 25 62 A5 A1 26 61 A4 DOM2 28 59 DOM3 DOM2 29 58 DO29 NC 30 57 NC DOM2 36 51 DO29 DOM3 52 VobQ 51 </th <th>VDDQ 🛙</th> <th>9 78</th> <th>⊥ VssQ</th>	VDDQ 🛙	9 78	⊥ VssQ
Visio 12 75 Visio DQ7 13 74 DQ8 DQ 15 72 Visio Visio 15 72 Visio DQM0 16 71 DOM1 Visio 183 69 NC Visio 184 69 NC CAS 19 68 CK CK 20 67 CK BA0 22 65 A8 BA0 22 65 A8 BA1 21 64 A7 BA0 22 65 A8 BA1 23 64 A7 BA1 23 64 A7 BA1 24 61 A6 A2 27 60 A3 DQM3 24 59 DQM3 Viso 29 51 Voc DQ16 31 55 Voc DQ31 22 51 Voc Viso 22 51 <t< th=""><th>DQ5 🔳</th><th>10 77</th><th> DQ10</th></t<>	DQ5 🔳	10 77	DQ10
Visio 11 17 17 17 17 17 DQ7 11 13 74 17 18 18 18		11 76	
DQ7 II II 74 II DQ8 NC II 72 IVS Vbb II5 72 IVS DQM0 II6 71 IDQM1 VE II7 IDQM1 INC VE II7 IDQM1 INC CAS II8 69 INC CAS IO 06 ICLK CAS IO 22 65 BA0 II 21 66 A11 II 21 65 BA1 II 23 65 A0 II 25 II A10 II 26 II A2 II 27 60 II A4 II 26 II A5 A2 III 29 III A5 A2 III 29 III A5 A3 IDQM3 IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	VssQ	12 75	T VDDQ
Vob 15 72 11 Vss DQM0 116 71 DQM1 Vob 17 70 NC CAS 118 68 NC PAMO 120 67 CKE A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A2 27 60 A3 A3 20 58 Vss Vob 28 59 DQM3 Vob 28 59 DQM3 Vob 30 57 NC A3 20 55 VobQ Vob 33 54 DQ30 DA18 34 53 DQ29 Vob 37 50 DQ26	DQ7	13 74	
DQM0 16 71 DQM1 WE 17 70 NC CAS 19 68 CLK CS 20 67 CKE CAS 122 65 A9 BAO 22 65 A8 BAO 22 65 A8 BAO 22 65 A8 A11 23 64 A7 A10 25 62 A5 A11 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vob 29 58 Vos NC 30 57 NC DQM2 33 54 DQ30 Vob 29 55 DQ30 NC 30 51 DQ28 Vob 33 52 VosQ DQ16 31 55 DQ28 Vob 33 52 VobQ Q018 54 DQ28 Q28 <th></th> <th>14 73</th> <th></th>		14 73	
WE 17 70 NC CAS 118 69 NC FAS 19 68 CLK CS 20 67 CKE A11 21 66 A8 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A0 25 61 A4 A2 27 60 A4 DQM2 27 60 A4 DQM2 29 58 DQM3 Vbb 29 58 DQM3 Vbb 29 58 DQM3 VbcQ 32 55 DQ30 DQ16 31 54 DQ30 DQ17 33 54 DQ28 DQ20 37 DQ28 48 DQ21 38 49 DQ28 DQ22 42 45 DQ28		15 72	Vss
CAS 18 69 NC RAS 19 68 CLK GS 20 67 CKE A11 21 66 A9 BA0 22 66 A8 BA1 21 61 A6 A10 24 61 A6 A0 25 62 A5 A1 24 61 A4 A2 27 60 A3 DOM2 28 51 DQM3 Vob 29 86 Vss NC 31 57 NC DO16 31 51 DQ31 VssQ 32 55 VsQ DO17 33 54 DQ39 DO18 34 51 DQ29 VobQ 35 52 VsSQ DO21 38 48 DQ26 DO22 41 46 DQ26 DO22 41 45 DQ24		16 71	DQM1
FAS 19 68 CLK CS 20 67 CKE A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A10 25 62 A5 A2 27 60 A3 DQM2 28 59 DQM3 DQM2 28 59 DQM3 VDD 29 58 Vss NC 30 56 DQ31 VDD 22 55 VbQ VD 32 55 VbQ VDD 29 58 Vsq VDD 29 58 Vsq VDD 29 58 Vsq VDD 31 56 DQ31 VDQ 32 55 VbQ DQ18 34 53 DQ29 VDQ 35 DQ27 Vsq VSQ 38 49 VoQ2 <th></th> <th>17 70</th> <th></th>		17 70	
CS 20 67 CKE A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A2 27 60 A3 DQM2 28 59 DQM3 DQM2 28 59 DQM3 VDD 29 58 Vss VD 20 56 DQ31 VD 31 56 DQ30 VSSQ 32 55 VoDQ DQ16 31 54 DQ30 DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VsQ DQ19 36 41 DQ26 VDQ 35 52 VsQ DQ27 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ2 42 45		18 69	
CS 20 67 CKE A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A2 27 60 A3 DQM2 28 59 DQM3 DQM2 28 59 DQM3 VDD 29 58 Vss VD 20 56 DQ31 VD 31 56 DQ30 VSSQ 32 55 VoDQ DQ16 31 54 DQ30 DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VsQ DQ19 36 41 DQ26 VDQ 35 52 VsQ DQ27 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ2 42 45		19 68	
A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vob 29 58 Vss Vob 20 31 56 DQ31 VssQ 32 55 VobQ DQ31 VobQ 35 52 VobQ VobQ VobQ 35 52 VssQ DQ39 VobQ 35 52 VssQ DQ39 VobQ 35 52 VssQ DQ29 VobQ 38 49 VobQ DQ27 VssQ 38 49 VobQ DQ26 DQ21 42 45 DQ24 DQ24			
BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A10 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VSS 9 DQM3 VSS NC 30 57 NC DQ16 31 56 DQ31 VSS 12 33 54 DQ30 DQ17 33 54 DQ30 1029 VSQ 35 VSQ VSQ 1029 VSQ 35 DQ29 VSQ 1029 VSQ 35 DQ29 VSQ 1029 VSQ 36 51 DQ29 VSQ VSQ 38 49 VDQ VDQ DQ21 39 48 DQ26 1025 DQ22 40 47 DQ25 1024			
BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A11 26 1 A4 A2 27 60 A3 DOM2 28 59 DOM3 Vbb 29 58 Vss Vbb 29 58 Vss DQ16 31 56 DQ31 VssQ 32 55 VbQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbDQ 35 52 VsQ VbQQ 35 52 VsQ DQ20 37 50 DQ27 VsQ 38 49 VbQ DQ21 39 48 DQ26 DQ21 39 48 DQ26 DQ21 40 47 DQ26 UDQ2 41 46 VsQ UDQ3 42 45 UQ24	BAO	22 65	
A10 24 63 A6 A0 25 62 A5 A11 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 VSS NC 30 57 NC DQ16 31 56 DQ30 VSQ 32 55 VDQQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ0 35 52 VSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSQ 38 49 DQ26 DQ21 38 49 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VSQ DQ23 42 45 DQ24	BA1	23 64	
A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vbb 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VvbQ DQ17 33 54 DQ39 VbDQ 35 52 VssQ DQ18 34 35 DQ29 VbDQ 35 51 DQ28 DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VvbQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VbDQ 41 46 VssQ DQ23 42 45 DQ24	A10 🔳	24 63	
A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VbD 29 58 Vss NC 30 57 NC DQ16 31 56 DQ30 VbQ 32 55 VbQQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbQQ 35 52 VsQ DQ19 36 51 DQ28 VbQQ 37 50 DQ27 VsQ 39 48 DQ26 DQ21 39 48 DQ26 VbQQ 41 46 VsQ VbQQ 41 46 VsQ	A0 🔳	25 62	
A2 27 60 A3 DQM2 28 59 DQM3 Vbb 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VobQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbDQ 35 52 VssQ VDQ2 36 51 DQ28 VDQ2 38 49 VbDQ VSQ 39 0Q26 0Q26 VDQ2 41 46 VssQ VDQ3 42 45 DQ24		26 61	
VDD 29 58 VSS NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VSSQ DQ19 36 51 DQ28 VDQ 37 50 DQ27 VSSQ 39 48 DQ26 DQ21 39 48 DQ26 VDQ2 41 46 VSSQ VDQ3 42 45 DQ24	A2 🗖	27 60	
NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VoDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VsSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VsSQ 38 DQ26 DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VsSQ DQ23 42 45 DQ24		28 59	DQM3
DQ16 31 56 DQ31 VSSQ 32 55 VoDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VsSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 38 DQ26 DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VsSQ DQ23 42 45 DQ24	VDD	29 58	🔟 Vss
DQ16 31 56 DQ31 VSSQ 32 55 VoDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VsSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 38 DQ26 DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VsSQ DQ23 42 45 DQ24		30 57	
DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VoDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VoDQ 41 46 VssQ DQ23 42 45 DQ24		31 56	
DQ18 34 53 DQ29 VDDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VoDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQQ 41 46 VssQ DQ23 42 45 DQ24	VssQ	32 55	VDDQ
VDDQ 35 52 VSSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQQ 41 46 VSSQ DQ23 42 45 DQ24	DQ17 [33 54	DQ30
DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VbDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VbDQ 41 46 VssQ DQ23 42 45 DQ24	DQ18	34 53	DQ29
DQ20 37 50 DQ27 VssQ 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VssQ DQ23 42 45 DQ24		35 52	☐ VssQ
VssQ 38 49 VDDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDDQ 41 46 VssQ DQ23 42 45 DQ24	DQ19	36 51	DQ28
DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDDQ 41 46 VssQ DQ23 42 45 DQ24	DQ20 [[37 50	DQ27
DQ22 40 47 DQ25 VDDQ 41 46 VssQ DQ23 42 45 DQ24	VssQ 🔳	38 49	
VDDQ 41 46 VssQ DQ23 42 45 DQ24	DQ21 [[39 48	
VDDQ 41 46 VssQ DQ23 42 45 DQ24	DQ22 [[40 47	DQ25
		41 46	
	DQ23 🔳	42 45	DQ24
	VDD [43 44	Vss

PIN DESCRIPTIONS


A0-A11	Row Address Input
A0-A8	Column Address Input
BA0, BA1	Bank Select Address
DQ0 to DQ31	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
DQM0-DQM3	x32 Input/Output Mask
Vdd	Power
Vss	Ground
Vddq	Power Supply for I/O Pin
Vssq	Ground for I/O Pin
NC	No Connection

PIN CONFIGURATION

PACKAGE CODE: B 90 BALL TF-BGA (Top View) (8.00 mm x 13.00 mm Body, 0.8 mm Ball Pitch)

PIN DESCRIPTIONS

A0-A11	Row Address Input
A0-A8	Column Address Input
BA0, BA1	Bank Select Address
DQ0 to DQ31	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
DQM0-DQM3	x32 Input/Output Mask
Vdd	Power
Vss	Ground
Vddq	Power Supply for I/O Pin
Vssq	Ground for I/O Pin
NC	No Connection

PIN FUNCTIONS

Symbol	Туре	Function (In Detail)
A0-A11	Input Pin	Address Inputs: A0-A11 are sampled during the ACTIVE
		command (row-address A0-A11) and READ/WRITE command (column address A0-A8), with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRECHARGE command to determine if all banks are to be precharged (A10 HIGH) or bank selected by BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD MODE REGISTER command.
BA0, BA1	Input Pin	Bank Select Address: BA0 and BA1 defines which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied.
CAS	Input Pin	\overline{CAS} , in conjunction with the \overline{RAS} and \overline{WE} , forms the device command. See the "Command Truth Table" for details on device commands.
CKE	Input Pin	The CKE input determines whether the CLK input is enabled. The next rising edge of the CLK signal will be valid when is CKE HIGH and invalid when LOW. When CKE is LOW, the device will be in either power-down mode, clock suspend mode, or self refresh mode. CKE is an asynchronous input.
CLK	Input Pin	CLK is the master clock input for this device. Except for CKE, all inputs to this device are acquired in synchronization with the rising edge of this pin.
CS	Input Pin	The $\overline{\text{CS}}$ input determines whether command input is enabled within the device. Command input is enabled when $\overline{\text{CS}}$ is LOW, and disabled with $\overline{\text{CS}}$ is HIGH. The device remains in the previous state when $\overline{\text{CS}}$ is HIGH.
DQM0-DQM3	Input Pin	DQM0 - DQM3 control the four bytes of the I/O buffers (DQ0-DQ31). In read
		mode, DQMn control the output buffer. When DQMn is LOW, the corresponding buf- fer byte is enabled, and when HIGH, disabled. The outputs go to the HIGH imped- ance state whenDQMn is HIGH. This function corresponds to \overline{OE} in conventional DRAMs. In write mode, DQMn control the input buffer. When DQMn is LOW, the corresponding buffer byte is enabled, and data can be written to the device. When DQMn is HIGH, input data is masked and cannot be written to the device.
DQ0-DQ31	Input/Output Pin	Data on the Data Bus is latched on these pins during Write commands, and buffered after Read commands.
RAS	Input Pin	$\overline{\text{RAS}}$, in conjunction with $\overline{\text{CAS}}$ and $\overline{\text{WE}}$, forms the device command. See the "Command Truth Table" item for details on device commands.
WE	Input Pin	$\overline{\text{WE}}$, in conjunction with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$, forms the device command. See the "Command Truth Table" item for details on device commands.
VDDQ	Power Supply Pin	VDDQ is the output buffer power supply.
Vdd	Power Supply Pin	VDD is the device internal power supply.
Vssq	Power Supply Pin	Vsso is the output buffer ground.
Vss	Power Supply Pin	Vss is the device internal ground.

GENERAL DESCRIPTION

READ

The READ command selects the bank from BA0, BA1 inputs and starts a burst read access to an active row. Inputs A0-A8 provides the starting column location. When A10 is HIGH, this command functions as an AUTO PRECHARGE command. When the auto precharge is selected, the row being accessed will be precharged at the end of the READ burst. The row will remain open for subsequent accesses when AUTO PRECHARGE is not selected. DQ's read data is subject to the logic level on the DQM inputs two clocks earlier. When a given DQM signal was registered HIGH, the corresponding DQ's will be High-Z two clocks later. DQ's will provide valid data when the DQM signal was registered LOW.

WRITE

A burst write access to an active row is initiated with the WRITE command. BA0, BA1 inputs selects the bank, and the starting column location is provided by inputs A0-A8. Whether or not AUTO-PRECHARGE is used is determined by A10.

The row being accessed will be precharged at the end of the WRITE burst, if AUTO PRECHARGE is selected. If AUTO PRECHARGE is not selected, the row will remain open for subsequent accesses.

A memory array is written with corresponding input data on DQ's and DQM input logic level appearing at the same time. Data will be written to memory when DQM signal is LOW. When DQM is HIGH, the corresponding data inputs will be ignored, and a WRITE will not be executed to that byte/column location.

PRECHARGE

The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. BA0, BA1 can be used to select which bank is precharged or they are treated as "Don't Care". A10 determined whether one or all banks are precharged. After executing this command, the next command for the selected bank(s) is executed after passage of the period t_{RP} , which is the period required for bank precharging. Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank.

AUTO PRECHARGE

The AUTO PRECHARGE function ensures that the precharge is initiated at the earliest valid stage within a burst. This function allows for individual-bank precharge without requiring an explicit command. A10 to enable the AUTO PRECHARGE function in conjunction with a specific READ or WRITE command. For each individual READ or WRITE command, auto precharge is either enabled or disabled. AUTO PRECHARGE does not apply except in full-page burst mode. Upon completion of the READ or WRITE burst, a precharge of the bank/row that is addressed is automatically performed.

AUTO REFRESH COMMAND

This command executes the AUTO REFRESH operation. The row address and bank to be refreshed are automatically generated during this operation. The stipulated period (tRc) is required for a single refresh operation, and no other commands can be executed during this period. This command is executed at least 4096 times for every TREF. During an AUTO REFRESH command, address bits are "Don't Care". This command corresponds to CBR Auto-refresh.

BURST TERMINATE

The BURST TERMINATE command forcibly terminates the burst read and write operations by truncating either fixed-length or full-page bursts and the most recently registered READ or WRITE command prior to the BURST TERMINATE.

COMMAND INHIBIT

COMMAND INHIBIT prevents new commands from being executed. Operations in progress are not affected, apart from whether the CLK signal is enabled

NO OPERATION

When $\overline{\text{CS}}$ is low, the NOP command prevents unwanted commands from being registered during idle or wait states.

LOAD MODE REGISTER

During the LOAD MODE REGISTER command the mode register is loaded from A0-A11. This command can only be issued when all banks are idle.

ACTIVE COMMAND

When the ACTIVE COMMAND is activated, BA0, BA1 inputs selects a bank to be accessed, and the address inputs on A0-A11 selects the row. Until a PRECHARGE command is issued to the bank, the row remains open for accesses.

COMMAND TRUTH TABLE

	СКЕ									A11
Function	n – 1	n	CS	RAS	CAS	WE	BA1	BA0	A10	A9 - A0
Device deselect (DESL)	Н	×	Н	×	×	×	×	×	×	×
No operation (NOP)	Н	×	L	Н	Н	Н	×	×	×	×
Burst stop (BST)	Н	×	L	Н	Н	L	×	×	×	×
Read	Н	×	L	Н	L	Н	V	V	L	V
Read with auto precharge	Н	×	L	Н	L	Н	V	V	Н	V
Write	Н	×	L	Н	L	L	V	V	L	V
Write with auto precharge	Н	×	L	Н	L	L	V	V	Н	V
Bank activate (ACT)	Н	×	L	L	Н	Н	V	V	V	V
Precharge select bank (PRE)) H	×	L	L	Н	L	V	V	L	×
Precharge all banks (PALL)	Н	×	L	L	Н	L	×	×	Н	×
CBR Auto-Refresh (REF)	Н	Н	L	L	L	Н	×	×	×	×
Self-Refresh (SELF)	Н	L	L	L	L	Н	×	×	×	×
Mode register set (MRS)	Н	×	L	L	L	L	L	L	L	V

Note: $H=V_{IH}$, $L=V_{IL} x=V_{IH}$ or V_{IL} , V = Valid Data.

DQM TRUTH TABLE

CKE		DQM		
n-1	n	U	L	
Н	×	L	L	
Н	×	Н	Н	
Н	×	L	×	
Н	×	×	L	
Н	×	Н	×	
Н	×	×	Н	
	n-1 H	n-1 n H ×	n-1 n U H × L	n-1 n U L H × L L

Note: $H=V_{IH}$, $L=V_{IL} x=V_{IH}$ or V_{IL} , V = Valid Data.

CKE TRUTH TABLE

	CKE						
Current State /Function	n – 1	n	CS	RAS	CAS	WE	Address
Activating Clock suspend mode entry	Н	L	×	×	×	×	×
Any Clock suspend mode	L	L	×	×	×	×	×
Clock suspend mode exit	L	Н	×	×	×	×	×
Auto refresh command Idle (REF)	Н	Н	L	L	L	Н	×
Self refresh entry Idle (SELF)	Н	L	L	L	L	Н	×
Power down entry Idle	Н	L	×	×	×	×	×
Self refresh exit	L	Н	L	Н	Н	Н	×
	L	Н	Н	×	×	×	×
Power down exit	L	Н	×	×	×	×	×

Note: $H=V_{IH}$, $L=V_{IL}$ $x=V_{IH}$ or V_{IL} , V = Valid Data.

FUNCTIONAL TRUTH TABLE

Current State	CS	RAS	CAS	WE	Address	Command	Action
dle	Н	Х	Х	Х	Х	DESL	Nop or Power Down ⁽²⁾
	L	Н	Н	Н	Х	NOP	Nop or Power Down ⁽²⁾
	L	Н	Н	L	Х	BST	Nop or Power Down
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽³⁾
	L	Н	L	L	A, CA, A10	WRIT/ WRITA	ILLEGAL ⁽³⁾
	L	L	Н	Н	BA, RA	ACT	Row activating
	L	L	Н	L	BA, A10	PRE/PALL	Nop
	L	L	L	Н	Х	REF/SELF	Auto refresh or Self-refresh ⁽⁴⁾
	L	L	L	L	OC, BA1=L	MRS	Mode register set
Row Active	Н	Х	Х	Х	Х	DESL	Nop
	L	Н	Н	Н	Х	NOP	Nop
	L	Н	Н	L	Х	BST	Nop
	L	Н	L	Н	BA, CA, A10	READ/READA	Begin read (5)
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	Begin write (5)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Precharge Precharge all banks ⁽⁶⁾
	L	L	L	н	Х	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Read	Н	Х	Х	Х	Х	DESL	Continue burst to end to Row active
	L	Н	Н	Н	Х	NOP	Continue burst to end Row Row active
	L	Н	Н	L	Х	BST	Burst stop, Row active
	L	Н	L	Н	BA, CA, A10	READ/READA	Terminate burst, begin new read ⁽⁷⁾
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	Terminate burst, begin write ^(7,8)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Terminate burst Precharging
	L	L	L	Н	Х	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Write	Н	Х	Х	Х	Х	DESL	Continue burst to end Write recovering
	L	Н	Н	Н	Х	NOP	Continue burst to end Write recovering
	L	Н	Н	L	Х	BST	Burst stop, Row active
	L	Н	L	Н	BA, CA, A10	READ/READA	Terminate burst, start read : Determine AP (7,8)
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	Terminate burst, new write : Determine AP ⁽⁷⁾
	L	L	Н	Н	BA, RA	RA ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Terminate burst Precharging (9)
	L	L	L	H	X	REF/SELF	ILLEGAL
		L		L	OC, BA	MRS	ILLEGAL

Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code

FUNCTIONAL TRUTH TABLE Continued:

Current State	<u>CS</u>	RAS	CAS	WE	Address	Command	Action
Read with auto Precharging	Н	×	×	×	×	DESL	Continue burst to end, Precharge
	L	Н	Н	Н	Х	NOP	Continue burst to end, Precharge
	L	Н	Н	L	×	BST	ILLEGAL
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL (11)
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	ILLEGAL (11)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL (11)
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Write with Auto Precharge	Н	×	×	×	×	DESL	Continue burst to end, Write recovering with auto precharge
	L	Н	Н	Н	×	NOP	Continue burst to end, Write recovering with auto precharge
	L	Н	Н	L	×	BST	ILLEGAL
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽¹¹⁾
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	ILLEGAL (11)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ^(3,11)
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ^(3,11)
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Precharging	Н	×	×	×	×	DESL	Nop, Enter idle after tRP
	L	Н	Н	Н	×	NOP	Nop, Enter idle after tRP
	L	Н	Н	L	×	BST	Nop, Enter idle after tRP
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽³⁾
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL ⁽³⁾
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Nop Enter idle after tRP
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Row Activating	Н	x	×	×	×	DESL	Nop, Enter bank active after tRCD
	L	Н	Н	Н	×	NOP	Nop, Enter bank active after tRCD
	L	Н	Н	L	×	BST	Nop, Enter bank active after tRCD
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽³⁾
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL ⁽³⁾
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ^(3,9)
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ⁽³⁾
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL

Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code

FUNCTIONAL TRUTH TABLE Continued:

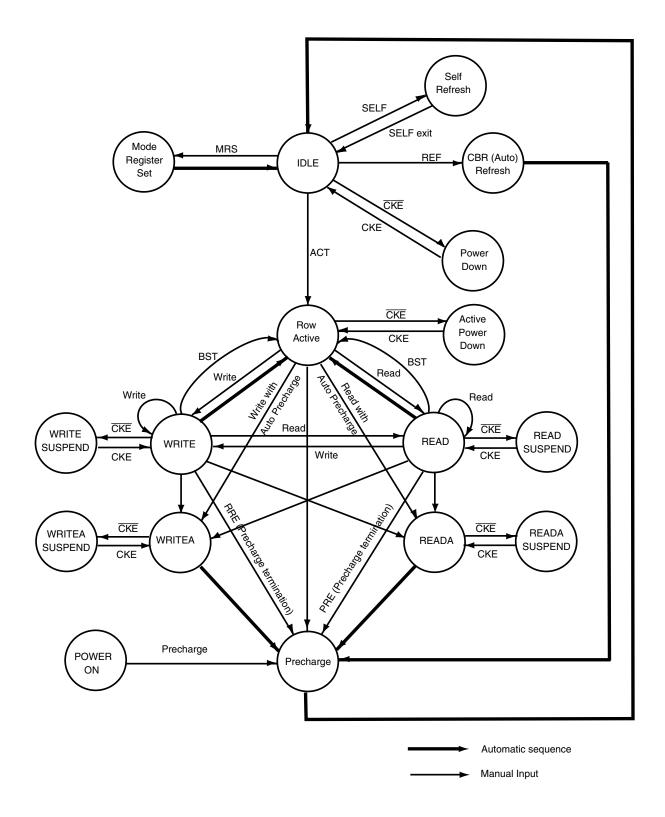
Current State	\overline{CS}	RAS	CAS	WE	Address	Command	Action
Write Recovering	Н	×	×	×	×	DESL	Nop, Enter row active after tDPL
	L	Н	Н	Н	×	NOP	Nop, Enter row active after tDPL
	L	Н	Н	L	×	BST	Nop, Enter row active after tDPL
	L	Н	L	Н	BA, CA, A10	READ/READA	Begin read ⁽⁸⁾
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	Begin new write
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ⁽³⁾
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Write Recovering	Н	×	x	×	×	DESL	Nop, Enter precharge after tDPL
with Auto	L	Н	Н	Н	×	NOP	Nop, Enter precharge after tDPL
Precharge	L	Н	Н	L	×	BST	Nop, Enter row active after tDPL
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ^(3,8,11)
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL ^(3,11)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ^(3,11)
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ^(3,11)
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Refresh	Н	x	x	×	×	DESL	Nop, Enter idle after tRC
	L	Н	Н	×	×	NOP/BST	Nop, Enter idle after tRC
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL
	L	L	Н	Н	BA, RA	ACT	ILLEGAL
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Mode Register	Н	×	×	×	×	DESL	Nop, Enter idle after 2 clocks
Accessing	L	Н	Н	Н	×	NOP	Nop, Enter idle after 2 clocks
	L	Н	Н	L	×	BST	ILLEGAL
	L	Н	L	×	BA, CA, A10	READ/WRITE	ILLEGAL
	L	L	×	×	BA, RA	ACT/PRE/PALL REF/MRS	ILLEGAL

Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code

Notes:

- 1. All entries assume that CKE is active (CKEn-1=CKEn=H).
- 2. If both banks are idle, and CKE is inactive (Low), the device will enter Power Down mode. All input buffers except CKE will be disabled.
- 3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BA), depending on the state of that bank.
- 4. If both banks are idle, and CKE is inactive (Low), the device will enter Self-Refresh mode. All input buffers except CKE will be disabled.
- 5. Illegal if tRCD is not satisfied.
- 6. Illegal if tRAS is not satisfied.
- 7. Must satisfy burst interrupt condition.
- 8. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
- 9. Must mask preceding data which don't satisfy tDPL.
- 10. Illegal if tRRD is not satisfied.
- 11. Illegal for single bank, but legal for other banks.

CKE RELATED COMMAND TRUTH TABLE⁽¹⁾


		CKE	Ξ					
Current State	Operation	n-1	n	CS	RAS	CAS	WE	Address
Self-Refresh (S.R.)	INVALID, CLK (n - 1) would exit S.R.	Н	Х	Х	Х	Х	Х	Х
	Self-Refresh Recovery ⁽²⁾	L	Н	Н	Х	Х	Х	Х
	Self-Refresh Recovery ⁽²⁾	L	Н	L	Н	Н	Х	Х
	Illegal	L	Н	L	Н	L	Х	Х
	Illegal	L	Н	L	L	Х	Х	Х
	Maintain S.R.	L	L	Х	Х	Х	Х	Х
Self-Refresh Recover	ry Idle After tRC	Н	Н	Н	Х	Х	Х	Х
	Idle After tRC	Н	Н	L	Н	Н	Х	Х
	Illegal	Н	Н	L	Н	L	Х	Х
	Illegal	Н	н	L	L	Х	Х	Х
	Begin clock suspend next cycle ⁽⁵⁾	Н	L	Н	Х	Х	Х	Х
	Begin clock suspend next cycle ⁽⁵⁾	Н	L	L	Н	Н	Х	Х
	Illegal	Н	L	L	Н	L	Х	Х
	Illegal	Н	L	L	L	Х	Х	Х
	Exit clock suspend next cycle ⁽²⁾	L	н	Х	Х	Х	Х	Х
	Maintain clock suspend	L	L	Х	Х	Х	Х	Х
Power-Down (P.D.)	INVALID, CLK (n - 1) would exit P.D.	Н	Х	Х	Х	Х	Х	_
	EXIT P.D> Idle ⁽²⁾	L	н	Х	Х	Х	Х	Х
	Maintain power down mode	L	L	Х	Х	Х	Х	Х
Both Banks Idle	Refer to operations in Operative Command Table	Н	Н	Н	Х	Х	Х	_
	Refer to operations in Operative Command Table	Н	Н	L	Н	Х	Х	_
	Refer to operations in Operative Command Table	Н	Н	L	L	Н	Х	—
	Auto-Refresh	Н	н	L	L	L	Н	Х
	Refer to operations in Operative Command Table	Н	Н	L	L	L	L	Op - Code
	Refer to operations in Operative Command Table	Н	L	Н	Х	Х	Х	_
	Refer to operations in Operative Command Table	Н	L	L	Н	Х	Х	_
	Refer to operations in Operative Command Table	Н	L	L	L	Н	Х	_
	Self-Refresh ⁽³⁾	Н	L	L	L	L	Н	Х
	Refer to operations in Operative Command Table	Н	L	L	L	L	L	Op - Cod
	Power-Down ⁽³⁾	L	х	Х	Х	Х	Х	Х
Any state	Refer to operations in Operative Command Table	Н	Н	Х	Х	Х	Х	Х
other than	Begin clock suspend next cycle ⁽⁴⁾	Н	L	Х	Х	Х	Х	Х
listed above	Exit clock suspend next cycle	L	Н	Х	Х	Х	Х	Х
	Maintain clock suspend	L	L	Х	Х	Х	Х	Х

Notes:

- H : High level, L : low level, X : High or low level (Don't care).
 CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied
 - before any command other than EXIT.
- 3. Power down and Self refresh can be entered only from the both banks idle state.
- 4. Must be legal command as defined in Operative Command Table.
- 5. Illegal if txsR is not satisfied.

STATE DIAGRAM

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameters		Rating	Unit
VDD MAX	Maximum Supply Voltage		-0.5 to +4.6	V
V DDQ MAX	Maximum Supply Voltage for Output E	Buffer	-0.5 to +4.6	V
VIN	Input Voltage		-0.5 to VDD + 0.5	V
Vout	Output Voltage		-1.0 to VDDQ + 0.5	V
Pd max	Allowable Power Dissipation		1	W
lcs	Output Shorted Current		50	mA
Topr	Operating Temperature	Com.	0 to +70	°C
		Ind.	-40 to +85	
		A1	-40 to +85	
		A2	-40 to +105	
Тѕтс	Storage Temperature		-65 to +150	°C

Notes:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. All voltages are referenced to Vss.

DC RECOMMENDED OPERATING CONDITIONS

(TA = 0°C to +70°C for Commercial grade. TA = -40°C to +85°C for Industrial and A1 grade. TA = -40°C to +105°C for A2 grade.)

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	V
Vddq	I/O Supply Voltage	3.0	3.3	3.6	V
VIH ⁽¹⁾	Input High Voltage	2.0	—	VDDQ + 0.3	V
$VIL^{(2)}$	Input Low Voltage	-0.3	—	+0.8	V

Note:

1. VIH (max) = VDDQ +1.2V (PULSE WIDTH \leq 3NS).

2. VIL (min) = -1.2V (PULSE WIDTH $\leq 3NS$).

3. All voltages are referenced to Vss.

CAPACITANCE CHARACTERISTICS (At TA = 0 to +25°C, VDD = VDDQ = 3.3 ± 0.3V)

Symbol	Parameter	Min.	Ма	IX.	Unit
			-6	-7	
CIN1	Input Capacitance: CLK	2.5	3.5	4.0	pF
CIN2	Input Capacitance:All other input pins	2.5	3.8	5.0	pF
Cı/o	Data Input/Output Capacitance:I/Os	4.0	6.5	6.5	pF

Symbol	Parameter	Test Condition	-6	-7	-75E	Unit
DD1 ⁽¹⁾	Operating Current	One bank active, CL = 3, BL = 1,	135	125	135	mA
		tclκ = tclκ (min), trc = trc (min)				
IDD2P	Precharge Standby Current (In Power-Down Mode)	$CKE \leq V\text{il} \ (\text{max}), \ tck = 15ns$	3	3	3	mA
DD2PS	Precharge Standby Current (In Power-Down Mode)	$CKE \leq V\text{il} \text{ (max), } CLK \leq V\text{il} \text{ (max)}$	3	3	3	mA
DD2N ⁽²⁾	Precharge Standby Current	$\overline{\text{CS}} \ge \text{V}_{\text{DD}}$ - 0.2V, $\text{CKE} \ge \text{V}_{\text{IH}}$ (MIN)	45	45	45	mA
	(In Non Power-Down Mode)	tcκ = 15ns				
DD2NS	Precharge Standby Current	$\overline{\text{CS}} \ge \text{V}_{\text{DD}}$ - 0.2V, $\text{CKE} \ge \text{V}_{\text{IH}}$ (MIN) or	30	30	30	mA
	(In Non Power-Down Mode)	$CKE \leq V_{IL}$ (MAX), All inputs stable				
DD3P	Active Standby Current	$CKE \le V_{IL}$ (MAX), tck = 15ns	4	4	4	mA
	(Power-Down Mode)					
DD3PS	Active Standby Current	$CKE \leq VIL (MAX), CLK \leq VIL (MAX)$	3	3	3	mA
	(Power-Down Mode)					
DD3N ⁽²⁾	Active Standby Current	$\overline{\text{CS}} \ge \text{V}_{\text{DD}}$ - 0.2V, $\text{CKE} \ge \text{V}_{\text{IH}}$ (MIN)	55	55	55	mA
	(In Non Power-Down Mode)	tcκ = 15ns				
DD3NS	Active Standby Current	$\overline{\text{CS}} \ge \text{V}_{\text{DD}}$ - 0.2V, $\text{CKE} \ge \text{V}_{\text{IH}}$ (MIN) or	30	30	30	mA
	(In Non Power-Down Mode)	$CKE \leq V_{IL}$ (MAX), All inputs stable				
DD4	Operating Current	All banks active, $BL = 4$, $CL = 3$,	180	150	180	mA
		tск = tск (min)				
DD5	Auto-Refresh Current	trc = trc (min), tclk = tclk (min)	350	270	285	mA
	Self-Refresh Current	CKE ≤ 0.2V	3	3	3	mA

DC ELECTRICAL CHARACTERISTICS 1 (Recommended Operation Conditions unless otherwise noted.)

Notes:

1. IDD (MAX) is specified at the output open condition.

2. Input signals are changed one time during 30ns.

DC ELECTRICAL CHARACTERISTICS 2 (Recommended Operation Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition	Min	Max	Unit
lı∟	Input Leakage Current	$0V \le Vin \le V_{DD}$, with pins other than	-10	10	μA
		the tested pin at 0V			
Iol	Output Leakage Current	Output is disabled, $0V \le Vout \le VDD$,	-10	10	μA
Vон	Output High Voltage Level	Іон = -2mA	2.4	_	V
Vol	Output Low Voltage Level	lo∟ = 2mA	_	0.4	V

AC ELECTRICAL CHARACTERISTICS (1,2,3,4)

			-6		7	-75	-75E	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
tскз	Clock Cycle Time CAS Latency = 3	6	_	7	—	_	_	ns
tcк2	CAS Latency = 2	10	_	10	_	7.5	_	ns
tасз	Access Time From CLK CAS Latency = 3	_	5.4	—	5.4	—	_	ns
tac2	CAS Latency = 2	_	6.5		6.5	_	5.5	ns
tсні	CLK HIGH Level Width	2.5	—	2.5	—	2.5	—	ns
tcL	CLK LOW Level Width	2.5	—	2.5	—	2.5	—	ns
tонз	Output Data Hold Time \overline{CAS} Latency = 3	2.7	—	2.7	—	—	—	ns
toh2	CAS Latency = 2	2.7	_	2.7	—	2.7	—	ns
t∟z	Output LOW Impedance Time	0	—	0	—	0	—	ns
tнz	Output HIGH Impedance Time	2.7	5.4	2.7	5.4	2.7	5.4	ns
tos	Input Data Setup Time ⁽²⁾	1.5	—	1.5	—	1.5	—	ns
tdн	Input Data Hold Time ⁽²⁾	1.0	—	1.0	—	1.0	—	ns
tas	Address Setup Time ⁽²⁾	1.5	_	1.5	_	1.5	_	ns
tан	Address Hold Time ⁽²⁾	1.0	_	1.0	_	1.0	_	ns
tcкs	CKE Setup Time ⁽²⁾	1.5	_	1.5	—	1.5	—	ns
tскн	CKE Hold Time ⁽²⁾	1.0	_	1.0	—	1.0	—	ns
tcs	Command Setup Time (CS, RAS, CAS, WE, DQM) ⁽²⁾	1.5	_	1.5	—	1.5	_	ns
tсн	Command Hold Time (\overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} , DQM) ⁽²⁾	1.0	_	1.0	—	1.0	_	ns
trc	Command Period (REF to REF / ACT to ACT)	60	_	67.5	_	67.5	_	ns
tras	Command Period (ACT to PRE)	42	100K	45	100K	45	100K	ns
trp	Command Period (PRE to ACT)	18	_	20	_	15	_	ns
trcd	Active Command To Read / Write Command Delay Time	18	_	20	_	15	_	ns
trrd	Command Period (ACT [0] to ACT[1])	12	_	14	_	15	_	ns
t DPL	Input Data To Precharge Command Delay time	12	-	14	—	15	_	ns
tdal	Input Data To Active / Refresh Command Delay time (During Auto-Precharge)	30	_	35	_	30	_	ns
tmrd	Mode Register Program Time	12	_	14	_	15	_	ns
tdde	Power Down Exit Setup Time	6	_	7	_	7.5	_	ns
txsr	Self-Refresh Exit Time ⁽⁵⁾	70	_	70	_	70	_	ns
tτ	Transition Time	0.3	1.2	0.3	1.2	0.3	1.2	ns
tref	Refresh Cycle Time (4096) $T_A \le 70^{\circ}C$ Com., Ind., A1, A2	_	64	_	64	_	64	ms
	$T_A \leq 85^{\circ}C$ Ind., A1, A2	—	64	_	64	—	64	ms
lotos	TA > 85°C A2				16			ms

Notes:

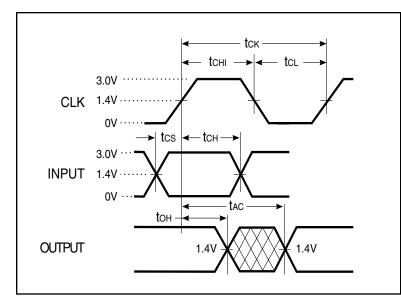
1. The power-on sequence must be executed before starting memory operation.

2. Measured with $t\tau = 1$ ns. If clock rising time is longer than 1ns, (tr /2 - 0.5) ns should be added to the parameter.

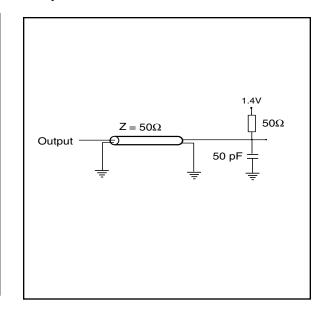
3. The reference level is 1.4V when measuring input signal timing. Rise and fall times are measured between VIH(min.) and VIL (max).

4. Use recommended operation conditions.

5. Self-Refresh Mode is not supported for A2 grade with $T_A > +85^{\circ}C$.


OPERATING FREQUENCY / LATENCY RELATIONSHIPS

SYMBO	L PARAMETER						UNITS
_	Clock Cycle Time		6	7	75	10	ns
_	Operating Frequency		166	143	133	100	MHz
tcac	CAS Latency		3	3	2	2/3	cycle
trcd	Active Command To Read/Write Command Delay	Time	3	3	2	2	cycle
trac	RAS Latency (tRCD + tCAC)	\overline{CAS} Latency = 3 \overline{CAS} Latency = 2	6	6	4	5 4	cycle
trc	Command Period (REF to REF / ACT to ACT)		10	10	9	7	cycle
tras	Command Period (ACT to PRE)		7	7	6	5	cycle
tRP	Command Period (PRE to ACT)		3	3	2	2	cycle
trrd	Command Period (ACT[0] to ACT [1])		2	2	2	2	cycle
tccd	Column Command Delay Time (READ, READA, WRIT, WRITA)		1	1	1	1	cycle
t dpl	Input Data To Precharge Command Delay Time		2	2	2	2	cycle
tdal	Input Data To Active/Refresh Command Delay Tim (During Auto-Precharge)	e	5	5	4	4	cycle
trbd	Burst Stop Command To Output in HIGH-Z Delay Time (Read)	\overline{CAS} Latency = 3 \overline{CAS} Latency = 2	3	3	2	3 2	cycle
twbd	Burst Stop Command To Input in Invalid Delay Tim (Write)	e	0	0	0	0	cycle
trql	Precharge Command To Output in HIGH-Z Delay Time (Read)	\overline{CAS} Latency = 3 \overline{CAS} Latency = 2	3	3	2	3 2	cycle
twdl	Precharge Command To Input in Invalid Delay Tim (Write)	e	0	0	0	0	cycle
t PQL	Last Output To Auto-Precharge Start Time (Read)	\overline{CAS} Latency = 3 \overline{CAS} Latency = 2	-2	-2	 -1	-2 -1	cycle
tqмd	DQM To Output Delay Time (Read)		2	2	2	2	cycle
tdмd	DQM To Input Delay Time (Write)		0	0	0	0	cycle
tmrd	Mode Register Set To Command Delay Time		2	2	2	2	cycle



ACTEST CONDITIONS

Input Load

Output Load

ACTEST CONDITIONS

Parameter	Rating
AC Input Levels	0V to 3.0V
Input Rise and Fall Times	1 ns
Input Timing Reference Level	1.4V
Output Timing Measurement Reference Level	1.4V

FUNCTIONAL DESCRIPTION

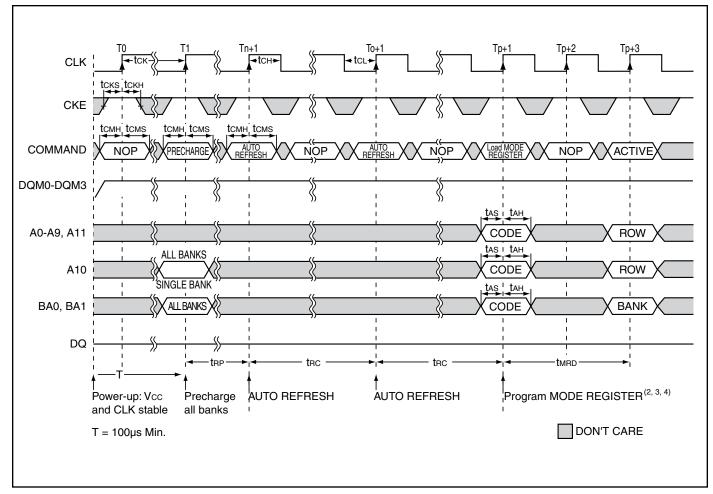
Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an AC-TIVE command which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0 and BA1 select the bank, A0-A11 select the row). The address bits A0-A8 registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation.

Initialization

SDRAMs must be powered up and initialized in a predefined manner.

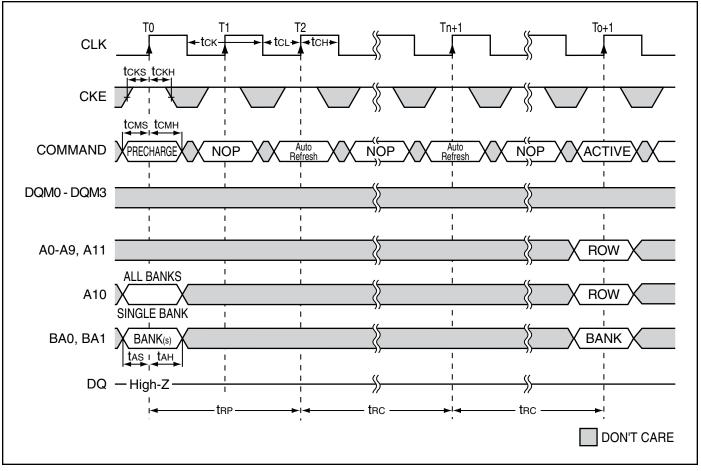
The 256M SDRAM is initialized after the power is applied to VDD and VDDQ (simultaneously) and the clock is stable with DQM High and CKE High.


A 100µs delay is required prior to issuing any command other than a COMMAND INHIBIT or a NOP. The COMMAND INHIBIT or NOP may be applied during the 100µs period and should continue at least through the end of the period.

With at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied once the 100µs delay has been satisfied. All banks must be precharged. This will leave all banks in an idle state after which at least two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SDRAM is then ready for mode register programming.

The mode register should be loaded prior to applying any operational command because it will power up in an unknown state.

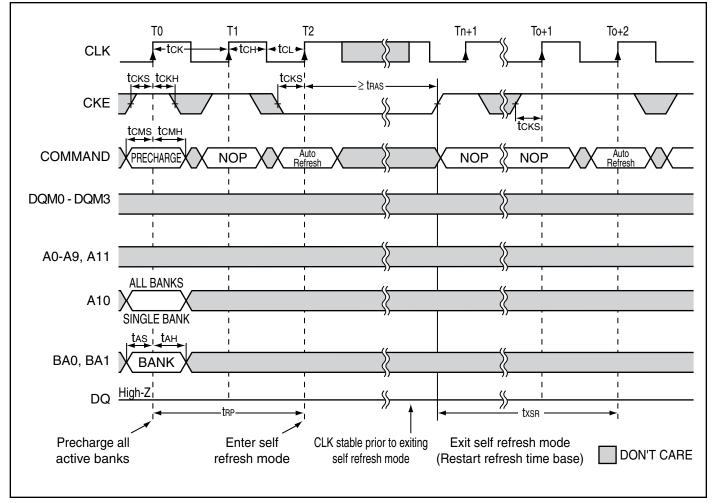
INITIALIZE AND LOAD MODE REGISTER⁽¹⁾



Notes:

- If CS is High at clock High time, all commands applied are NOP.
 The Mode register may be loaded prior to the Auto-Refresh cycles if desired.
- JEDEC and PC100 specify three clocks.
 Outputs are guaranteed High-Z after the command is issued.

AUTO-REFRESH CYCLE



Notes:

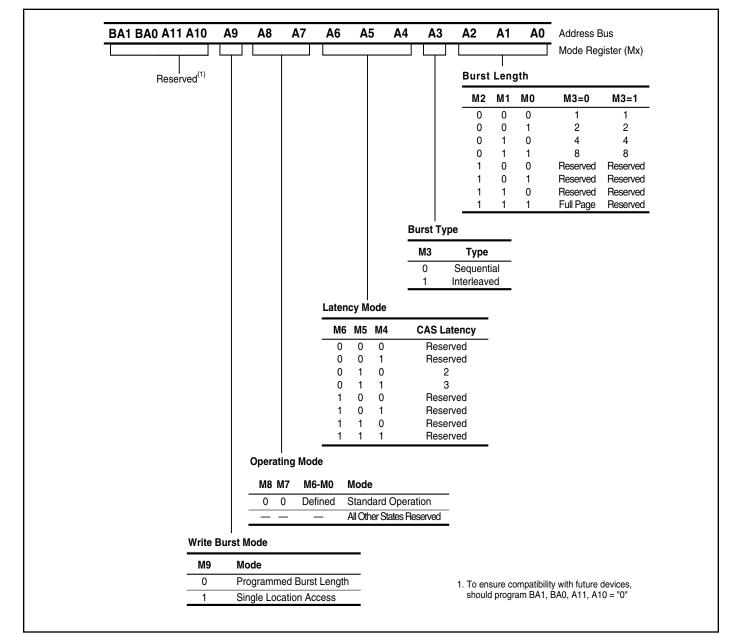
1. \overline{CAS} latency = 2, 3

SELF-REFRESH CYCLE

Note:

1. Self-Refresh Mode is not supported for A2 grade with $T_A > +85^{\circ}C$.

REGISTER DEFINITION


Mode Register

The mode register is used to define the specific mode of operation of the SDRAM. This definition includes the selection of a burst length, a burst type, a CAS latency, an operating mode and a write burst mode, as shown in MODE REGISTER DEFINITION.

The mode register is programmed via the LOAD MODE REGISTER command and will retain the stored information until it is programmed again or the device loses power.

Mode register bits M0-M2 specify the burst length, M3 specifies the type of burst (sequential or interleaved), M4- M6 specify the CAS latency, M7 and M8 specify the operating mode, M9 specifies the WRITE burst mode, and M10 and M11 are reserved for future use.

The mode register must be loaded when all banks are idle, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation.

MODE REGISTER DEFINITION

BURST LENGTH

Read and write accesses to the SDRAM are burst oriented, with the burst length being programmable, as shown in MODE REGISTER DEFINITION. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4 or 8 locations are available for both the sequential and the interleaved burst types, and a full-page burst is available for the sequential type. The full-page burst is used in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths.

Reserved states should not be used, as unknown operation or incompatibility with future versions may result.

When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, mean-

ing that the burst will wrap within the block if a boundary is reached. The block is uniquely selected by A1-A8 (x32) when the burst length is set to two; by A2-A8 (x32) when the burst length is set to four; and by A3-A8 (x32) when the burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. Full-page bursts wrap within the page if the boundary is reached.

Burst Type

Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3.

The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in BURST DEFINITION table.

BURST DEFINITION

Burst	Sta	rting Col	umn	Order of Acce	esses Within a Burst
Length		Address	5	Type = Sequential	Type = Interleaved
			A 0		
2			0	0-1	0-1
			1	1-0	1-0
		A 1	A 0		
		0	0	0-1-2-3	0-1-2-3
4		0	1	1-2-3-0	1-0-3-2
		1	0	2-3-0-1	2-3-0-1
		1	1	3-0-1-2	3-2-1-0
	A 2	A 1	A 0		
	0	0	0	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7
	0	0	1	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6
	0	1	0	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5
8	0	1	1	3-4-5-6-7-0-1-2	3-2-1-0-7-6-5-4
	1	0	0	4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3
	1	0	1	5-6-7-0-1-2-3-4	5-4-7-6-1-0-3-2
	1	1	0	6-7-0-1-2-3-4-5	6-7-4-5-2-3-0-1
	1	1	1	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0
Full Page	n = A0-A	8		Cn, Cn + 1, Cn + 2 Cn + 3, Cn + 4	Not Supported
(y)	(location 0	-у)		Ćn - 1, Cn	

CAS Latency

The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be set to two or three clocks.

If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available by clock edge n + m. The DQs will start driving as a result of the clock edge one cycle earlier (n + m - 1), and provided that the relevant access times are met, the data will be valid by clock edge n + m. For example, assuming that the clock cycle time is such that all relevant access times are met, if a READ command is registered at T0 and the latency is programmed to two clocks, the DQs will start driving after T1 and the data will be valid by T2, as shown in CAS Latency diagrams. The Allowable Operating Frequency table indicates the operating frequencies at which each CAS latency setting can be used.

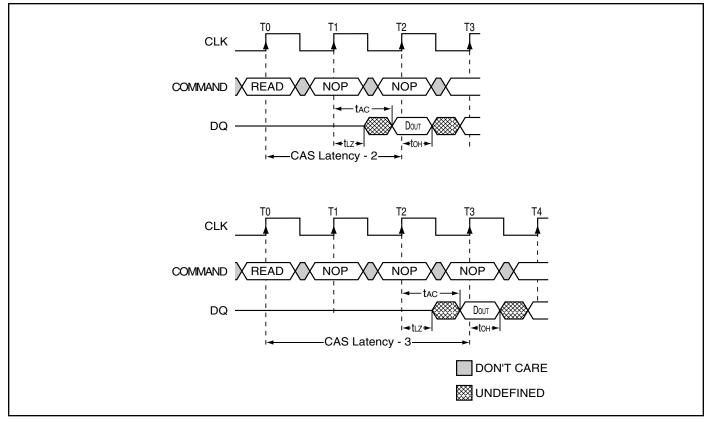
Reserved states should not be used as unknown operation or incompatibility with future versions may result.

Operating Mode

The normal operating mode is selected by setting M7 and M8 to zero; the other combinations of values for M7 and M8 are reserved for future use and/or test modes. The programmed burst length applies to both READ and WRITE bursts.

Test modes and reserved states should not be used because unknown operation or incompatibility with future versions may result.

Write Burst Mode


When M9 = 0, the burst length programmed via M0-M2 applies to both READ and WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but write accesses are single-location (nonburst) accesses.

CAS Latency

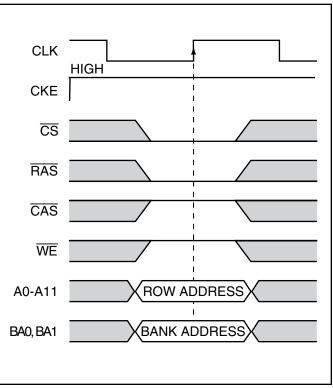
Allowable Operating Frequency (MHz)

Speed	CAS Latency = 2	CAS Latency = 3		
-6	100	166		
-7	100	143		
-75E	133	—		

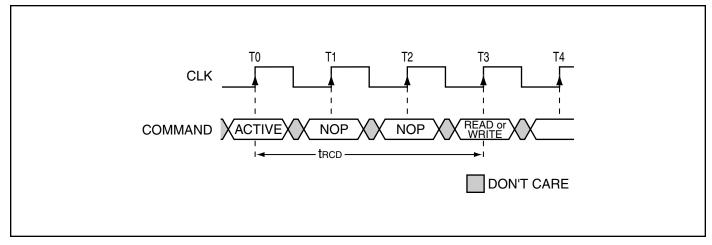
CAS LATENCY

CHIP OPERATION

BANK/ROW ACTIVATION


Before any READ or WRITE commands can be issued to a bank within the SDRAM, a row in that bank must be "opened." This is accomplished via the ACTIVE command, which selects both the bank and the row to be activated (see Activating Specific Row Within Specific Bank).

After opening a row (issuing an ACTIVE command), a READ or WRITE command may be issued to that row, subject to the tRCD specification. Minimum tRCD should be divided by the clock period and rounded up to the next whole number to determine the earliest clock edge after the ACTIVE command on which a READ or WRITE command can be entered. For example, a tRCD specification of 18ns with a 125 MHz clock (8ns period) results in 2.25 clocks, rounded to 3. This is reflected in the following example, which covers any case where $2 < [tRCD (MIN)/tcK] \le 3$. (The same procedure is used to convert other specification limits from time units to clock cycles).


A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been "closed" (precharged). The minimum time interval between successive ACTIVE commands to the same bank is defined by tRc.

A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by tRRD.

ACTIVATING SPECIFIC ROW WITHIN SPE-CIFIC BANK

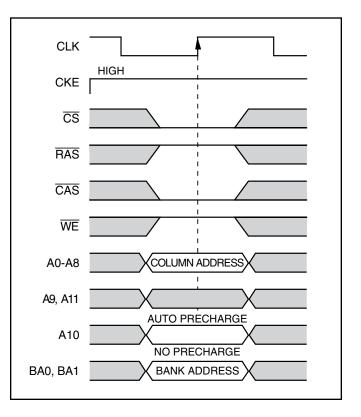
EXAMPLE: MEETING TRCD (MIN) WHEN 2 < [TRCD (MIN)/TCK] \leq 3

READS

READ bursts are initiated with a READ command, as shown in the READ COMMAND diagram.

The starting column and bank addresses are provided with the READ command, and auto precharge is either enabled or disabled for that burst access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the generic READ commands used in the following illustrations, auto precharge is disabled.

During READ bursts, the valid data-out element from the starting column address will be available following the CAS latency after the READ command. Each subsequent data-out element will be valid by the next positive clock edge. The CAS Latency diagram shows general timing for each possible CAS latency setting.


Upon completion of a burst, assuming no other commands have been initiated, the DQs will go High-Z. A full-page burst will continue until terminated. (At the end of the page, it will wrap to column 0 and continue.)

Data from any READ burst may be truncated with a subsequent READ command, and data from a fixed-length READ burst may be immediately followed by data from a READ command. In either case, a continuous flow of data can be maintained. The first data element from the new burst follows either the last element of a completed burst or the last desired data element of a longer burst which is being truncated.

The new READ command should be issued *x* cycles before the clock edge at which the last desired data element is valid, where *x* equals the CAS latency minus one. This is shown in Consecutive READ Bursts for CAS latencies of two and three; data element n + 3 is either the last of a burst of four or the last desired of a longer burst. The SDRAM uses a pipelined architecture and therefore does not require the 2n rule associated with a prefetch architecture. A READ command can be initiated on any clock cycle following a previous READ command. Full-speed random read accesses can be performed to the same bank, as shown in Random READ Accesses, or each subsequent READ may be performed to a different bank.

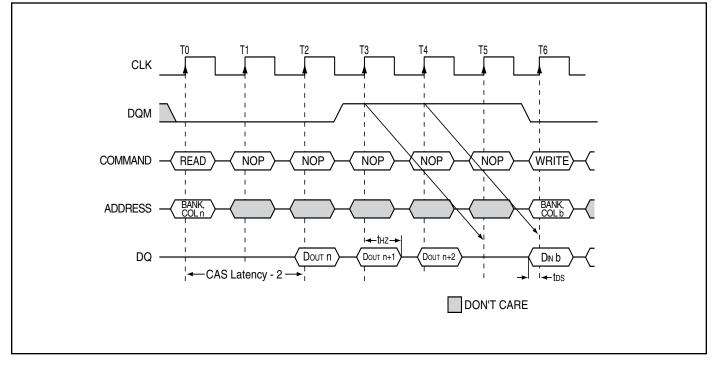
Data from any READ burst may be truncated with a subsequent WRITE command, and data from a fixed-length READ burst may be immediately followed by data from a WRITE command (subject to bus turnaround limitations). The WRITE burst may be initiated on the clock edge immediately following the last (or last desired) data element from the READ burst, provided that I/O contention can be avoided. In a given system design, there may be a possibility that the device driving the input data will go Low-Z before the SDRAM DQs go High-Z. In this case, at least a single-cycle delay should occur between the last read data and the WRITE command.

READ COMMAND

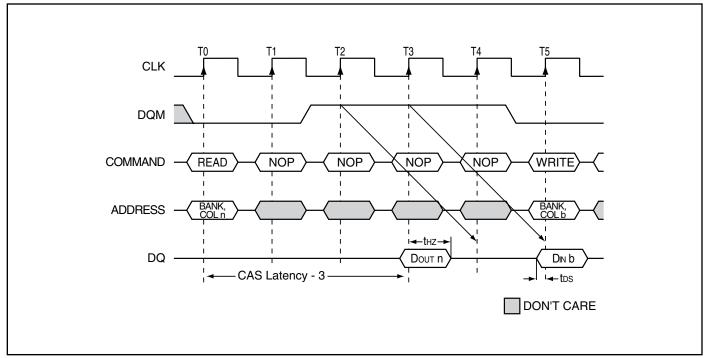
The DQM input is used to avoid I/O contention, as shown in Figures RW1 and RW2. The DQM signal must be asserted (HIGH) at least three clocks prior to the WRITE command (DQM latency is two clocks for output buffers) to suppress data-out from the READ. Once the WRITE command is registered, the DQs will go High-Z (or remain High-Z), regardless of the state of the DQM signal, provided the DQM was active on the clock just prior to the WRITE command that truncated the READ command. If not, the second WRITE will be an invalid WRITE. For example, if DQM was LOW during T4 in Figure RW2, then the WRITEs at T5 and T7 would be valid, while the WRITE at T6 would be invalid.

The DQM signal must be de-asserted prior to the WRITE command (DQM latency is zero clocks for input buffers) to ensure that the written data is not masked.

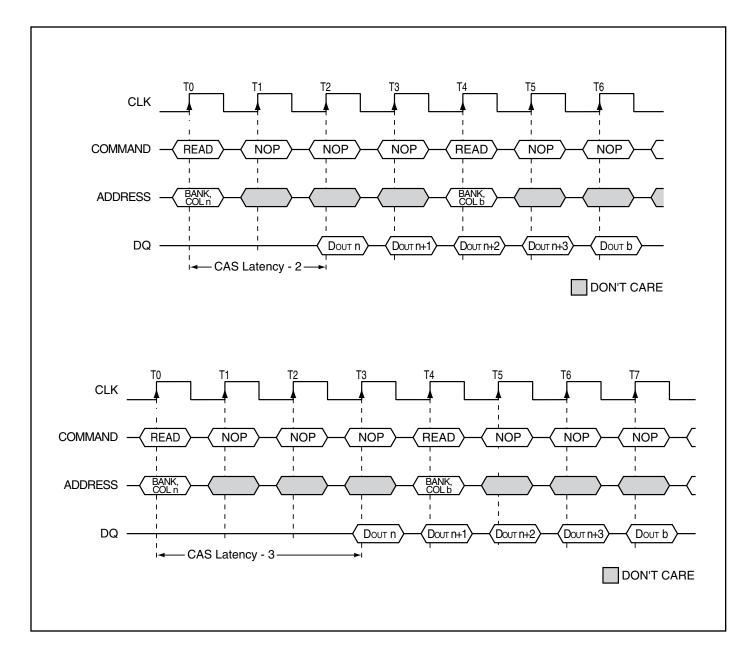
A fixed-length READ burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that auto precharge was not activated), and a full-page burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued *x* cycles before the clock edge at which the last desired data element is valid, where *x* equals the CAS latency minus one. This is shown in the READ to PRECHARGE


diagram for each possible CAS latency; data element n + 3 is either the last of a burst of four or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met. Note that part of the row precharge time is hidden during the access of the last data element(s).

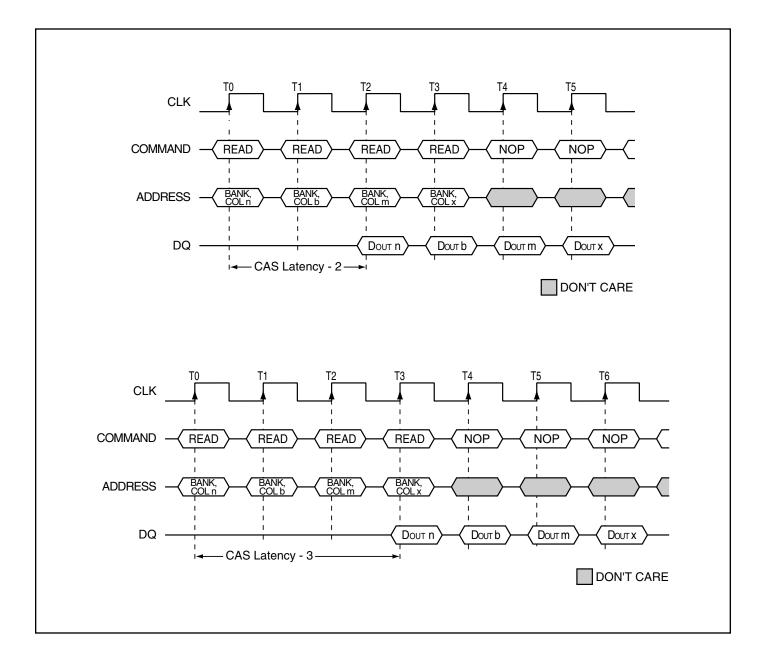
In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRE-CHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts.


Full-page READ bursts can be truncated with the BURST TERMINATE command, and fixed-length READ bursts may be truncated with a BURST TERMINATE command, provided that auto precharge was not activated. The BURST TERMINATE command should be issued x cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency minus one. This is shown in the READ Burst Termination diagram for each possible CAS latency; data element n+3 is the last desired data element of a longer burst.

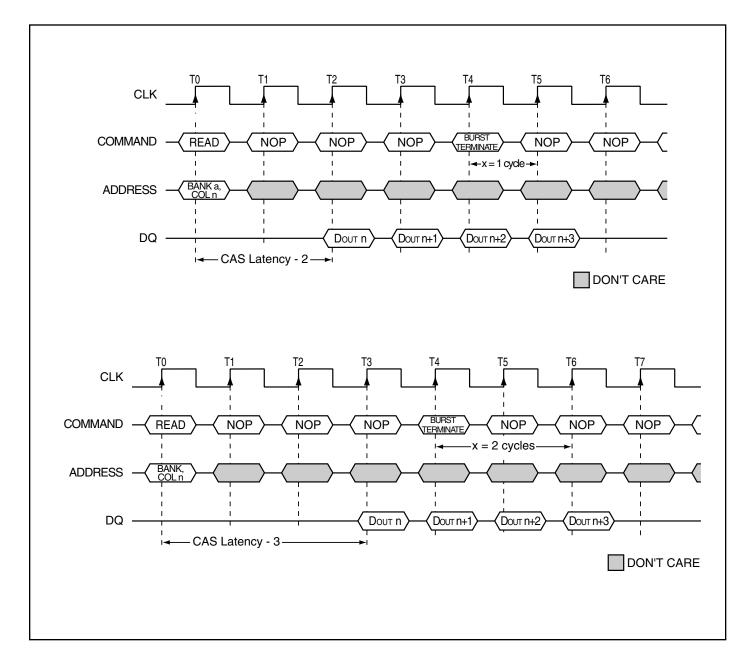
RW1 - READ to WRITE



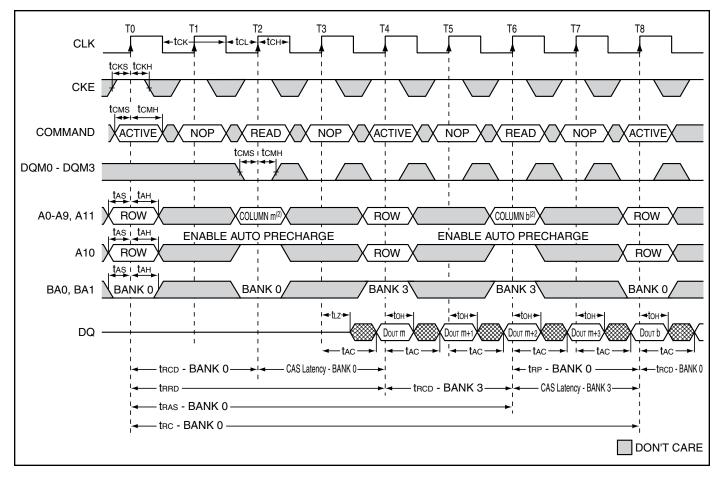
RW2 - READ to WRITE



CONSECUTIVE READ BURSTS

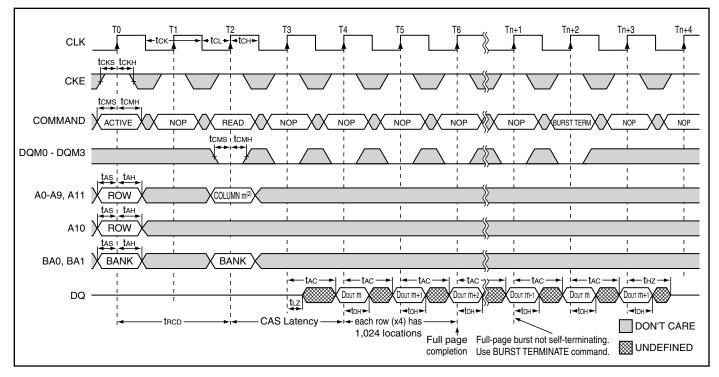


RANDOM READ ACCESSES



READ BURST TERMINATION

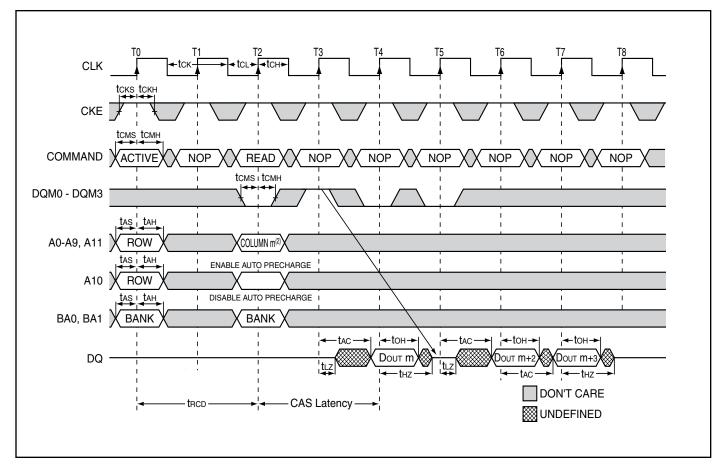
ALTERNATING BANK READ ACCESSES



Notes:

1) <u>CAS</u> latency = 2, Burst Length = 4 2) x32: A9, A11 = "Don't Care"

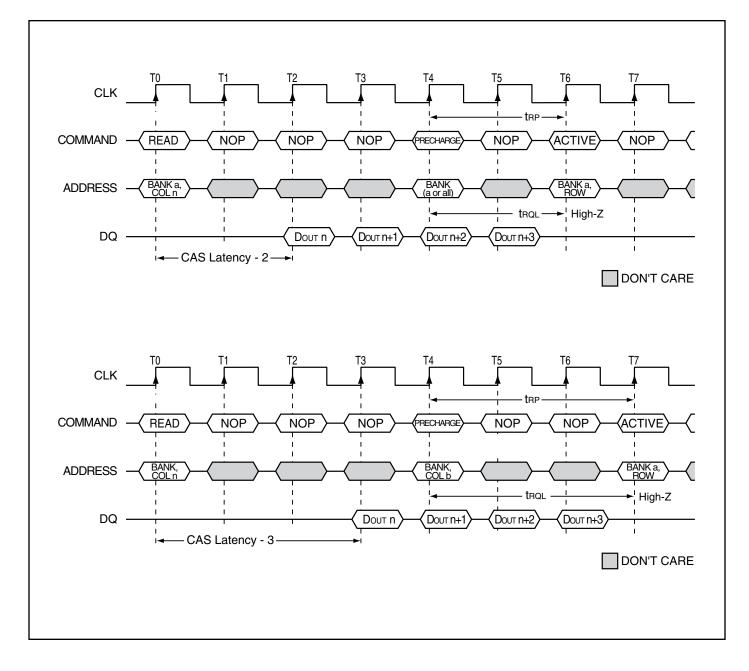
READ - FULL-PAGE BURST



Notes:

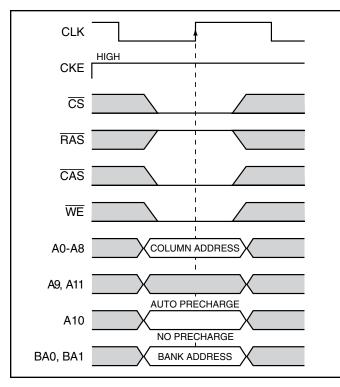
1) CAS latency = 2, Burst Length = Full Page 2) x32: A9, A11 = "Don't Care"

READ - DQM OPERATION



Notes:

1) CAS latency = 2, Burst Length = 4 2) x32: A9, A11 = "Don't Care"


READ to PRECHARGE

WRITES

WRITE bursts are initiated with a WRITE command, as shown in WRITE Command diagram.

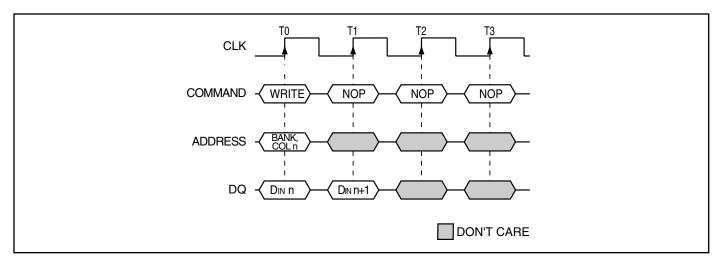
WRITE COMMAND

The starting column and bank addresses are provided with the WRITE command, and auto precharge is either enabled or disabled for that access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the generic WRITE commands used in the following illustrations, auto precharge is disabled.

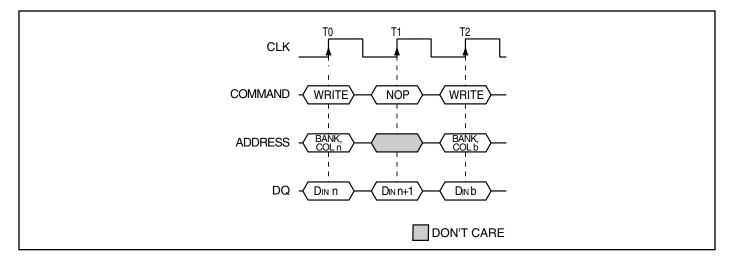
During WRITE bursts, the first valid data-in element will be registered coincident with the WRITE command. Subsequent data elements will be registered on each successive positive clock edge. Upon completion of a fixed-length burst, assuming no other commands have been initiated, the DQs will remain High-Z and any additional input data will be ignored (see WRITE Burst). A full-page burst will continue until terminated. (At the end of the page, it will wrap to column 0 and continue.)

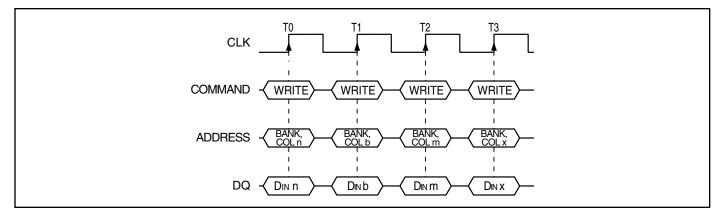
Data for any WRITE burst may be truncated with a subsequent WRITE command, and data for a fixed-length WRITE burst may be immediately followed by data for a WRITE command. The new WRITE command can be issued on any clock following the previous WRITE command, and the data provided coincident with the new command applies to the new command. An example is shown in WRITE to WRITE diagram. Data *n* + 1 is either the last of a burst of two or the last desired of a longer burst. The SDRAM uses a pipelined architecture and therefore does not require the *2n* rule associated with a prefetch architecture. AWRITE command can be initiated on any clock cycle following a previous WRITE command. Full-speed random write accesses within a page can be performed to the same bank, as shown in Random WRITE Cycles, or each subsequent WRITE may be performed to a different bank.

Data for any WRITE burst may be truncated with a subsequent READ command, and data for a fixed-length WRITE burst may be immediately followed by a subsequent READ command. Once the READ com mand is registered, the data inputs will be ignored, and WRITEs will not be executed. An example is shown in WRITE to READ. Data n + 1 is either the last of a burst of two or the last desired of a longer burst.

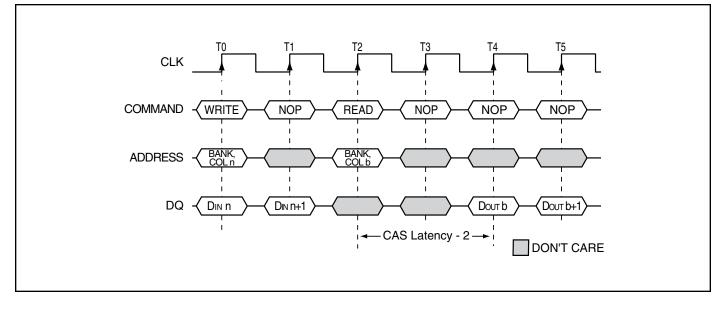

Data for a fixed-length WRITE burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that auto precharge was not activated), and a full-page WRITE burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued tDPL after the clock edge at which the last desired input data element is registered. The auto precharge mode requires a tDPL of at least one clock plus time, regardless of frequency. In addition, when truncating a WRITE burst, the DQM signal must be used to mask input data for the clock edge prior to, and the clock edge coincident with, the PRECHARGE command. An example is shown in the WRITE to PRE-CHARGE diagram. Data n+1 is either the last of a burst of two or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met.

In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRECHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts.

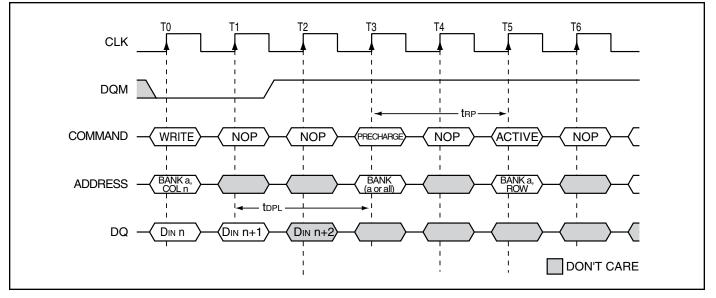

Fixed-length or full-page WRITE bursts can be truncated with the BURST TERMINATE command. When truncating a WRITE burst, the input data applied coincident with the BURST TERMINATE command will be ignored. The last data written (provided that DQM is LOW at that time) will be the input data applied one clock previous to the BURST TERMINATE command. This is shown in WRITE Burst Termination, where data *n* is the last desired data element of a longer burst.


WRITE BURST

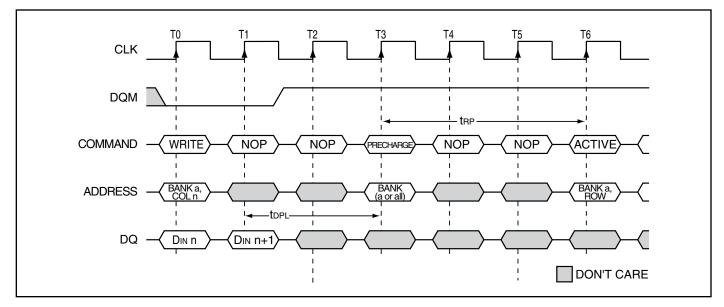
WRITE TO WRITE



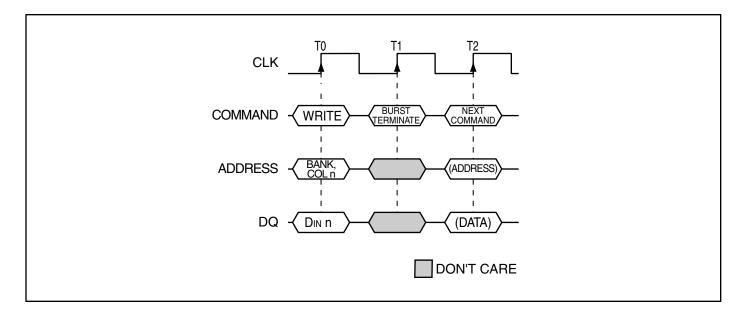
RANDOM WRITE CYCLES



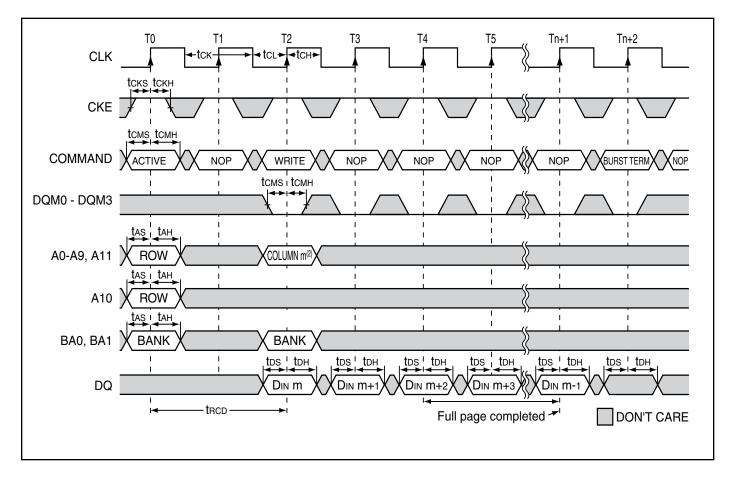
WRITE to READ



WP1 - WRITE to PRECHARGE

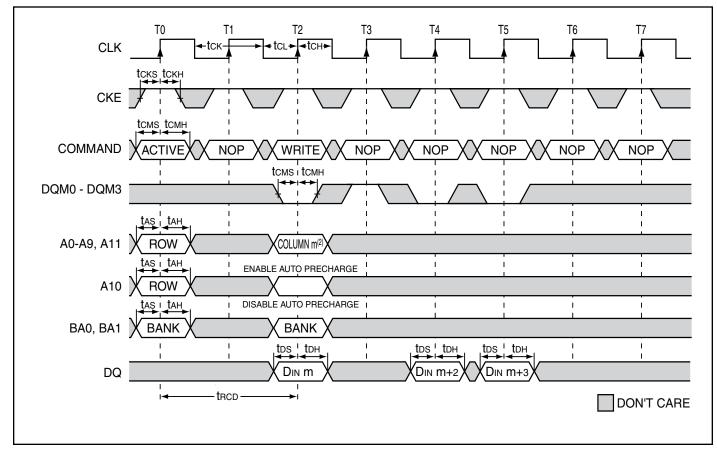


WP2 - WRITE to PRECHARGE



WRITE Burst Termination

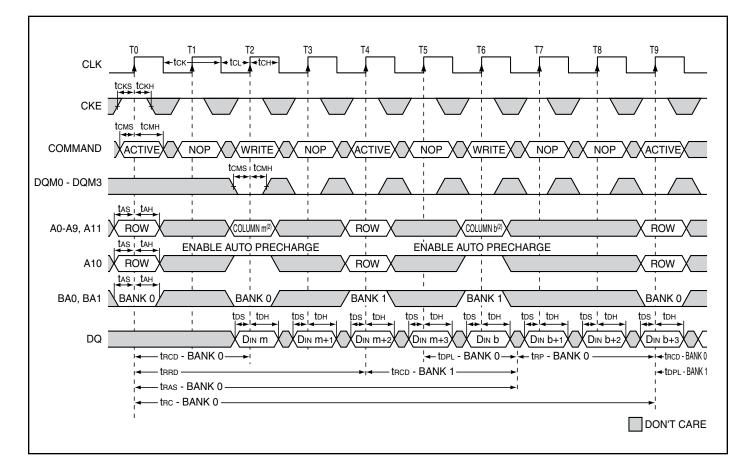
WRITE - FULL PAGE BURST


Notes:

1) Burst Length = Full Page

2) x32: A9, A11 = "Don't Care"

WRITE - DQM OPERATION


Notes:

1) Burst Length = 4

2) x32: A9, A11 = "Don't Care"

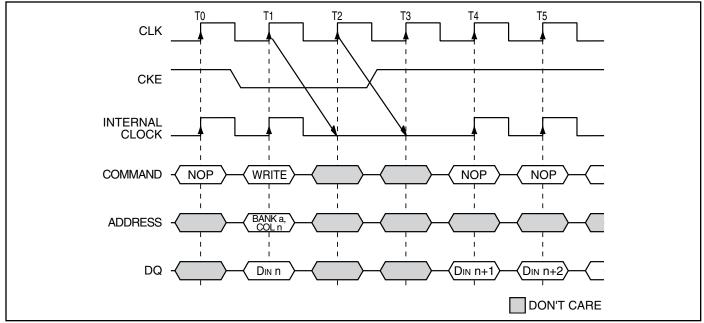
ALTERNATING BANK WRITE ACCESSES

Notes:

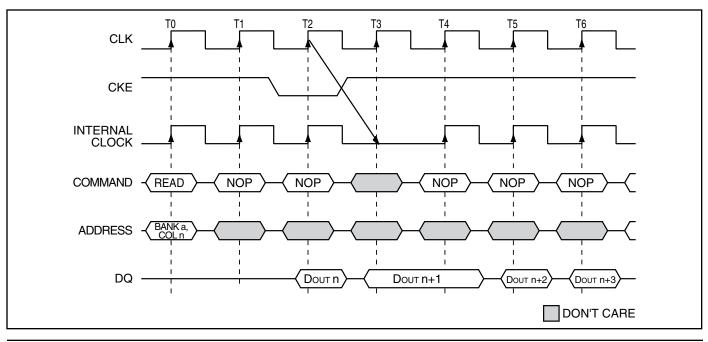
1) Burst Length = 4 2) x32: A9, A11 = "Don't Care"

Integrated Silicon Solution, Inc. - www.issi.com Rev. C 12/01/09

CLOCK SUSPEND

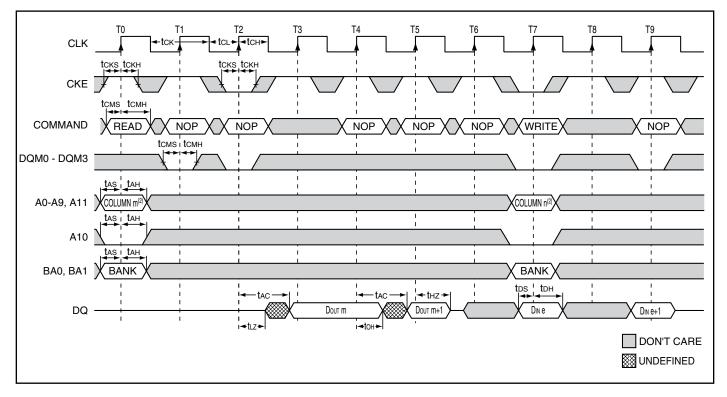

Clock suspend mode occurs when a column access/burst is in progress and CKE is registered LOW. In the clock suspend mode, the internal clock is deactivated, "freezing" the synchronous logic.

For each positive clock edge on which CKE is sampled LOW, the next internal positive clock edge is suspended. Any command or data present on the input pins at the time


Clock Suspend During WRITE Burst

of a suspended internal clock edge is ignored; any data present on the DQ pins remains driven; and burst counters are not incremented, as long as the clock is suspended. (See following examples.)

Clock suspend mode is exited by registering CKE HIGH; the internal clock and related operation will resume on the subsequent positive clock edge.



Clock Suspend During READ Burst

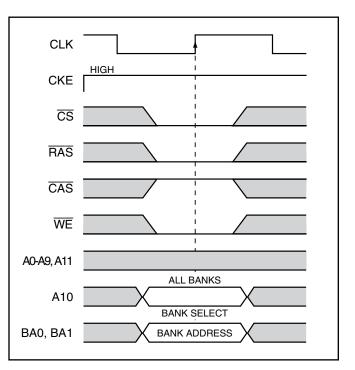
CLOCK SUSPEND MODE

Notes:

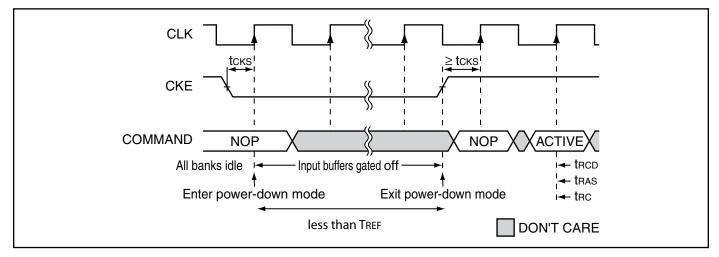
1) \overline{CAS} latency = 3, Burst Length = 2, Auto Precharge is disabled.

2) x32: A9, A11 = "Don't Care"

PRECHARGE

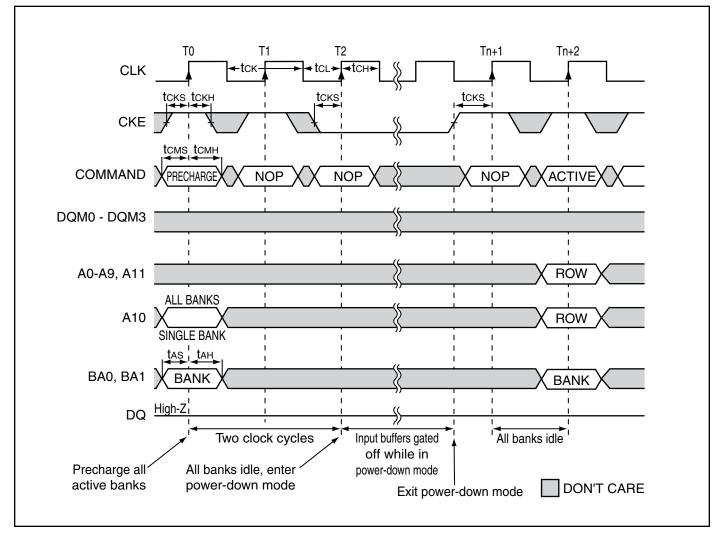

The PRECHARGE command (see figure) is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access some specified time (tRP) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. When all banks are to be precharged, inputs BA0, BA1 are treated as "Don't Care." Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank.

POWER-DOWN


Power-down occurs if CKE is registered LOW coincident with a NOP or COMMAND INHIBIT when no accesses are in progress. If power-down occurs when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a row active in either bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding CKE, for maximum power savings while in standby. The device may not remain in the power-down state longer than the refresh period (64ms) since no refresh operations are performed in this mode.

The power-down state is exited by registering a NOP or COMMAND INHIBIT and CKE HIGH at the desired clock edge (meeting tcks). See figure below (Power-Down).

PRECHARGE Command

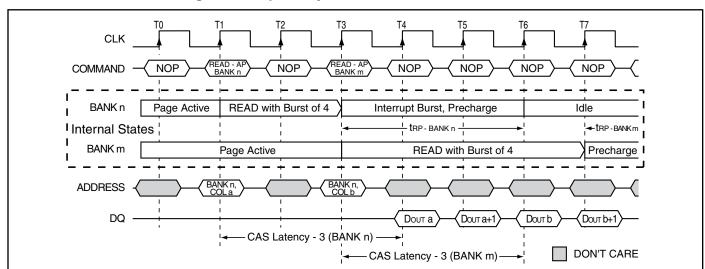


POWER-DOWN

POWER-DOWN MODE CYCLE

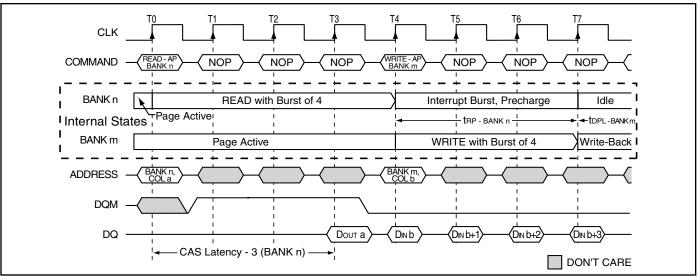
Note: x32: A9, A11 = "Don't Care"

BURST READ/SINGLE WRITE


The burst read/single write mode is entered by programming the write burst mode bit (M9) in the mode register to a logic 1. In this mode, all WRITE commands result in the access of a single column location (burst of one), regardless of the programmed burst length. READ commands access columns according to the programmed burst length and sequence, just as in the normal mode of operation (M9 = 0).

CONCURRENT AUTO PRECHARGE

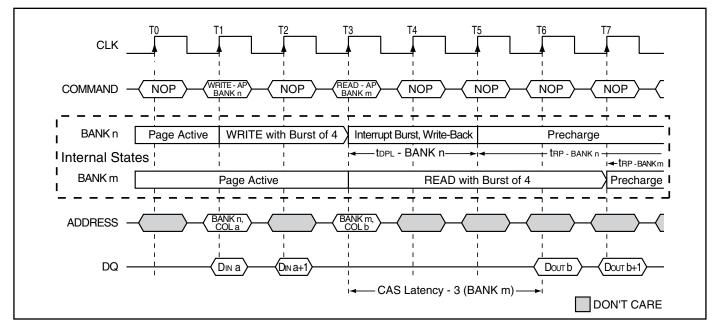
An access command (READ or WRITE) to another bank while an access command with auto precharge enabled is executing is not allowed by SDRAMs, unless the SDRAM supports CONCURRENT AUTO PRECHARGE. *ISSI* SDRAMs support CONCURRENT AUTO PRECHARGE. Four cases where CONCURRENT AUTO PRECHARGE occurs are defined below.

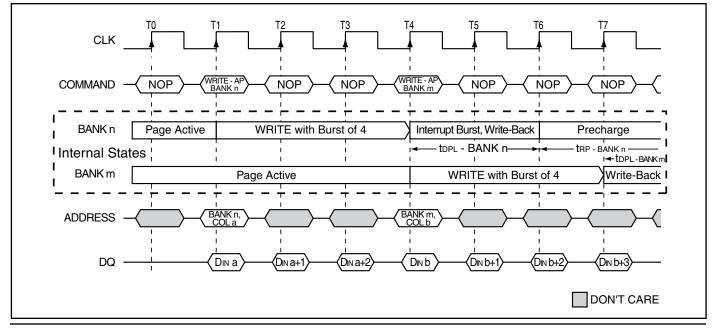

READ with Auto Precharge

- 1. Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is registered.
- 2. Interrupted by a WRITE (with or without auto precharge): A WRITE to bank m will interrupt a READ on bank n when registered. DQM should be used three clocks prior to the WRITE command to prevent bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered.

READ With Auto Precharge interrupted by a READ

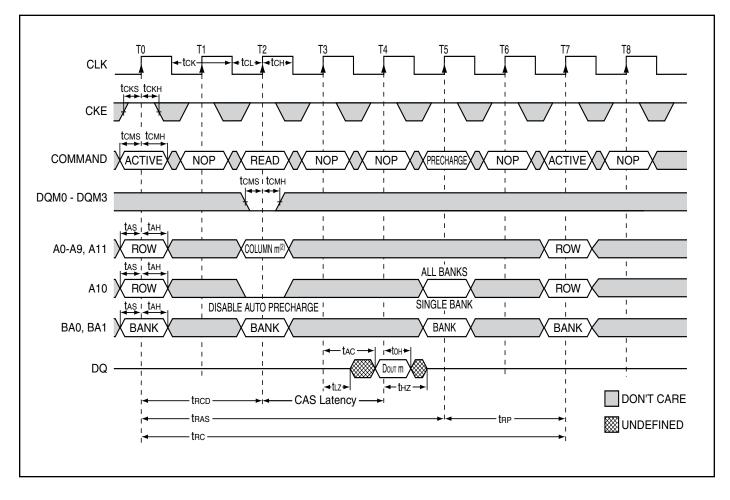
READ With Auto Precharge interrupted by a WRITE




WRITE with Auto Precharge

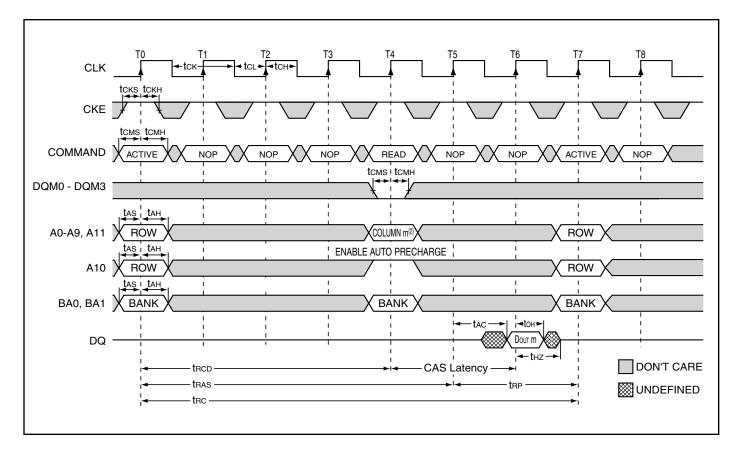
- 3. Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a WRITE on bank n when registered, with the data-out appearing (CAS latency) later. The PRECHARGE to bank n will begin after tDPL is met, where tDPL begins when the READ to bank m is registered. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m.
- 4. Interrupted by a WRITE (with or without auto precharge): AWRITE to bank m will interrupt a WRITE on bank n when registered. The PRECHARGE to bank n will begin after tDPL is met, where tDPL begins when the WRITE to bank m is registered. The last valid data WRITE to bank n will be data registered one clock prior to a WRITE to bank m.

WRITE With Auto Precharge interrupted by a READ



WRITE With Auto Precharge interrupted by a WRITE

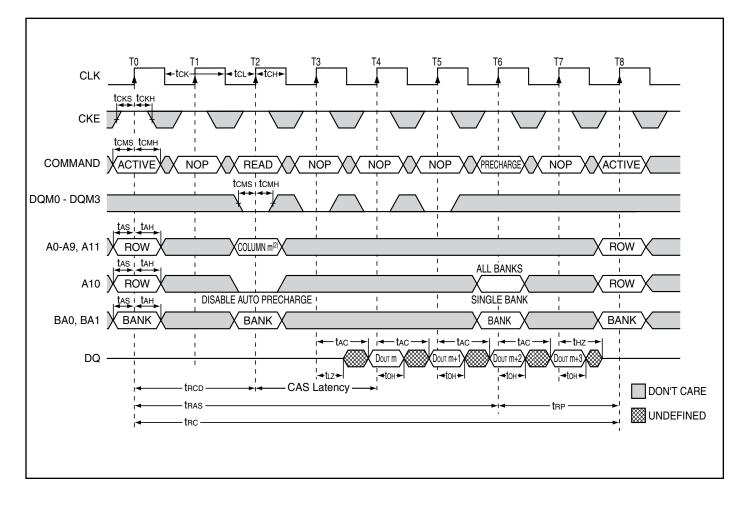
SINGLE READ WITHOUT AUTO PRECHARGE



Notes:

1) CAS latency = 2, Burst Length = 1 2) x32: A9, A11 = "Don't Care"

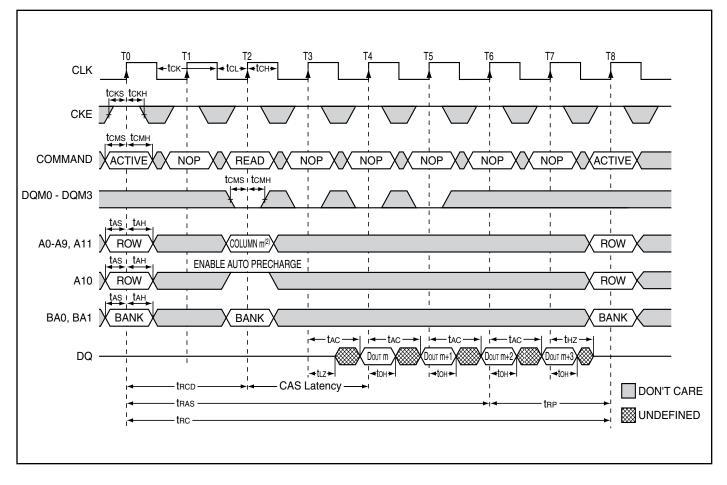
SINGLE READ WITH AUTO PRECHARGE


Notes:

1) \overline{CAS} latency = 2, Burst Length = 1

2) x32: A9, A11 = "Don't Care"

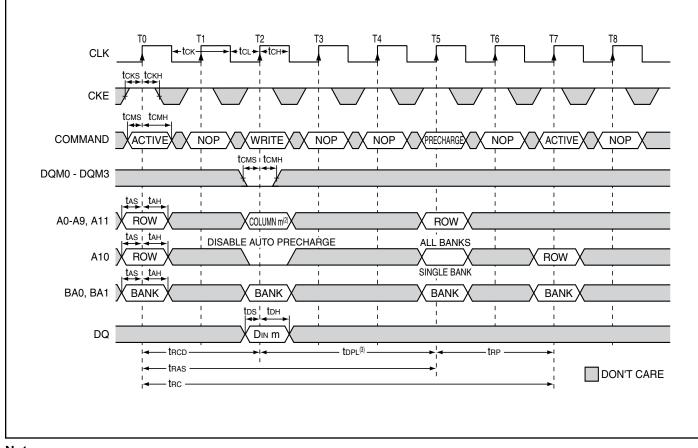
READ WITHOUT AUTO PRECHARGE



Notes:

1) CAS latency = 2, Burst Length = 4 2) x32: A9, A11 = "Don't Care"

READ WITH AUTO PRECHARGE

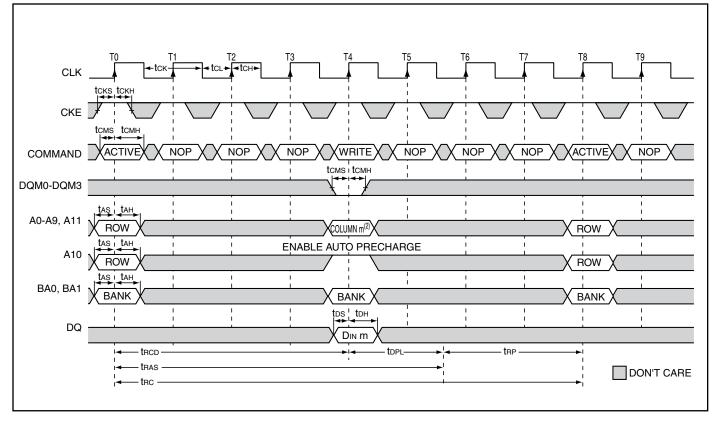


Notes:

1) <u>CAS</u> latency = 2, Burst Length = 4 2) x32: A9, A11 = "Don't Care"

SINGLE WRITE - WITHOUT AUTO PRECHARGE

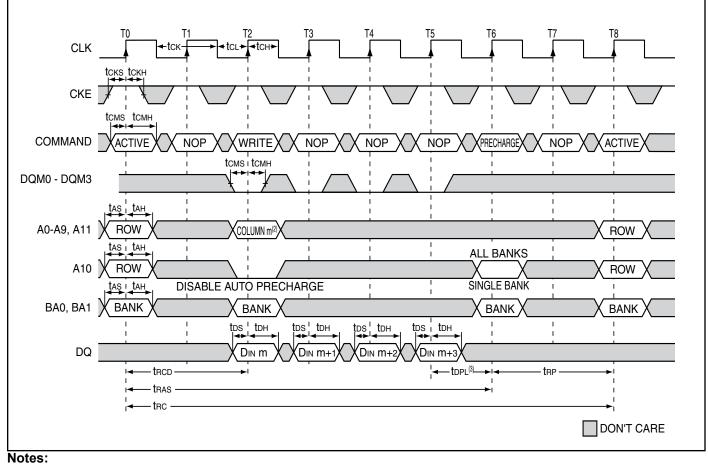
Notes:


1) Burst Length = 1

2) x32: A9, A11 = "Don't Care"

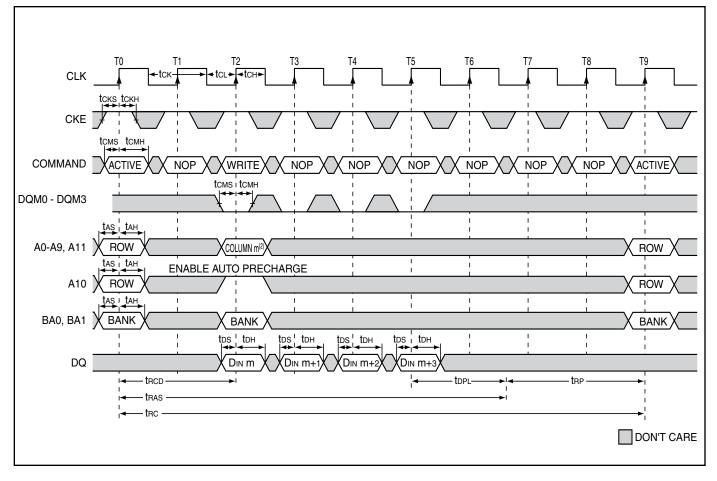
3) tras must not be violated.

SINGLE WRITE WITH AUTO PRECHARGE



Notes:

- 1) Burst Length = 1
- 2) x32: A9, A11 = "Don't Care"


WRITE - WITHOUT AUTO PRECHARGE

- 1) Burst Length = 4
- 2) x32: A9, A11 = "Don't Care"
- 3) tras must not be violated.

WRITE - WITH AUTO PRECHARGE

Notes:

1) Burst Length = 4 2) x32: A9, A11 = "Don't Care"

ORDERING INFORMATION - VDD = 3.3V

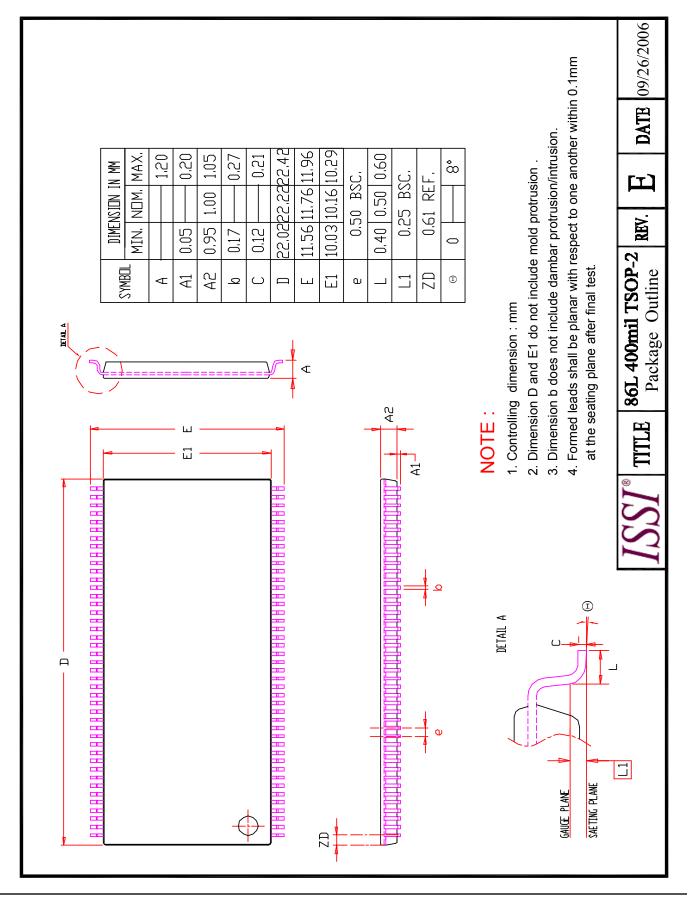
Commercial Range: 0°C to +70°C

Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS42S32800D-6TL	86-Pin TSOP-II, Lead-free
166 MHz	6	IS42S32800D-6B	90-Ball TF-BGA
166 MHz	6	IS42S32800D-6BL	90-Ball TF-BGA, Lead-free
143 MHz	7	IS42S32800D-7TL	86-Pin TSOP-II, Lead-free
143 MHz	7	IS42S32800D-7B	90-Ball TF-BGA
143 MHz	7	IS42S32800D-7BL	90-Ball TF-BGA, Lead-free
133 MHz	7.5	IS42S32800D-75ETL	86-Pin TSOP-II, Lead-free
133 MHz	7.5	IS42S32800D-75EBL	90-Ball TF-BGA, Lead-free
133 MHz	7.5	IS42S32800D-75EB	90-Ball TF-BGA

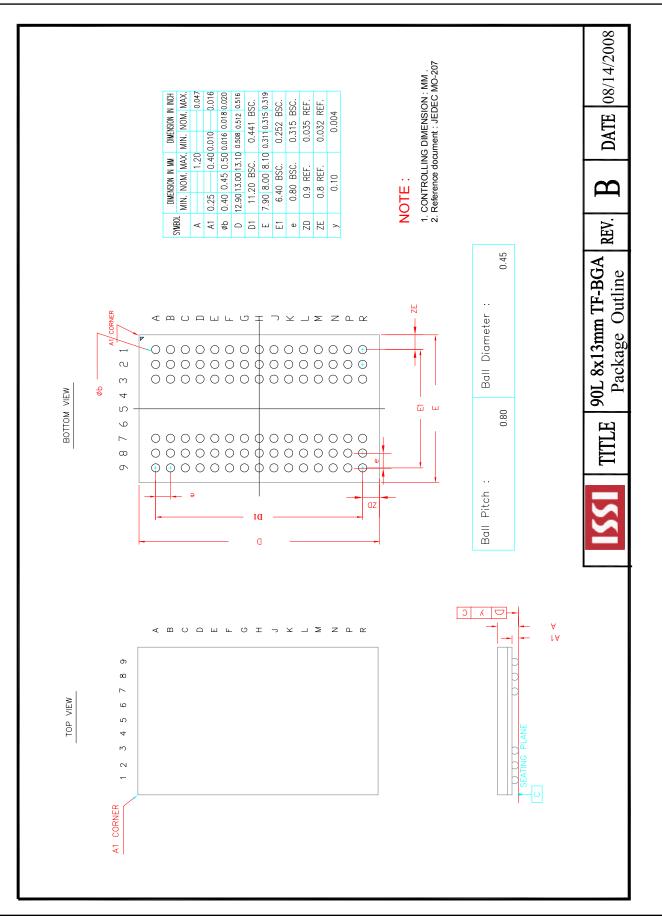
Industrial Range: -40°C to +85°C

Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS42S32800D-6TLI	86-Pin TSOP-II, Lead-free
166 MHz	6	IS42S32800D-6BI	90-Ball TF-BGA
166 MHz	6	IS42S32800D-6BLI	90-Ball TF-BGA, Lead-free
143 MHz	7	IS42S32800D-7TLI	86-Pin TSOP-II, Lead-free
143 MHz	7	IS42S32800D-7BI	90-Ball TF-BGA
143 MHz	7	IS42S32800D-7BLI	90-Ball TF-BGA, Lead-free
133 MHz	7.5	IS42S32800D-75ETLI	86-Pin TSOP-II, Lead-free
133 MHz	7.5	IS42S32800D-75EBLI	90-Ball TF-BGA, Lead-free
133 MHz	7.5	IS42S32800D-75EBI	90-Ball TF-BGA

Automotive Range: -40°C to +85°C


Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS45S32800D-6TLA1	86-Pin TSOP-II, Lead-free
166 MHz	6	IS45S32800D-6BLA1	90-Ball TF-BGA, Lead-free
143 MHz	7	IS45S32800D-7TLA1	86-Pin TSOP-II, Lead-free
143 MHz	7	IS45S32800D-7BA1	90-Ball TF-BGA
143 MHz	7	IS45S32800D-7BLA1	90-Ball TF-BGA, Lead-free

Automotive Range: -40°C to +105°C


Frequency	Speed (ns)	Order Part No.	Package	
143 MHz	7	IS45S32800D-7TLA2	86-Pin TSOPII, Lead-free	
143 MHz	7	IS45S32800D-7BLA2	90-Ball TF-BGA, Lead-free	

*Contact Product Manager for leaded part support.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ISSI:

IS45S32800D-6BLA1 IS45S32800D-6BLA1-TR IS45S32800D-6TLA1 IS45S32800D-6TLA1-TR IS45S32800D-7BLA1 IS45S32800D-7BLA1-TR IS45S32800D-7TLA1 IS45S32800D-7TLA1-TR IS42S32800D-6BL IS42S32800D-6BLI IS42S32800D-6BLI-TR IS42S32800D-6BL-TR IS42S32800D-6TL IS42S32800D-6TLI IS42S32800D-6TLI-TR IS42S32800D-6TL-TR IS42S32800D-7BL IS42S32800D-7BLI IS42S32800D-7BLI-TR IS42S32800D-7BL-TR IS42S32800D-7TL IS42S32800D-7TLI IS42S32800D-7TLI-TR IS42S32800D-7TL-TR IS42S32800D-75EBL IS42S32800D-75EBL-TR IS42S32800D-75ETL IS42S32800D-75ETLI IS42S32800D-75ETLI-TR IS42S32800D-75EBL IS42S32800D-75EBL-TR IS42S32800D-75ETL IS42S32800D-75ETLI IS42S32800D-75ETLI-TR IS42S32800D-75EBL IS42S32800D-75EBL-TR IS42S32800D-75EBLI IS42S32800D-75EBLI-TR