ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to V-

(GND - 0.3V) to (V+ + 0.3V)
(V 2V) to (V+ + 2V) or 30mA
(whichever occurs first)
)
nax)100mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)
Plastic DIP (derate 10.53mW/°C above +70°C)842mW
Thin QFN (derate 20.8mW/°C above +70°C)1667mW
Narrow SO (derate 8.70mW/°C above +70°C)696mW
CERDIP (derate 10.00mW/°C above +70°C)800mW
Operating Temperature Ranges
DG441C/DG442C0°C to +70°C
DG441D, E/DG442D, E40°C to +85°C
DG441AK, MY/DG442AK, MY55°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Note 1: Signals on S, D, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

(V+ = 15V, V- = -15V, V_{GND} = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS	
SWITCH								
Analog-Signal Range	Vanalog	(Note 3)			-15		15	V
Drain-Source On-Resistance	rds(on)	V+ = 13.5V, V- = -13.5V, ls = -10mA.	$T_{A} = +25^{\circ}$	C		50	85	Ω
	IDS(ON)	$V_D = 8.5V \text{ or } -8.5V$	TA = TMIN	to T _{MAX}			100	52
On-Resistance Match		$V_{+} = 15V, V_{-} = -15V, V_{D} = \pm 10V,$	$T_{A} = +25^{\circ}$	C			4	Ω
Between Channels (Note 4)	$\Delta r_{DS(ON)}$	$I_{S} = -10 MA$	$T_A = T_{MIN}$	to T _{MAX}			5	52
On-Resistance Flatness		V+ = 15V, V- = -15V, Vp = 5V or -5V.	$T_{A} = +25^{\circ}$	C			9	Ω
(Note 4)	rFLAT(ON)	$I_{\rm S} = -10 {\rm mA}$	$T_A = T_{MIN}$	to T _{MAX}			15	52
0 0 0 0 0	IS(OFF)	$V + = 16.5V, V - = -16.5V, V_D = \mp 15.5V, V_S = \pm 15.5V$	$T_{A} = +25^{\circ}$	C	-0.50	0.01	0.50	nA
Source Off-Leakage Current (Note 5)			5V, C, [C, D	-5		5	
			T _A = T _{MAX}	А	-20		20	
		V+ = 16.5V, V- = -16.5V,	$T_{A} = +25^{\circ}$	C	0.50	0.01	0.50	
Drain Off-Leakage Current (Note 5)	ID(OFF)	V _D = ∓15.5V,		C, D	-5		5	nA
		$V_{S} = \pm 15.5 V$	T _A = T _{MAX}	А	-20		20	
	ID(ON)	V+ = 16.5V, V- = -16.5V,	$T_{A} = +25^{\circ}$	C	-0.50	0.08	0.50	
Drain On-Leakage Current (Note 5)	or	$V_{D} = \pm 15.5 V$,	Ta = Tmax	C, D	-10		10	nA
	IS(ON)	$V_{S} = \pm 15.5 V$	IA = IMAX	А	-20		20	
DIGITAL					·			
Input Current with Input Voltage High	linh	$V_{IN} = 2.4V$			-500	0.01	500	nA
Input Current with Input Voltage Low	l _{INL}	$V_{IN} = 0.8V$		-500	0.01	500	nA	

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

(V+ = 15V, V- = -15V, V_{GND} = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			TYP (Note 2)	MAX	UNITS	
SUPPLY		-						
Power-Supply Range	V+, V-			±4.5		±20.0	V	
Positive Supply Current	I+	All channels on or off, V + = 16.8 V_{IN} = 0V or 5V	All channels on or off, V+ = 16.5V, V- = -16.5V, V _{IN} = 0V or 5V		15	100	μA	
Negative Supply Current		All channels on or off, V+ = $16.5V$, V- = $-16.5V$,			-0.0001	1		
Negative Supply Current	-	$V_{\rm IN} = 0V \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	— μΑ	
Ground Current	IGND	All channels on or off, V+ = 16.5V, V- = -16.5V, V _{IN} = 0V or 5V		-100	-15		μA	
DYNAMIC								
Turn-On Time	ton	$V_S = \pm 10V$, $R_L = 1k\Omega$, Figure 2	$T_A = +25^{\circ}C$		150	250	ns	
Turn-Off Time	torr	DG441, $V_D = \pm 10V$, Figure 2	$T_A = +25^{\circ}C$		90	120	2	
	toff	DG442, $V_D = \pm 10V$, Figure 2	$T_A = +25^{\circ}C$		110	170	170 ns	
Charge Injection (Note 3)	Q	$C_L = 1nF$, $V_{GEN} = 0V$, $R_{GEN} = 0\Omega$, Figure 3			5	10	рС	
Off-Isolation Rejection Ratio (Note 6)	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz, Figure 4	TA = +25°C		60		dB	
Crosstalk (Note 7)		$ \begin{array}{l} R_{L} = 50\Omega, \ C_{L} = 5pF, \\ f = 1MHz, \ Figure \ 5 \end{array} \qquad T_{A} = +25^\circC \\ \end{array} $			-100		dB	
Source Off-Capacitance	CS(OFF)	f = 1MHz, Figure 6	$T_A = +25^{\circ}C$		4		pF	
Drain Off-Capacitance	CD(OFF)	$f = 1MHz$, Figure 6 $T_A = +25^{\circ}C$			4		рF	
Drain On-Capacitance	C _{D(ON)}	f = 1MHz, Figure 6	$f = 1MHz$, Figure 6 $T_A = +25^{\circ}C$		16		рF	

ELECTRICAL CHARACTERISTICS—Single Supply

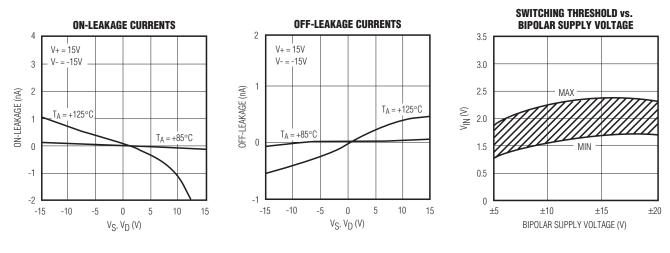
 $(V + = 12V, V - = 0V, V_{GND} = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS	
SWITCH								
Analog Signal Range	VANALOG	(Note 3)	(Note 3)			12	V	
Drain-Source		V+ = 10.8V, V _D = 3V, 8V,	$T_A = +25^{\circ}C$		100	160	Ω	
On-Resistance	rds(on)	$I_{S} = 1.0 \text{mA}$	$T_A = T_{MIN}$ to T_{MAX}			200	32	
SUPPLY	-							
Power-Supply Range	V+					30	V	
Positive Supply Current	l+	All channels on or off, $V_{IN} = 0V$ or $5V$			15	100	μΑ	
Nagativa Supply Current		All channels on or off,	$T_A = +25^{\circ}C$	-1	-0.0001	1		
Negative Supply Current	-	$V_{IN} = 0V \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	5 µA	
Ground Current	Ignd	All channels on or off, VIN = 0	/ or 5V	-100	-15		μA	
DYNAMIC	-							
Turn-On Time	ton	Vs = 8V, Figure 2	$T_A = +25^{\circ}C$		300	400	ns	
Turn-Off Time	tOFF	Vs = 8V, Figure 2	$T_A = +25^{\circ}C$		60	200	ns	
Charge Injection (Note 3)	Q	$C_L = 1nF$, $V_{GEN} = 0V$	$T_A = +25^{\circ}C$		5	10	рС	

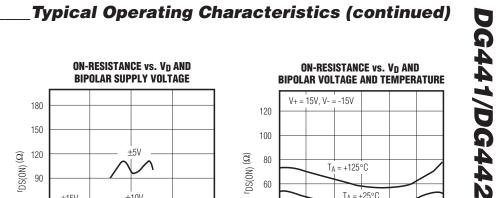
Note 2: Typical values are for **design aid only,** are not guaranteed, and are not subject to production testing. The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

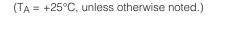
Note 3: Guaranteed by design.

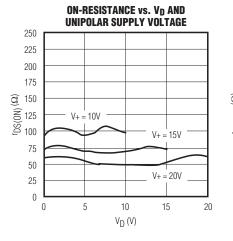
Note 4: On-resistance match between channels and flatness is guaranteed only with bipolar-supply operation. Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured at the extremes of the specified analog range.

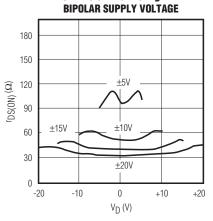

Note 5: Leakage parameters IS(OFF), ID(OFF), and ID(ON) are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.

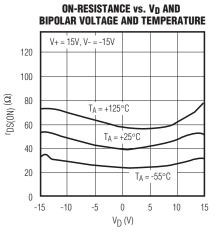
Note 6: Off-Isolation Rejection Ratio = $20\log (V_D/V_S)$, V_D = output, V_S = input to off switch.

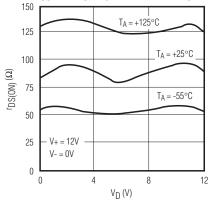

Note 7: Between any two switches.

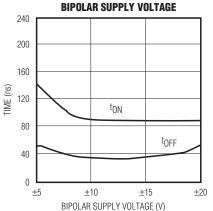

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

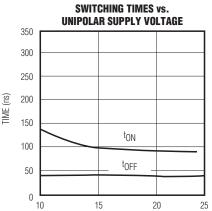

Typical Operating Characteristics



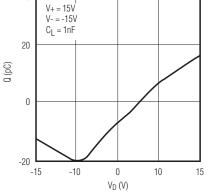


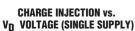


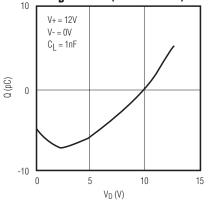

ON-RESISTANCE vs. VD AND


ON-RESISTANCE vs. VD AND UNIPOLAR SUPPLY VOLTAGE AND TEMPERATURE

40




SWITCHING TIMES vs.



\mathbf{N}
V
65
U
Ä
N
65

Pin Description

P	IN				
DIP/SO	THIN QFN-EP	NAME	FUNCTION		
1, 16, 9, 8	15, 14, 7, 6	IN1–IN4	Input		
2, 15, 10, 7	16, 13, 8, 5	D1–D4	Analog Switch Drain Terminal		
3, 14, 11, 6	1, 12, 9, 4	S1–S4	Analog Switch Source Terminal		
4	2	V-	Negative-Supply Voltage Input		
5	3	GND	Ground		
12	10	N.C.	Not Internally Connected		
13	11	V+	Positive-Supply Voltage Input—Connected to Substrate		
		EP	Exposed Pad. Connect EP to V+. Do not use EP as a sole V+ connection. (Thin QFN package only.)		

Applications Information

Operation with Supply Voltages Other Than ±15V

Using supply voltages other than $\pm 15V$ reduces the analog signal range. The DG441/DG442 switches operate with $\pm 4.5V$ to $\pm 20V$ bipolar supplies or with a $\pm 10V$ to $\pm 30V$ single supply; connect V- to 0V when operating with a single supply. Also, all device types can operate with unbalanced supplies such as $\pm 24V$ and $\pm 5V$. The *Typical Operating Characteristics* graphs show typical on-resistance with $\pm 20V$, $\pm 15V$, $\pm 10V$, and $\pm 5V$ sup-

plies. (Switching times increase by a factor of two or more for operation at $\pm 5V$.)

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, followed by V- and logic inputs. If power-supply sequencing is not possible, add two small, external signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding external diodes reduces the analog-signal range to 1V below V+ and 1V above V-, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between V+ and V- should not exceed +44V.

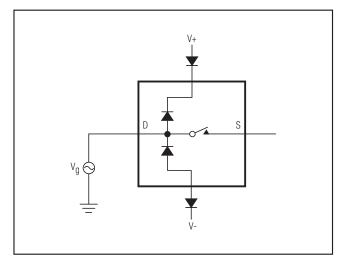
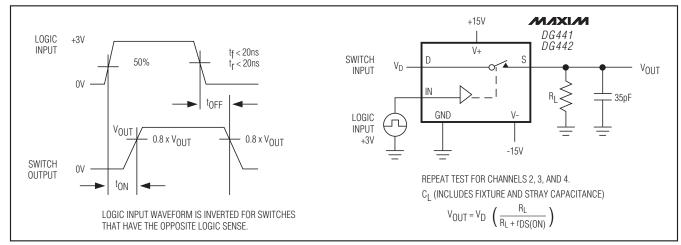



Figure 1. Overvoltage Protection Using External Blocking Diodes

_Timing Diagrams/Test Circuits

Figure 2. Switching Time

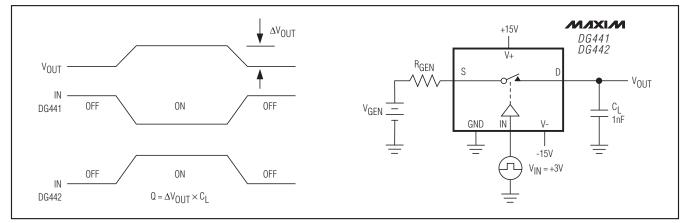


Figure 3. Charge Injection

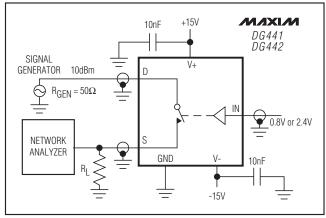


Figure 4. Off-Isolation Rejection Ratio

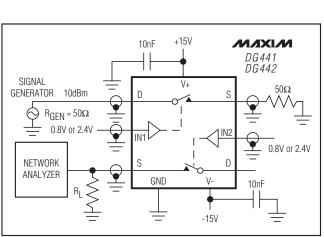


Figure 5. Crosstalk (repeat for channels 3 and 4)

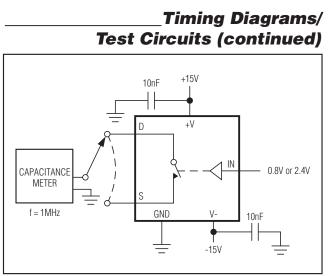


Figure 6. Source/Drain-On/Off Capacitance

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
DG441DK	-40°C to +85°C	16 CERDIP
DG441ETE	-40°C to +85°C	16 Thin QFN-EP**
DG441AK	-55°C to +125°C	16 CERDIP***
DG441MY/PR	-55°C to +125°C	16 Narrow SO
DG442 CJ	0°C to +70°C	16 Plastic DIP
DG442CY	0°C to +70°C	16 Narrow SO
DG442C/D	0°C to +70°C	Dice*
DG442DJ	-40°C to +85°C	16 Plastic DIP
DG442DY	-40°C to +85°C	16 Narrow SO
DG442DK	-40°C to +85°C	16 CERDIP
DG442ETE	-40°C to +85°C	16 Thin QFN-EP**
DG442AK	-55°C to +125°C	16 CERDIP***
DG442MY/PR	-55°C to +125°C	16 Narrow SO

Note: Devices are available in both leaded and lead(Pb)-free packaging. Specify lead-free by adding the + symbol at the end of the part number when ordering.

*Contact factory for dice specifications.

**EP = Exposed pad.

***Contact factory for availability and processing to MIL-STD-883B. Not available in lead-free.

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 Plastic DIP	P16-1	<u>21-0043</u>
16 Narrow SO	S16-3	<u>21-0041</u>
16 CERDIP	J16-3	<u>21-0045</u>
16 Thin QFN-EP (5mm x 5mm)	T1655-2	<u>21-0140</u>

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
5	5/09	Added ruggedized plastic.	1, 2, 6, 8

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 __

_____ 9

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

DG441AK/883B DG442AK/883B DG441CJ+ DG441CY+ DG441CY+T DG441DJ+ DG441DY+ DG441DY+T DG441ETE+ DG441ETE+T DG442CJ+ DG442CY+ DG442CY+T DG442DJ+ DG442DY+ DG442DY+T DG442ETE+ DG442ETE+T DG441MY/PR