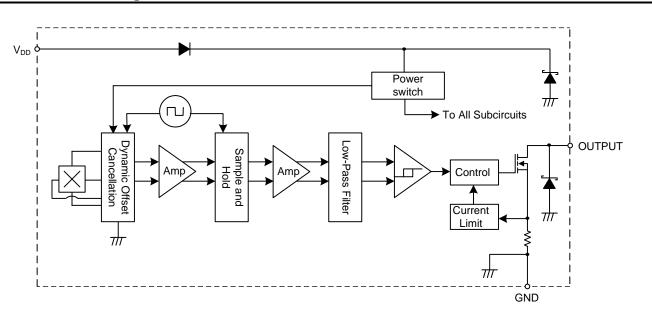


Typical Applications Circuit


Note: 4. C_{IN} is for power stabilization and to strengthen the noise immunity, the recommended capacitance is 10nF ~ 100nF. RL is the pull-up resistor.

Pin Descriptions

Package: SOT23 and SIP-3

Pin Number	Pin Name	Function
1	V _{DD}	Power Supply Input
2	GND	Ground
3	OUTPUT	Output Pin

Functional Block Diagram

Absolute Maximum Ratings (Notes 5 & 6) (@T_A = +25°C, unless otherwise specified.)

Symbol	Characteristic		Value	Unit		
V _{DD}	Supply Voltage (Note 6)		32	V		
V _{DDR}	Reverse Supply Voltage		-32	V		
V _{OUT_MAX}	Output Off Voltage (Note 6)		32V	V		
I _{OUT}	Continuous Output Current	60	mA			
I _{OUT_R}	Reverse Output Current	-50	mA			
В	Magnetic Flux Density		Unlimited	Unlimited		
P	Deckage Dewer Dissinction	SIP-3	550	mW		
PD	Package Power Dissipation	SOT23	230			
Ts	Storage Temperature Range	-65 to +165	°C			
TJ	Maximum Junction Temperature	+150	°C			
ESD	Electrostatic Discharge Withstand Capability - Human Body Me	odel	6	kV		

Notes: 5. Stresses greater than the 'Absolute Maximum Ratings' specified above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time.

6. The absolute maximum V_{DD} of 32V is a transient stress rating and is not meant as a functional operating condition. It is not recommended to operate the device at the absolute maximum rated conditions for any period of time.

Recommended Operating Conditions (@TA = -40°C to +125°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Rating	Unit
V _{DD}	Supply Voltage	Operating	3.0 to 28	V
T _A	Operating Temperature Range	Operating	-40 to +125	°C

Electrical Characteristics (Notes 7 & 8) (@T_A = -40°C to +125°C, V_{DD} = 3V to 28V, unless otherwise specified.)

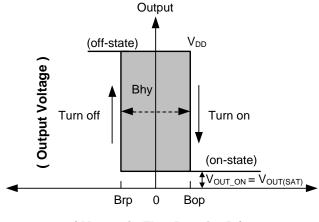
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
mW	Output ON Voltage	$I_{OUT} = 20$ mA, B > B _{OP}	-	0.2	0.4	V
I _{OUT_OFF}	Output Leakage Current	$V_{OUT} = 28V, B < B_{RP}, Output off$	-	<0.1	10	μA
	Supply Current	Output open, T _A = +25°C	-	3	-	mA
IDD		Output open, T _A = -40°C to +125°C	-	-	4	mA
	Boyoroo Bottory Current	$V_{DD} = -18V$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$	-	-0.01	1	mA
I _{DD_R}	Reverse Battery Current	$V_{DD} = -28V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-	-0.01	1.5	mA
ts⊤	Device Start-Up Time	$V_{DD} \ge 3V, B \ge B_{OP}$ (Note 7)	-	10		μs
fc	Chopping Frequency	$V_{DD} = 3V$ to $28V$	-	800	-	kHz
t _d	The time delay from magnetic threshold reached to the start of the output rise or fall	(Note 9)	-	3.75	-	μs
tr	Output Rising Time (external pull-up resistor R∟and load capacitance dependent)	$R_L = 1k\Omega, C_L = 20pF$	-	0.2	1	μs
t _f	Output Falling Time (Internal switch resistance and load capacitance dependent)	$R_L = 1k\Omega$, $C_L = 20pF$	-	0.1	1	μs
I _{OCL}	Output Current Limit	B>B _{OP} , (Note 10)	30	-	55	mA
Vz	Zener Clamp Voltage	I _{DD} = 5mA	28	-	-	V

Notes: 7. When power is initially turned on, Vbb must be within its correct operating range (3.0V to 28V) to guarantee the output sampling. The output state is valid after the start-up time of 10µs typical from the operating voltage reaching 3V.

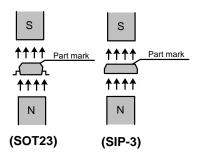
 Typical values are defined at T_A = +25°C, V_{DD} = 12V. Maximum and minimum values over the operating temperature range is not tested in production but guaranteed by design, process control and characterization.

9. Guaranteed by design, process control and characterization. Not tested in production.

10. The device will limit the output current IOUT to current limit of IOCL.

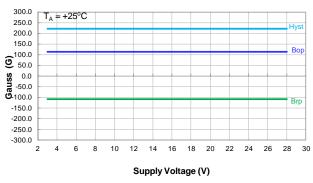

Magnetic Characteristics (Notes 11 &12) (T_A = -40°C to +125°C, V_{DD} = 3.0V to 28V, unless otherwise specified)

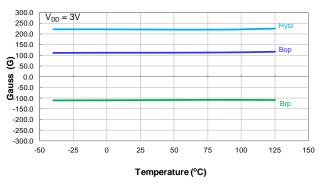
				(1mT=10 G	Gauss)
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
B _{OP} (South pole to part marking side)	Operation Point	$V_{DD} = 12V, T_A = +25^{\circ}C$	-	110	-	
BOP (South pole to part marking side)	Operation 1 on t	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	80	110	140	
B _{RP} (North pole to part marking side)	Release Point	$V_{DD} = 12V, T_A = +25^{\circ}C$	-	-110	-	Gauss
	Release Point	$T_{A} = -40^{\circ}C$ to +125°C	-140	-110	-80	Gauss
	Hystoresis (Note 12)	V _{DD} = 12V, T _A = +25°C	-	220	-	
Bhy (Bopx - Brpx)	Hysteresis (Note 13)	$T_{A} = -40^{\circ}C$ to +125°C	160	220	280	


Notes: 11. When power is initially turned on, V_{DD} must be within its correct operating range (3.0V to 28V) to guarantee the output sampling. The output state is valid after the start-up time of 10µs typical from the operating voltage reaching 3V.

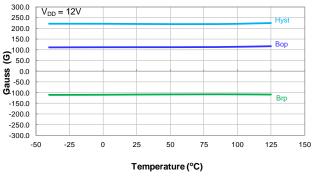
12. Typical values are defined at T_A = +25°C, V_{DD} = 12V. Maximum and minimum values over the operating temperature range are not tested in production but guaranteed by design, process control and characterization.

13. Maximum and minimum hysteresis are guaranteed by design, process control and characterization.

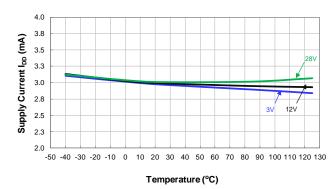




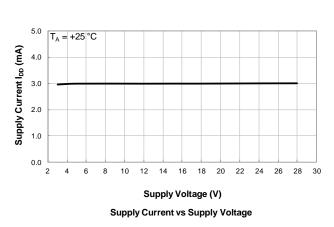
Typical Operating Characteristics


Magnetic Operating Switch Points – BOP and BRP

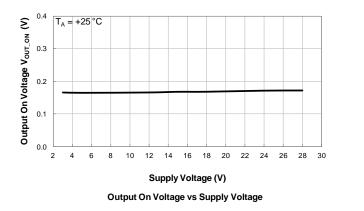
Switch Points Bop and Brp vs Supply Voltage

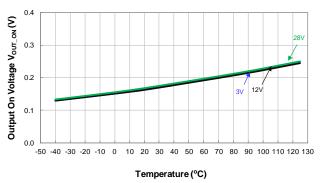

Switch Points Bop and Brp vs Temperature

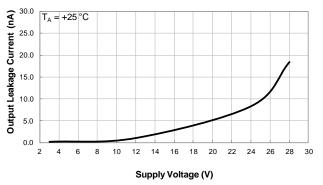
Switch Points Bop and Brp vs Temperature

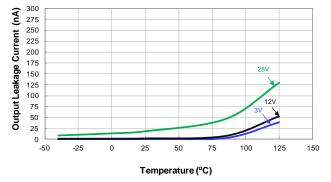


Switch Points Bop and Brp vs Temperature


Supply Current vs Temperature

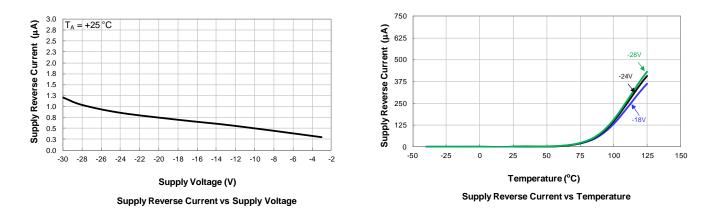

Supply Current


Output Switch On Voltage



Output On Voltage vs Temperature

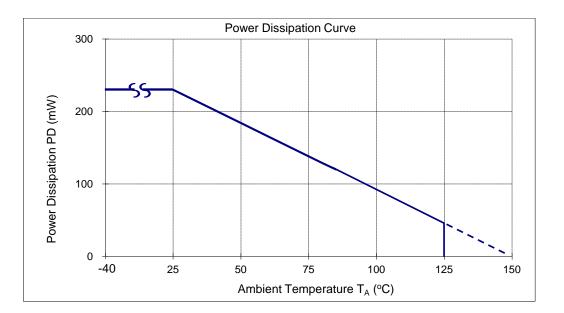
Output Switch Leakage Current



Output Leakage Current vs Supply Voltage

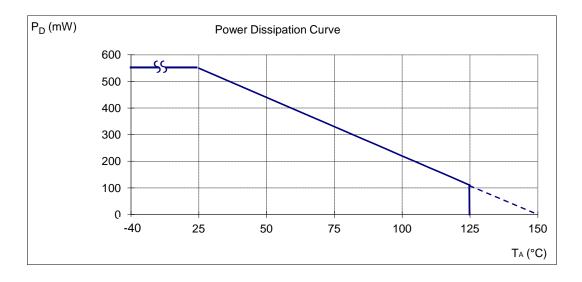
Output Leakage Current vs Temperature

Supply Reverse Current



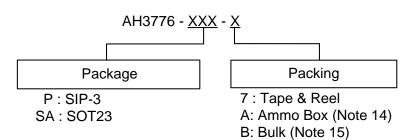
AH3776

Thermal Performance Characteristics


(1) Package types: SOT23

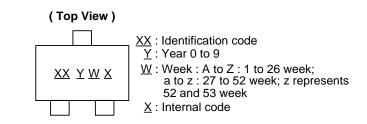
T _A (°C)	25	50	60	70	80	85	90	100	105	110	120	125	130	140	150
P _D (mW)	230	184	166	147	129	120	110	92	83	74	55	46	37	18	0

(2) Package type: SIP-3


T _A (°C)	25	50	60	70	80	85	90	100	105	110	120	125	130	140	150
P _D (mW)	550	440	396	362	308	286	264	220	198	176	132	110	88	44	0

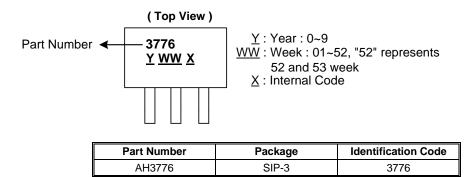
AH3776

Ordering Information



	Package	Packaging	E	Bulk 7" Tape and		d Reel	Ammo Box	
Part Number	Code	гаскаушу	Quantity	Part Number Suffix	Quantity	Part Number Suffix	Quantity	Part Number Suffix
AH3776-P-A	Р	SIP-3	NA	NA	NA	NA	4,000/Box	-A
AH3776-P-B	Р	SIP-3	1,000	-В	NA	NA	NA	NA
AH3776-SA-7	SA	SOT23	NA	NA	3,000/Tape & Reel	-7	NA	NA

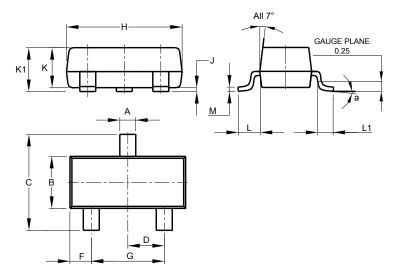
Notes: 14. Ammo Box is for SIP-3 Spread Lead. 15. Bulk is for SIP-3 Straight Lead.


Marking Information

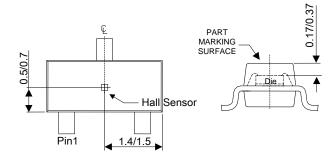
(1) Package Type: SOT23

Part Number	Package	Identification Code		
AH3776	SOT23	ZF		

(2) Package Type: SIP-3

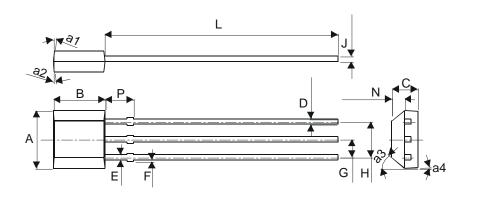


Package Outline Dimensions (All dimensions in mm.)

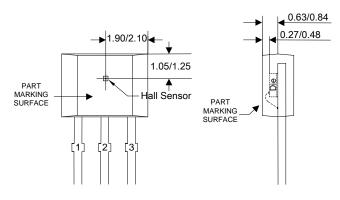

Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

(1) Package Type: SOT23

	SO	T23				
Dim	Min	Max	Тур			
Α	0.37	0.51	0.40			
В	1.20	1.40	1.30			
С	2.30	2.50	2.40			
D	0.89	1.03	0.915			
F	0.45	0.60	0.535			
G	1.78	2.05	1.83			
н	2.80	3.00	2.90			
J	0.013	0.10	0.05			
ĸ	0.890	1.00	0.975			
K1	0.903	1.10	1.025			
L	0.45	0.61	0.55			
L1	0.25	0.55	0.40			
М	0.085	0.150	0.110			
а	8°					
All	Dimens	ions in	mm			


Sensor Location

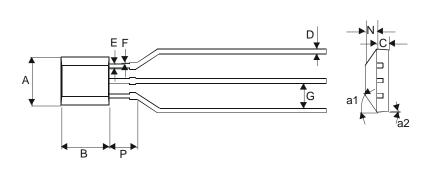
Package Outline Dimensions (continued) (All dimensions in mm.)


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

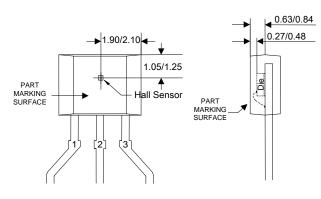
(2) Package Type: SIP-3 Bulk

	SIP-3 (Bu	112)
Dim	Min	Max
Α	3.9	4.3
a1	5°	Тур
a2	5°	Тур
a3	45°	' Тур
a4	3°	Тур
В	2.8	3.2
С	1.40	1.60
D	0.33	0.432
E	0.40	0.508
F	0	0.2
G	1.24	1.30
Н	2.51	2.57
J	0.35	0.43
L	14.0	15.0
Ν	0.63	0.84
Р	1.55	-
All Di	mension	s in mm

Min/Max

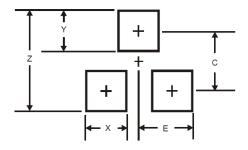

Sensor Location

Package Outline Dimensions (cont.) (All dimensions in mm.)


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

(3) Package Type: SIP-3 Ammo Pack

SIP-	3 (Amm	o Pack)
Dim	Min	Max
Α	3.9	4.3
a1	45	5° Тур
a2	3	° Тур
в	2.8	3.2
С	1.40	1.60
D	0.35	0.41
E	0.43	0.48
F	0	0.2
G	2.4	2.9
N	0.63	0.84
Р	1.55	-
All Di	mensio	ns in mm


Sensor Location

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

(1) Package Type: SOT23

Dimensions	Value (in mm)
Z	2.9
Х	0.8
Y	0.9
С	2.0
Е	1.35

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2015, Diodes Incorporated

www.diodes.com