
Pin Configuration

28-pin SSOP & TSSOP

Polarity Inversion Pin List Table

	OE_INV				
Pins	0	1			
8	OE_1	OE1#			
15	PD#	PD			
16	DIF_STOP#	DIF_STOP			
21	OE_6	OE6#			

Power Groups

Pin N	lumber	Description			
VDD	GND				
1	4	SRC_IN/SRC_IN#			
5,11,18, 24	4	DIF(1,2,5,6)			
N/A	27	IREF			
28	27	Analog VDD & GND for PLL core			

Pin Decription When OE_INV = 0

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1 11 1			3.3V power for differential input clock (receiver). This VDD should be treated
1	VDDR	PWR	as an analog power rail and filtered appropriately.
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7V differential true clock output
7	DIF_1#	OUT	0.7V differential Complementary clock output
-			Active high input for enabling output 1.
8	OE_1	IN	0 =disable outputs, 1= enable outputs
9	DIF_2	OUT	0.7V differential true clock output
10	DIF_2#	OUT	0.7V differential Complementary clock output
11	VDD	PWR	Power supply, nominal 3.3V
			Input to select Bypass(fan-out) or PLL (ZDB) mode
12	BYPASS#/PLL	IN	0 = Bypass mode, 1 = PLL mode
13	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
14	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
	00/11/1	., 0	Asynchronous active low input pin used to power down the device. The
15	PD#	IN	internal clocks are disabled and the VCO and the crystal osc. (if any) are
10	1 2 "		stopped.
16	DIF_STOP#	IN	Active low input to stop differential output clocks.
			3.3V input for selecting PLL Band Width
17	HIGH_BW#	IN	0 = High, 1 = Low
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5#	OUT	0.7V differential Complementary clock output
20	DIF_5	OUT	0.7V differential true clock output
			Active high input for enabling output 6.
21	OE_6	IN	0 =disable outputs, 1= enable outputs
22	DIF_6#	OUT	0.7V differential Complementary clock output
23	DIF_6	OUT	0.7V differential true clock output
24	VDD	PWR	Power supply, nominal 3.3V
			This latched input selects the polarity of the OE pins.
25	OE_INV	IN	0 = OE pins active high, $1 = OE$ pins active low (OE#)
			This pin establishes the reference for the differential current-mode output
			pairs. It requires a fixed precision resistor to ground. 4750hm is the standard
26	IREF	OUT	value for 1000hm differential impedance. Other impedances require different
			values. See data sheet.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Pin Decription When OE_INV = 1

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
			3.3V power for differential input clock (receiver). This VDD should be
1	VDDR	PWR	treated as an analog power rail and filtered appropriately.
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7V differential true clock output
7	DIF_1#	OUT	0.7V differential Complementary clock output
0	051#	INI	Active low input for enabling DIF pair 1.
8	OE1#	IN	1 =disable outputs, 0 = enable outputs
9	DIF_2	OUT	0.7V differential true clock output
10	DIF_2#	OUT	0.7V differential Complementary clock output
11	VDD	PWR	Power supply, nominal 3.3V
10		INI	Input to select Bypass(fan-out) or PLL (ZDB) mode
12	BYPASS#/PLL	IN	0 = Bypass mode, 1= PLL mode
13	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
14	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
4.5	DD	INI	Asynchronous active high input pin used to power down the device.
15	PD	IN	The internal clocks are disabled and the VCO is stopped.
16	DIF_STOP	IN	Active High input to stop differential output clocks.
17		INI	3.3V input for selecting PLL Band Width
17	HIGH_BW#	IN	0 = High, 1= Low
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5#	OUT	0.7V differential Complementary clock output
20	DIF_5	OUT	0.7V differential true clock output
01	OE6#	INI	Active low input for enabling DIF pair 6.
21	UE0#	IN	1 =disable outputs, 0 = enable outputs
22	DIF_6#	OUT	0.7V differential Complementary clock output
23	DIF_6	OUT	0.7V differential true clock output
24	VDD	PWR	Power supply, nominal 3.3V
25	OE_INV	IN	This latched input selects the polarity of the OE pins.
25		IIN	0 = OE pins active high, 1 = OE pins active low (OE#)
			This pin establishes the reference for the differential current-mode
26	IREF	OUT	output pairs. It requires a fixed precision resistor to ground. 4750hm is
20	INEF	001	the standard value for 1000hm differential impedance. Other
			impedances require different values. See data sheet.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Absolute Max

Symbol	Parameter	Min	Max	Units
VDDA/R	3.3V Core Supply Voltage		4.6	V
VDD	3.3V Logic Supply Voltage		4.6	V
V _{IL}	Input Low Voltage	GND-0.5		V
V _{IH}	Input High Voltage		V _{DD} +0.5V	V
Ts	Storage Temperature	-65	150	°C
Tambient	Commerical Operating Range	0	70	°C
Tampient	Industrial Operating Range	-40	85	°C
Tcase	Case Temperature		115	°C
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics - Clock Input Parameters

 T_A = Tambient for the desired operating range, Supply Voltage V_{DD} = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	VIHDIF	Differential inputs (single-ended measurement)	600	800	1150	mV	1
Input Low Voltage - DIF_IN	VILDIF	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	300		1000	mV	1
Input Amplitude - DIF_IN	V _{SWING}	Peak to Peak value (single-ended measurement)	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	uA	1
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45		55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through Vswing min centered around differential zero

ICS9DB403D Four Output Differential Buffer for PCIe for Gen 1 and Gen 2

Electrical Characteristics - Input/Supply/Common Output Parameters

 T_{A} = Tambient for the desired operating range. Supply Voltage V_{DD} = 3.3 V +/-5%

	CONDITIONS Single Ended Inputs, 3.3 V +/-5% $V_{\rm IN} = V_{\rm DD}$	MIN 2 GND - 0.3 -5	TYP	MAX V _{DD} + 0.3 0.8	UNITS V V	NOTES 1 1
		GND - 0.3		0.8	-	
					V	1
	$V_{IN} = V_{DD}$	-5				
				5	uA	1
	$V_{IN} = 0$ V; Inputs with no pull-up resistors	-5			uA	1
	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	1
PC 24	Full Active, C_L = Full load; Commerical		175	200	mA	1
<i>'</i> C	Temp Range		175	200	111/2	
Ы	· · · ·		190	225	mA	1
			50	60	m 4	1
)C						1
						1
ы						1
PC 0			105	125	mA	1
	Full Active, $C_L = Full load;$ Industrial Temp		445	450		_
PI	Range		115	150	MA	1
			25	30	mA	1
)C					mA	1
					mA	1
				4	mA	1
			100.00	110		1
s	Bypass Mode ((Bypass#/PLL= 0)	33		400	MHz	1
				7	nH	1
	Logic Inputs, except SRC_IN	1.5		5	pF	1
IN	SRC_IN differential clock inputs	1.5		2.7	pF	1,4
	Output pin capacitance			6	pF	1
	-3dB point in High BW Mode	2	3	4	MHz	1
	-3dB point in Low BW Mode	0.7	1	1.4	MHz	1
	Peak Pass band Gain		1.5	2	dB	1
	From V _{DD} Power-Up and after input clock			4	me	1,2
	clock				1115	1,2
	Allowable Frequency	30		22		1
	(Triangular Modulation)				KI IZ	1
		1		3	cycles	1,3
+				Ű	oyoloo	1,0
Р	•			10	ns	1,3
						,
)				300	us	1,3
_				5	nc	1
						2
_						1
	· · · · · ·					
_	₩ IPULLUP			0.4		1
>		4			mA	1
				1000	ns	1
	(Min VIH + 0.15)					
	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
	SS IN (() () () () () () () () ()	Hange all diff pairs driven, C-Temp all differential pairs tri-stated, C-Temp all differential pairs tri-stated, I-temp Full Active, C _L = Full load; Commerical PC Full Active, C _L = Full load; Industrial Temp Range Buil diff pairs driven, C-Temp all diff pairs driven, C-Temp all diff pairs driven, C-Temp all differential pairs tri-stated, C-Temp all differential pairs tri-stated, I-Temp Bypass Mode (Bypass#/PLL= 1) Bs Bypass Mode ((Bypass#/PLL= 0) Logic Inputs, except SRC_IN IN SRC_IN differential clock inputs Output pin capacitance -3dB point in Low BW Mode -3dB point in Low BW Mode -3dB point in Low BW Mode Allowable Frequency (Triangular Modulation) DIF start after OE# assertion DIF start after OE# deassertion DIF start after OE# deassertion D	PPI Range DC all diff pairs driven, C-Temp all differential pairs tri-stated, C-Temp all differential pairs tri-stated, C-Temp all differential pairs tri-stated, I-temp all differential pairs tri-stated, I-temp all differential pairs tri-stated, I-temp Full Active, C _L = Full load; Commerical PC Full Active, C _L = Full load; Industrial Temp PI Anage all differential pairs tri-stated, C-Temp all differential pairs tri-stated, C-Temp all differential pairs tri-stated, I-Temp Allogic	PPI Range 190 DC all diff pairs driven, C-Temp 50 all diff pairs driven, I-temp 4 DD all diff pairs driven, I-temp 55 DI all differential pairs tri-stated, I-temp 6 PC Full Active, $C_L = Full load; Commerical Temp Range 105 PC Full Active, C_L = Full load; Industrial Temp Range 115 DD all diff pairs driven, C-Temp 25 all diff pairs driven, C-Temp 30 30 DD all diff pairs driven, C-Temp 30 DD all diff pairs driven, C-Temp 30 DD all diff pairs driven, C-Temp 30 DD all differential pairs tri-stated, I-Temp 30 DD all differential pairs tri-stated, I-Temp 33 PCIe Mode (Bypass#/PLL= 1) 50 100.00 SS Bypass Mode ((Bypass#/PLL= 0) 33 IN SRC_IN differential clock inputs 1.5 IN SRC_IN differential clock inputs 1.5 IN SRC_IN daffer input clock stabilization or de-assertion of PD# to 1st clock 30 IN $	PPIRange190225all diff pairs driven, C-Temp5060all diff pairs driven, C-Temp46all diff pairs driven, I-temp5565all differential pairs tri-stated, I-temp68PCFull Active, $C_L = Full load; Commerical Temp Range105125PPIRange115150all diff pairs driven, C-Temp23all diff pairs driven, C-Temp23all diff pairs driven, C-Temp23all diff pairs driven, I-Temp3035all diff pairs driven, I-Temp34PCPCle Mode (Bypass#/PLL=1)50100.00all differential pairs tri-stated, I-Temp34PCle Mode (Bypass#/PLL=0)33400SSBypass Mode ((Bypass#/PLL=0)33400SSSRC_IN differential clock inputs1.52.7rOutput pin capacitance66-3dB point in Low BW Mode0.711.4cPeak Pass band Gain1.52stabilization or de-assertion of PD# to 1st clock13clock131pDIF stop after OE# deassertion13pDIF stop after OE# deassertion13pDIF stop after OE# deassertion13pDIF stop after OE# deassertion10300pPD# de-assertion13pDIF output enable after300<$	Print Range 190 225 mA all diff pairs driven, C-Temp 50 60 mA all differential pairs tri-stated, C-Temp 4 6 mA all differential pairs tri-stated, L-temp 4 6 mA all differential pairs tri-stated, L-temp 6 8 mA PC Full Active, C _L = Full load; Commerical Temp Range 105 125 mA print Range 115 150 mA all differential pairs tri-stated, C-Temp 25 30 mA all differential pairs tri-stated, C-Temp 2 3 mA all differential pairs tri-stated, C-Temp 2 3 mA all differential pairs tri-stated, L-Temp 3 4 mA all differential pairs tri-stated, L-Temp 3 4 mA Bypass Mode ((Bypass#/PLL= 1) 50 100.00 110 MHz SB Bypass Mode ((Bypass#/PLL= 0) 33 400 MHz SB Differential clock inputs 1.5 <t< td=""></t<>

¹Guaranteed by design and characterization, not 100% tested in production.

²See timing diagrams for timing requirements.

³Time from deassertion until outputs are >200 mV

⁴SRC_IN input

⁵The differential input clock must be running for the SMBus to be active

IDT[®] Four Output Differential Buffer for PCIe Gen 1 and Gen 2

© 2019 Renesas Electronics Corporation

Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 T_A =Tambient; V_{DD} = 3.3 V +/-5%; C_L =2pF, R_S =33 Ω , R_P =49.9 Ω , R_{REF} =475 Ω

PARAMETER	SYMBOL	$\frac{1}{10000000000000000000000000000000000$	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹		3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope	660		850	mV	1,2
Voltage Low	VLow	math function.	-150		150		1,2
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300			111 V	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	V _{OH} = 0.525V V _{OL} = 0.175V	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skow Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50%	2500		5000	ps	1
Skew, Input to Output	t _{pdPLL}	PLL Mode $V_T = 50\%$	-250		250	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%			50	ps	1
litter Ovele to evele		PLL mode			50	ps	1,3
Jitter, Cycle to cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode			50	ps	1,3
		PCIe Gen1 phase jitter (Additive in Bypass Mode)		7	10	ps (pk2pk)	1,4,5
	t _{jphaseBYP}	PCIe Gen 2 Low Band phase jitter (Additive in Bypass Mode)		0	0.1	ps (rms)	1,4,5
Jitter, Phase		PCIe Gen 2 High Band phase jitter (Additive in Bypass Mode)		0.3	0.5	ps (rms)	1,4,5
		PCIe Gen 1 phase jitter		40	86	ps (pk2pk)	1,4,5
	t _{jphasePLL}	PCIe Gen 2 Low Band phase jitter		1.5	3	ps (rms)	1,4,5
		PCIe Gen 2 High Band phase jitter		2.7/ 2.2	3.1	ps (rms)	1,4,5,6

¹Guaranteed by design and characterization, not 100% tested in production.

 2 I_{REF} = V_{DD}/(3xR_R). For R_R = 475 Ω (1%), I_{REF} = 2.32mA. I_{OH} = 6 x I_{REF} and V_{OH} = 0.7V @ Z_O=50 Ω .

3 Measured from differential waveform

⁴ See http://www.pcisig.com for complete specs

⁵ Device driven by 932S421C or equivalent.

⁶ First number is High Bandwidth Mode, second number is Low Bandwidth Mode

	urement ndow	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Sy	mbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Definition		Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum	Units	Notes
	DIF 100	9.87400	9.99900	9.99900	10.00000	10.00100	10.05130	10.17630	ns	1,2,3
e	DIF 133	7.41425	7.49925	7.49925	7.50000	7.50075	7.53845	7.62345	ns	1,2,4
Signal Name	DIF 166	5.91440	5.99940	5.99940	6.00000	6.00060	6.03076	6.11576	ns	1,2,4
al N	DIF 200	4.91450	4.99950	4.99950	5.00000	5.00050	5.02563	5.11063	ns	1,2,4
ign	DIF 266	3.66463	3.74963	3.74963	3.75000	3.75038	3.76922	3.85422	ns	1,2,4
N N	DIF 333	2.91470	2.99970	2.99970	3.00000	3.00030	3.01538	3.10038	ns	1,2,4
	DIF 400	2.41475	2.49975	2.49975	2.50000	2.50025	2.51282	2.59782	ns	1,2,4

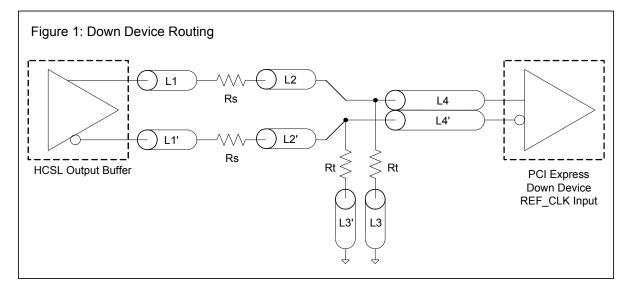
Clock Periods Differential Outputs with Spread Spectrum Enabled

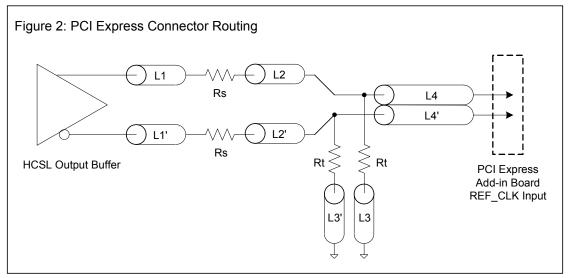
Clock Periods Differential Outputs with Spread Spectrum Disabled

Meas	urement									
Wi	ndow	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Sy	mbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Definition		Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum	Units	Notes
	DIF 100	9.87400		9.99900	10.00000	10.00100		10.17630	ns	1,2,3
е	DIF 133	7.41425		7.49925	7.50000	7.50075		7.62345	ns	1,2,4
Signal Name	DIF 166	5.91440		5.99940	6.00000	6.00060		6.11576	ns	1,2,4
	DIF 200	4.91450		4.99950	5.00000	5.00050		5.11063	ns	1,2,4
gn	DIF 266	3.66463		3.74963	3.75000	3.75038		3.85422	ns	1,2,4
S	DIF 333	2.91470		2.99970	3.00000	3.00030		3.10038	ns	1,2,4
	DIF 400	2.41475		2.49975	2.50000	2.50025		2.59782	ns	1,2,4

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK409/CK410/CK505 accuracy requirements. The 9DB403/803 itself does not contribute to ppm error.

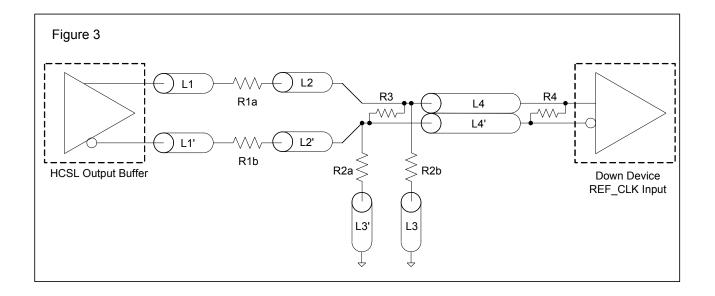

³ Driven by SRC output of main clock, PLL or Bypass mode


⁴ Driven by CPU output of CK410/CK505 main clock, **Bypass mode only**

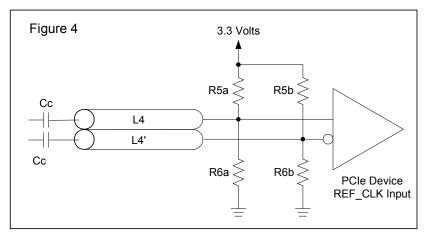
SRC Reference Clock									
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure						
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1						
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1						
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1						
Rs	33	ohm	1						
Rt	49.9	ohm	1						

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



ICS9DB403D REV R 11/1/12


ICS9DB403D Four Output Differential Buffer for PCIe for Gen 1 and Gen 2

	Alternative Termination for LVDS and other Common Differential Signals (figure 3)										
Vdiff	Vp-р	Vcm	R1	R2	R3	R4	Note				
0.45v	0.22v	1.08	33	150	100	100					
0.58	0.28	0.6	33	78.7	137	100					
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible				
0.60	0.3	1.2	33	174	140	100	Standard LVDS				
R1a = R	R1a = R1b = R1										

R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)							
Component	Value	Note					
R5a, R5b	8.2K 5%						
R6a, R6b	1K 5%						
Сс	0.1 µF						
Vcm	0.350 volts						

IDT® Four Output Differential Buffer for PCIe Gen 1 and Gen 2

General SMBus serial interface information for the ICS9DB403D

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will *acknowledge*
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD (h)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(n) was written to byte 8).
- Controller (host) will need to acknowledge each byte

Index Block Bood Operation

- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Ind	ex Block V	Vrit	e Operation
Сог	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	e Address DC _(h)		
WR	WRite		
			ACK
Begi	inning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	nning Byte N		
		1	ACK
	\diamond	e [
	0	X Byte	O
	\diamond	×	○
		1	O
Byt	e N + X - 1	1	
			ACK
Р	stoP bit		

Ind	ex Block Rea	ad	Operation		
Con	troller (Host)	IC	S (Slave/Receiver)		
Т	starT bit				
Slave	e Address DC _(h)				
WR	WRite				
			ACK		
Begir	nning Byte = N				
			ACK		
RT	Repeat starT				
Slave	e Address DD _(h)				
RD	ReaD				
			ACK		
		Data Byte Count = X			
	ACK				
			Beginning Byte N		
	ACK				
		X Byte	\diamond		
	0	B	O		
	0	$ \times $	O		
O					
			Byte N + X - 1		
N	Not acknowledge				
Р	stoP bit				

Т

By	te 0	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		-	PD_Mode	PD# drive mode	RW	driven	Hi-Z	0
Bit 6		-	STOP_Mode	DIF_Stop# drive mode	RW	driven	Hi-Z	0
Bit 5		-	Reserved	Reserved	RW	Reserved		Х
Bit 4		-	Reserved	Reserved	RW	Reserved		Х
Bit 3		-	Reserved	Reserved	RW	Reserved		Х
Bit 2		-	PLL_BW#	Select PLL BW	RW	High BW	Low BW	1
Bit 1		-	BYPASS#	BYPASS#/PLL	RW	fan-out	ZDB	1
Bit 0		-	SRC_DIV#	SRC Divide by 2 Select	RW	x/2	1x	1

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

SMBus Table: Output Control Register

Byt	te 1	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	7 -		Reserved	Reserved	RW	RW Reserved		1
Bit 6	22,	23	DIF_6	Output Enable	RW	Disable	Enable	1
Bit 5	19,	20	DIF_5	Output Enable	RW	Disable	Enable	1
Bit 4	-		Reserved	Reserved	RW	Reserved		1
Bit 3	-		Reserved	Reserved	RW	Reserved		1
Bit 2	9, 1	10	DIF_2	Output Enable	RW	Disable	Enable	1
Bit 1	6,	7	DIF_1	Output Enable	RW	Disable	Enable	1
Bit 0			Reserved	Reserved	RW	Rese	erved	1

NOTE: The SMBus Output Enable Bit must be '1' AND the respective OE pin must be active for the output to run!

SMBus Table: OE Pin Control Register

By	te 2	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	7 -		Reserved	Reserved	RW	Reserved		0
Bit 6	22	,23	DIF_6	DIF_6 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 5	19	,20	DIF_5	DIF_5 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 4		-	Reserved	Reserved	RW	Reserved		0
Bit 3		-	Reserved	Reserved	RW	Rese	erved	0
Bit 2	9.	.1	DIF_2	DIF_2 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 1	6	,7	DIF_1	DIF_1 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 0		-	Reserved	Reserved	RW	Rese	erved	0

SMBus Table: Reserved Register

Byt	te 3	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7				Reserved				Х
Bit 6				Reserved				Х
Bit 5				Reserved				Х
Bit 4				Reserved				Х
Bit 3				Reserved				Х
Bit 2				Reserved				Х
Bit 1				Reserved				Х
Bit 0				Reserved				Х

 $\textbf{IDT}^{\scriptscriptstyle (\! 8\!)}$ Four Output Differential Buffer for PCIe Gen 1 and Gen 2

By	te 4	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-		RID3		R	-	-	0
Bit 6	-		RID2	REVISION ID	R	-	-	0
Bit 5	1		RID1	REVISIONID	R	-	-	1
Bit 4	-		RID0		R	-	-	1
Bit 3	-		VID3		R	-	-	0
Bit 2	-		VID2	VENDOR ID	R	-	-	0
Bit 1	-		VID1	VENDORID	R	-	-	0
Bit 0	-		VID0		R	-	-	1

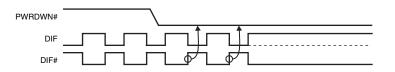
SMBus Table: Vendor & Revision ID Register

SMBus Table: DEVICE ID

Byt	e 5	Pin #	Name	Control Function		Туре	0	1	Default		
Bit 7		-		Device ID 7 (MSB)		RW			0		
Bit 6	-		-		- Device ID 6			RW			Х
Bit 5				Device ID 5		RW	Device ID		Х		
Bit 4				Device ID 4		RW	for 9DB8	0			
Bit 3		-		Device ID 3		RW	Hex for		0		
Bit 2	-			Device ID 2		RW		900403	0		
Bit 1		-		- Device ID 1 RW		RW			1		
Bit 0		-		Device ID 0		RW			1		

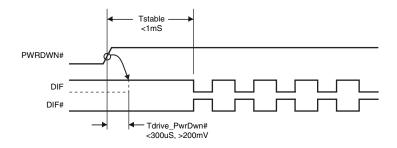
SMBus Table: Byte Count Register

By	te 6	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-		BC7		RW	-	-	0
Bit 6	-		BC6		RW	-	-	0
Bit 5	-		BC5		RW	-	-	0
Bit 4	-		BC4	Writing to this register configures how	RW	-	-	0
Bit 3	-		BC3	many bytes will be read back.	RW	-	-	0
Bit 2	-		BC2		RW	-	-	1
Bit 1	-		BC1		RW	-	-	1
Bit 0	-		BC0		RW	-	-	1


Note: Polarities in timing diagrams are shown $OE_{INV} = 0$. They are similar to $OE_{INV} = 1$.

PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

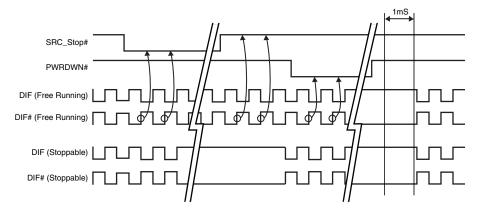
When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

PD# De-assertion

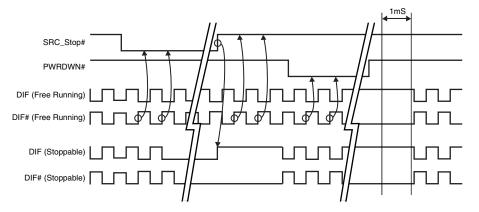
Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 us of PD# de-assertion.

SRC_STOP#

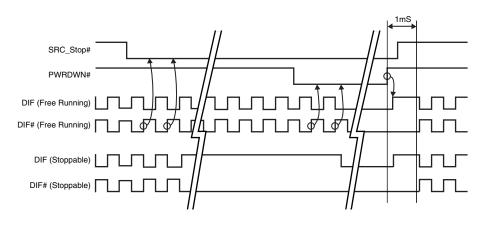
The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

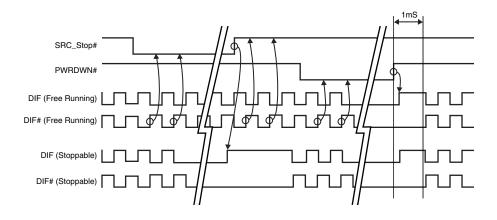

SRC_STOP# - Assertion

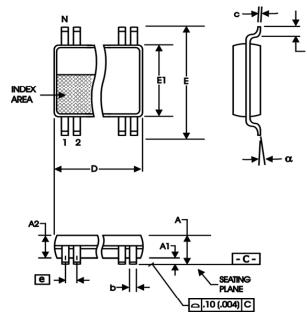
Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with $6x_{REF}$ DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.


SRC_STOP# - De-assertion (transition from '0' to '1')

All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.


SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)


SRC_STOP_2 (SRC_Stop =Tristate, PD = Driven)

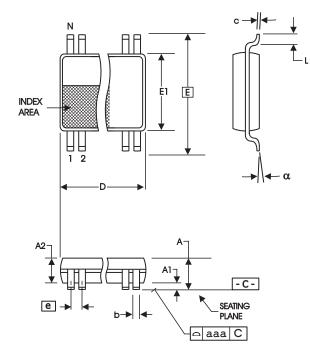

SRC_STOP_3 (SRC_Stop = Driven, PD = Tristate)

SRC_STOP_4 (SRC_Stop = Tristate, PD = Tristate)

28-pin SSOP Package Dimensions

209 mil SSOP					
	In Millimeters		In Inches		
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		2.00	-	.079	
A1	0.05		.002		
A2	1.65	1.85	.065	.073	
b	0.22	0.38	.009	.015	
С	0.09	0.25	.0035	.010	
D	SEE VARIATIONS		SEE VAF	RIATIONS	
E	7.40	8.20	.291	.323	
E1	5.00	5.60	.197	.220	
е	0.65 BASIC		0.0256	BASIC	
L	0.55	0.95	.022	.037	
Ν	SEE VARIATIONS		SEE VAF	RIATIONS	
α	0°	8°	0°	8°	

VARIATIONS


N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.90	10.50	.390	.413

Reference Doc.: JEDEC Publication 95, MO-150

10-0033

209 mil SSOP

28-pin TSSOP Package Dimensions

(173 mil) (25.6 mil)					
	In Millimeters		In Inches		
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
А		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS		SEE VAF	IATIONS	
E	6.40 BASIC		0.252	BASIC	
E1	4.30	4.50	.169	.177	
е	0.65 BASIC		0.0256	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
α	0°	8°	0°	8°	
aaa		0.10		.004	

4.40 mm. Body, 0.65 mm. Pitch TSSOP

VARIATIONS

Ν	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.60	9.80	.378	.386

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
9DB403DGLF	9DB403DGLF	Tubes	28-pin TSSOP	0 to +70° C
9DB403DGLFT	9DB403DGLF	Tape and Reel	28-pin TSSOP	0 to +70° C
9DB403DGILF	9DB403DGILF	Tubes	28-pin TSSOP	-40 to +85° C
9DB403DGILFT	9DB403DGILF	Tape and Reel	28-pin TSSOP	-40 to +85° C
9DB403DFLF	9DB403DFLF	Tubes	28-pin SSOP	0 to +70° C
9DB403DFLFT	9DB403DFLF	Tape and Reel	28-pin SSOP	0 to +70° C
9DB403DFILF	9DB403DFILF	Tubes	28-pin SSOP	-40 to +85° C
9DB403DFILFT	9DB403DFILF	Tape and Reel	28-pin SSOP	-40 to +85° C

"LF" denotes Pb-free package, RoHS compliant

"D" is the revision designator (will not correlate to datasheet revision)

IDT[®] Four Output Differential Buffer for PCIe Gen 1 and Gen 2

Revision History

Rev.	Issue Date	Description	Page #
I	11/26/2008	Updated SMBus table - Byte0:Byte3.	11
J	2/6/2009	Added Industrial temp. specs and ordering information.	Various
K	7/13/2009	Updated general description and block diagram	1
		1. Clarified that Vih and Vil values were for Single ended inputs	
		2. Added separate Idd values for the 9DB403	
L	10/7/2009	3. Added Differential Clock input parameters.	Various
М	1/27/2011	Updated Termination Figure 4	10
		1. Update pin 1 pin-name and pin description from VDD to VDDR. This	
		highlights that optimal peformance is obtained by treating VDDR as in analog	
Ν	5/6/2011	pin. This is a document update only, there is no silicon change.	Various
Р	8/27/2012	Updated Vswing conditions to include "single-ended measurement"	5
Q	9/18/2012	Updated Byte 2, bits 1, 2, 5 and 6 per char review. Outputs can be programmed with Byte 2 to be Stoppable or Free-Run with DIF_Stop pin, not the OE pins.	12
R	11/1/2012	Updated Input-to-Output Skew max value (Bypass Mode condition only) from 4500ps to 5000ps per latest characterization data.	7

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

<u>9DB403DFILFT</u> <u>9DB403DFILF</u> <u>9DB403DFLF</u> <u>9DB403DGLF</u> <u>9DB403DGLFT</u> <u>9DB403DGILFT</u> <u>9DB403DGILFT</u> <u>9DB403DGILFT</u>