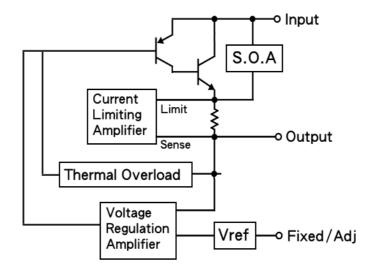


ABSOLUTE MAXIMUM RATINGS						
PARAMETER		SYMBOL	LIMIT	UNIT		
Input Supply Voltage		V _{IN}	15	V		
Recommend Operation Input Supply Volta	ge	V _{IN (Opr. Typ.)}	12	V		
Power Dissipation (Note 2)		P _D	Internal limited			
Operating Temperature Range		T _{OPER}	-40 ~ +125	°C		
Junction Temperature Range		T _J	+150	°C		
Storage Temperature Range		T _{STG}	-65 ~ +150	°C		
L C-1-1	TO-252			_		
Lead Soldering Temperature (260°C)	SOT-223		5	S		

THERMAL PERFORMANCE					
DADAMETER	CAMBOI	LIN			
PARAMETER	SYMBOL	SOT-223 TO-2		UNIT	
Junction to Ambient Thermal Resistance	R _{OJA}	130	105	°C/W	

Notes: $R_{\Theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistances. The case thermal reference is defined at the solder mounting surface of the drain pins. $R_{\Theta JA}$ is guaranteed by design while $R_{\Theta CA}$ is determined by the user's board design. $R_{\Theta JA}$ shown below for single device operation on FR-4 PCB in still air.


ELECTRICAL SPECIFICATIONS (T _A =25°C, unless otherwise noted)						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Reference Voltage	$V_{IN} = 2.75, I_{O} = 1A$	V_{REF}	1.225	1.25	1.275	V
Output Voltage (Note 4)	$V_{IN} = 2.7V \sim 12V, I_{O} = 1A$	V _{OUT}	1.176	1.2	1.224	V
	$V_{IN} = 3V \sim 12V, I_{O} = 1A$		1.470	1.5	1.530	
	$V_{IN} = 4V \sim 12V, I_{O} = 1A$		2.450	2.5	2.550	
	$V_{IN} = 4.8V \sim 12V, I_{O} = 1A$		3.235	3.3	3.366	
	$V_{IN} = 6.5V \sim 12V, I_{O} = 1A$		4.900	5.0	5.100	
Line Regulation	$V_{O} + 1.5V \le V_{IN} \le 12V, I_{O} = 10mA$	REG _{LINE}		0.2	0.5	%
Load Regulation (Note 1,2)	$V_{IN} = V_{OUT} + 1.5V$, $I_{O} = 10 \text{mA} \sim 1 \text{A}$	REG _{LOAD}		0.05	1.0	%
Dropout Voltage	$I_O = 1A$, $\Delta V_{OUT} = 1\% V_{OUT}$	V_{DROP}		1.3	1.5	V
Quiescent Current	V _{IN} = 5V	IQ		5	10	mA
Adjustable Pin Current		I _{ADJ}		90		μA
Output Current Limit	V_{IN} - V_{OUT} = 1.5 V	I _{LIMIT}	1.1			Α
Temperature Stability	I _O =10mA,			0.5		%
Ripple Rejection	f= 120Hz, I _O = 1A, C _{OUT} =25μF,	RR		60	70	dB
Mata.	$V_{IN} = V_{OUT} + 3V$					

Note:

- 1. See thermal regulation specification for changes in output voltage due to heating effects. Line and load regulation are measured at a constant junction temperature by low duty cycle pulse testing. Load regulation is measured at the output lead = 1/18" from the package.
- 2. Line and load regulation are guaranteed up to the maximum power dissipation of 15W. Power dissipation is determined by the input / output voltage difference and the output current. Guaranteed maximum power dissipation will not be available over the full input / output voltage range.
- 3. Quiescent current is defined as the minimum output current required to maintain the regulation.
- 4. The Output Capacitor does not have a theoretical upper limit and increasing its value will increase stability. C_{OUT} =100uF or more is typical for high current regulator design.

FUNCTION BLOCK

ORDERING INFORMATION

OUTPUT VOLTAGE	PART NO.	PACKAGE	PACKING
ADJ	TS1117BCP ROG	TO-252 (DPAK)	2,500pcs / 13" Reel
	TS1117BCW RPG	SOT-223	2,500pcs / 13" Reel
1.2V	TS1117BCW12 RPG	SOT-223	2,500pcs / 13" Reel
2.5V	TS1117BCW25 RPG	SOT-223	2,500pcs / 13" Reel
3.3V	TS1117BCP33 ROG	TO-252 (DPAK)	2,500pcs / 13" Reel
	TS1117BCW33 RPG	SOT-223	2,500pcs / 13" Reel
5V	TS1117BCP50 ROG	TO-252 (DPAK)	2,500pcs / 13" Reel
	TS1117BCW50 RPG	SOT-223	2,500pcs / 13" Reel

3

CHARACTERISTICS CURVES

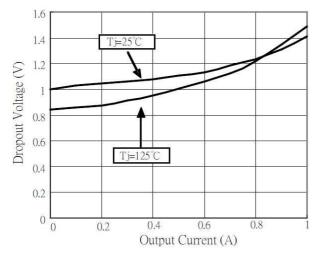


Figure 1. V_{DROP} vs. Output Current

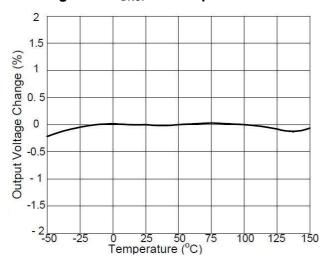


Figure 3. V_{OUT} Change vs. Temperature

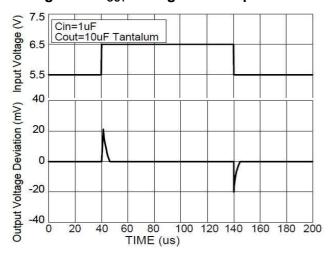


Figure 5. Line Transient Response

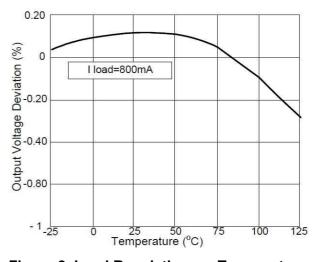


Figure 2. Load Regulation vs. Temperature

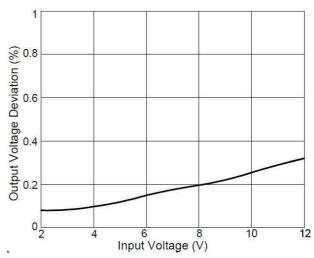
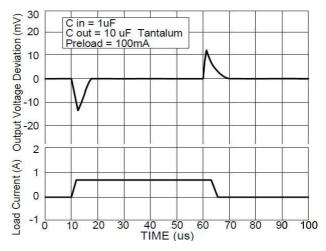
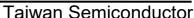
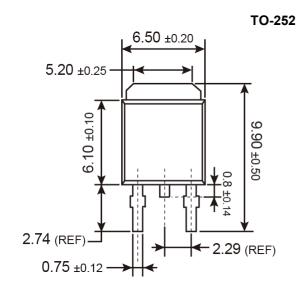
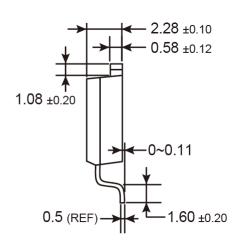
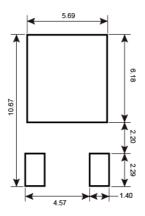


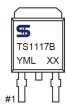
Figure 4. V_{OUT} Deviation vs. Temperature


Figure 6. Load Transient Response



PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)



SUGGESTED PAD LAYOUT

5

MARKING DIAGRAM

Y = Year Code

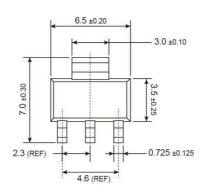
M = Month Code for Halogen Free Product

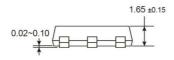
O =Jan P =Feb Q =Mar R =Apr

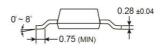
S =May T =Jun U =Jul V =Aug

W = Sep X = Oct Y = Nov Z = Dec

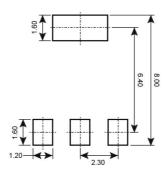
L = Lot Code


XX = Output Voltage Code (**3.3**=3.3V, **5.0**=5V)


= CP for Adjustable output voltage version



PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)


SOT-223

SUGGESTED PAD LAYOUT (Unit: Millimeters)

MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product

O =Jan P =Feb Q =Mar R =Apr S =May T =Jun U =Jul V =Aug W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code

XX = Output Voltage Code (**1.2**=1.2V, **2.5**=2.5V, **3.3**=3.3V, **5.0**=5V)

6

= CW for Adjustable output voltage version

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Taiwan Semiconductor:

<u>TS1117BCP TS1117BCP33 TS1117BCP50 TS1117BCW TS1117BCW12 TS1117BCW25 TS1117BCW33 TS1117BCW50 TS1117BCW RPG TS1117BCW33 RPG TS1117BCP ROG TS1117BCP33 ROG TS1117BCW25 RPG TS1117BCW50 RPG TS1117BCP50 ROG TS1117BCW12 RPG</u>