

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

(Note 2)

e 1)	Recommended Operating
	Conditions (Note 2)

DC Supply Voltage (V _{DD}) Input Voltage (V _{IN}) Storage Temperature (T _S)	-0.5V to +18 V _{DC} -0.5V to V _{DD} +0.5 V _{DC} -65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

DC Electrical Characteristics (Note 2)

DC Supply Voltage (V_{DD})

Input Voltage (V_{IN})

3.0V to 15 $V_{\rm DC}$ 0V to $V_{\rm DD}$ $V_{\rm DC}$

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and Electrical Characteristics" provide con-

Note 2: $V_{SS} = 0V$ unless otherwise specified.

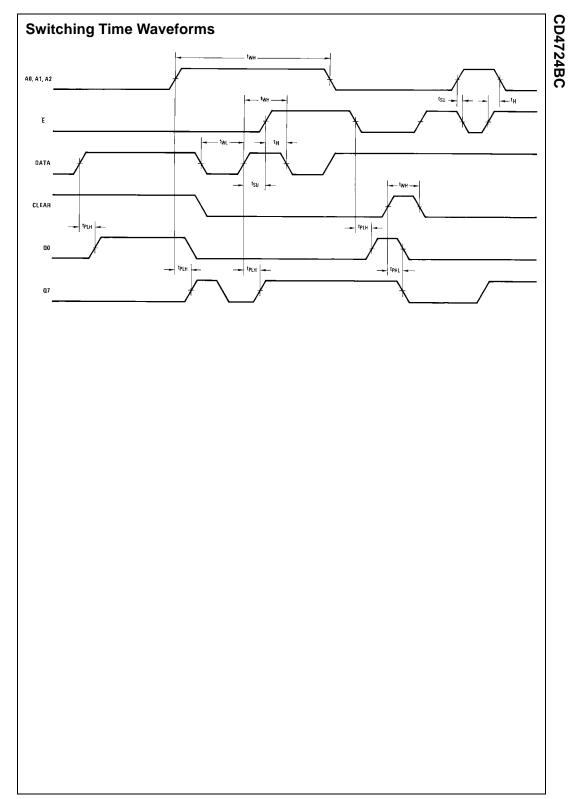
ditions for actual device operation.

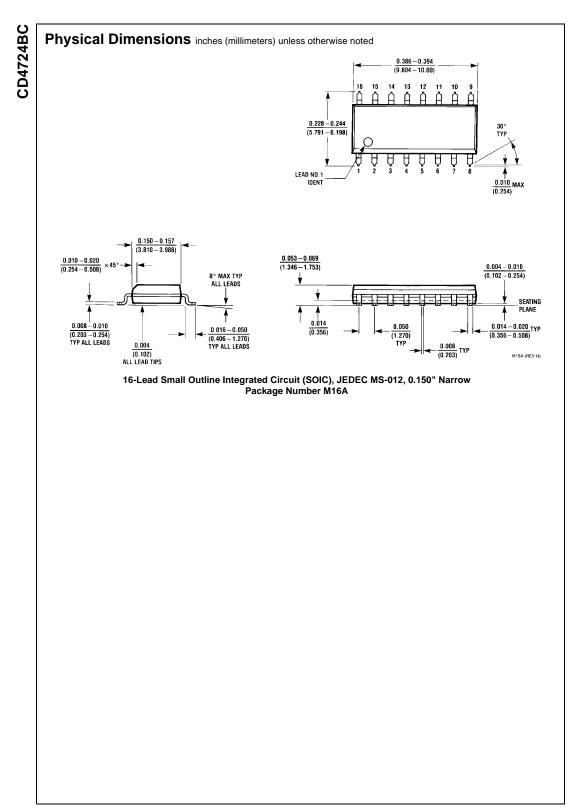
-55°C +25°C +125°C Symbol Parameter Conditions Units Min Max Min Max Min Тур Max $V_{DD} = 5V$ I_{DD} Quiescent Device 5 0.02 5 150 $V_{DD} = 10V$ Current 10 0.02 10 300 μΑ $V_{DD} = 15V$ 20 0.02 20 600 VOL LOW Level |I_O| ≤ 1 μA $V_{DD} = 5V$ Output Voltage 0.05 0 0.05 0.05 $V_{DD} = 10V$ 0.05 0 0.05 0.05 V $V_{DD} = 15V$ 0.05 0 0.05 0.05 HIGH Level |I_O| ≤ 1 μA V_{он} Output Voltage $V_{DD} = 5V$ 4 95 4 95 5.0 4 95 $V_{DD} = 10V$ 9.95 v 9.95 9.95 10 V_{DD} = 15V 14.95 14.95 15 14.95 $V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ VIL LOW Level 1.5 2.25 1.5 1.5 Input Voltage $V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$ 3.0 4.5 3.0 3.0 V $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$ 4.0 6.75 4.0 4.0 $V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$ VIH HIGH Level 3.5 3.5 2.75 3.5 $V_{DD} = 10V, V_O = 1V \text{ or } 9V$ Input Voltage 7.0 7.0 7.0 V 5.5 $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$ 11.0 11.0 8.25 11.0 LOW Level Output $V_{DD} = 5V, V_{O} = 0.4V$ 0.64 0.51 0.88 0.36 IOL $V_{DD} = 10V, V_{O} = 0.5V$ 0.9 Current 1.6 1.3 2.25 mΑ V_{DD} = 15V, V_O = 1.5V (Note 3) 4.2 3.4 8.8 2.4 HIGH Level Output $V_{DD} = 5V, V_{O} = 4.6V$ -0.64 -0.51 -0.88 -0.36 I_{OH} Current $V_{DD} = 10V, V_{O} = 9.5V$ -2.25 -0.9 mΑ -1.6 -1.3 $V_{DD} = 15V, V_{O} = 13.5V$ (Note 3) -4.2 -3.4 -8.8 -2.4 $V_{DD} = 15V, V_{IN} = 0V$ Input Current -0.1 -10--0.1 -1.0 I_{IN} μΑ V_{DD} = 15V, V_{IN} = 15V 10⁻⁵ 0.1 0.1 1.0

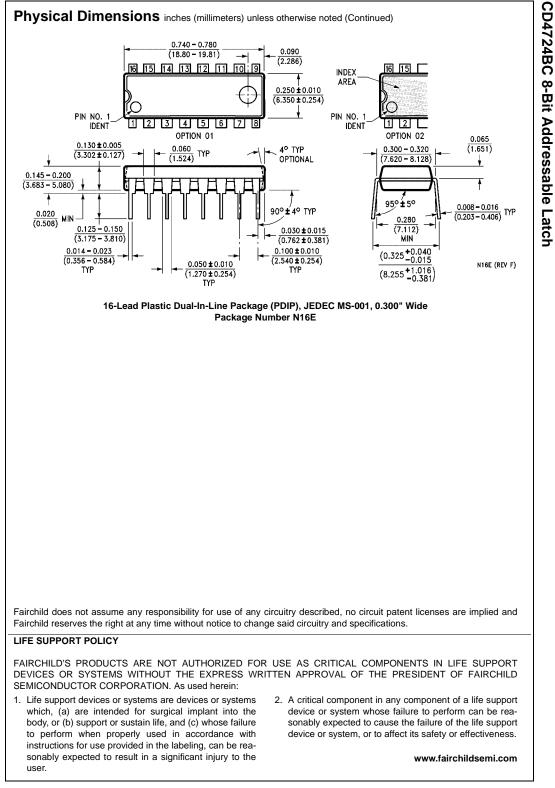
Note 3: I_{OL} and I_{OH} are tested one output at a time.

CD4724BC

www.fairchildsemi.com


C	
ш	
4	
N	
5	
X	
X	
O	


AC Electrical Characteristics (Note 4)


Symbol	Parameter	Conditions	Min	Тур	Max	Units
PHL, tPLH	Propagation Delay	$V_{DD} = 5V$		200	400	
	Data to Output	$V_{DD} = 10V$		75	150	ns
		$V_{DD} = 15V$		50	100	
t _{PLH} , t _{PHL}	Propagation Delay	$V_{DD} = 5V$		200	400	
	Enable to Output	$V_{DD} = 10V$		80	160	ns
		V _{DD} = 15V		60	120	
t _{PHL}	Propagation Delay	$V_{DD} = 5V$		175	350	
	Clear to Output	$V_{DD} = 10V$		80	160	ns
		V _{DD} = 15V		65	130	
t _{PLH} , t _{PHL}	Propagation Delay	$V_{DD} = 5V$		225	450	
TLN, TNL	Address to Output	$V_{DD} = 10V$		100	200	ns
		V _{DD} = 15V		75	150	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
	(Any Output)	$V_{DD} = 10V$		50	100	ns
		V _{DD} = 15V		40	80	
T _{WH} , T _{WL}	Minimum Data	$V_{DD} = 5V$		100	200	
WIT WE	Pulse Width	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
t _{WH} , t _{WL}	Minimum Address	$V_{DD} = 5V$		200	400	
	Pulse Width	$V_{DD} = 10V$		100	200	ns
		$V_{DD} = 15V$		65	125	
twн	Minimum Clear	$V_{DD} = 5V$		75	150	
with	Pulse Width	$V_{DD} = 10V$		40	75	ns
		$V_{DD} = 15V$		25	50	
SU	Minimum Setup Time	$V_{DD} = 5V$		40	80	
-30	Data to E	$V_{DD} = 10V$		20	40	ns
	Bala to E	V _{DD} = 15V		15	30	
t _H	Minimum Hold Time	$V_{DD} = 5V$		60	120	
'n	Data to E	$V_{DD} = 10V$		30	60	ns
	Data to E	V _{DD} = 15V		25	50	110
t _{SU}	Minimum Setup Time	$V_{DD} = 5V$		-15	50	
-50	Address to E	$V_{DD} = 10V$		0	30	ns
		$V_{DD} = 15V$		0	20	113
h	Minimum Hold Time			-50	15	
Н	Address to E	$V_{DD} = 5V$		-30 -20	10	00
	Address to E	$V_{DD} = 10V$		-20 -15	10 5	ns
0	Dower Dissinction	V _{DD} = 15V			Э	
C _{PD}	Power Dissipation	Per Package		100		pF
	Capacitance	(Note 5)				
C _{IN}	Input Capacitance	Any Input		5.0	7.5	pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

Note 5: Dynamic power dissipation (P_D) is given by: $P_D = (C_{PD} + C_L) V_{CC}^2 f + P_Q$; where $C_L = load$ capacitance; f = frequency of operation; for further details, see Application Note AN-90, "Family Characteristics".

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Onsemi: CD4724BCM CD4724BCN CD4724BCMX