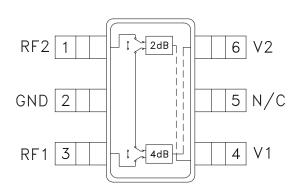


2 dB LSB GaAs MMIC 2-BIT DIGITAL ATTENUATOR, 0.7 - 4.0 GHz

Typical Applications

The HMC290 / HMC290E is ideal for:


- Cellular
- PCS, ISM, MMDS
- WLL Handset & BaseStation

Features

2 dB LSB Steps to 6 dB Single Positive Control Per BIT ±0.2 dB Typical Bit Error

Miniature SOT 26 Package: 9 mm²

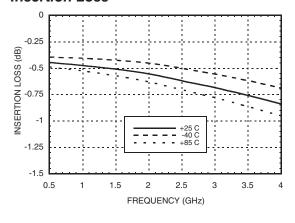
Functional Diagram

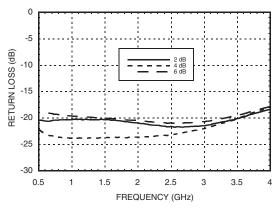
General Description

The HMC290 & HMC290E are broadband 2 - bit positive control GaAs IC digital attenuators in 6 lead SOT26 surface mount plastic packages. Covering 0.7 to 4 GHz, the insertion loss is typically less than 0.7 dB. The attenuator bit values are 2 (LSB) and 4 dB for a total attenuation of 6 dB. Accuracy is excellent at \pm 0.2 dB typical with an IIP3 of up to +52 dBm. Two bit control voltage inputs, toggled between 0 and +3 to +5 volts, are used to select each attenuation state at less than 50 uA each. A single Vdd bias of +3 to +5 volts applied through an external 5K Ohm resistor is required. Occupying less than 9 mm², this is the smallest 2 - bit digital attenuator available.

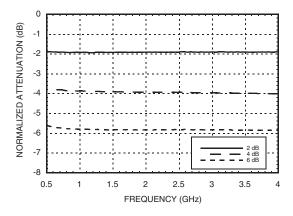
Electrical Specifications,

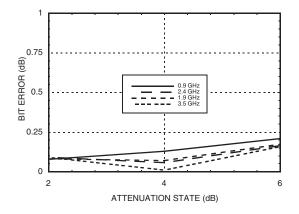
 $T_A = +25^{\circ}$ C, Vdd = +3V to +5V & VctI = 0/Vdd (Unless Otherwise Stated)

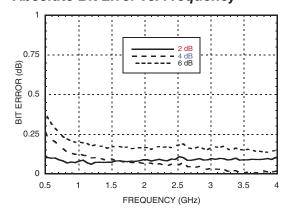

Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 4.0 GHz		0.5 0.5 0.6 0.8	0.7 0.8 0.9 1.2	dB dB dB dB
Attenuation Range		0.7 - 4.0 GHz		6		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 2.7 GHz 2.7 - 4.0 GHz	16 15	20 18		dB dB
Attenuation Accuracy: (Referenced to Insertion Loss)						
2, 4 dB States 6 dB States		0.7 - 4.0 GHz 0.7 - 4.0 GHz	± 0.2 + 2% of Atten. Setting Max ± 0.3 + 2% of Atten. Setting Max		dB dB	
Input Power for 0.1 dB Compression	5V 3V	0.7 - 4.0 GHz		27 24		dBm dBm
Input Third Order Intercept Point (Two-tone Input Power = 0 dBm Each Tone)	5V 3V	0.7 - 4.0 GHz		52 50		dBm dBm
Switching Characteristics						
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		0.7 - 4.0 GHz		400 420		ns ns

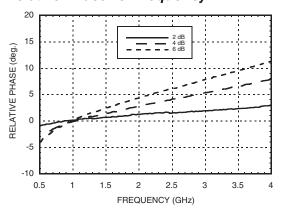


2 dB LSB GaAs MMIC 2-BIT DIGITAL ATTENUATOR, 0.7 - 4.0 GHz


Insertion Loss


Return Loss RF1, RF2


Normalized Attenuation


Absolute Bit Error vs. Attenuation State

Absolute Bit Error vs. Frequency

Relative Phase vs. Frequency

Note: All Data Typical Over Voltage (+3V to +5V) & Temperature (-40 to +85 deg. C.).

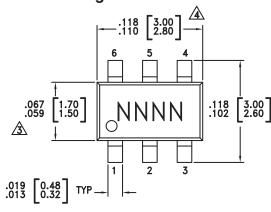
2 dB LSB GaAs MMIC 2-BIT DIGITAL ATTENUATOR, 0.7 - 4.0 GHz

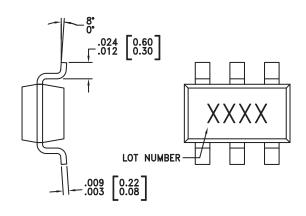
Truth Table

Control Voltage Input		Attenuation	
V2 4 dB	V1 2 dB	Setting RF1 - RF2	
High	High	Reference I.L.	
High	Low	2 dB	
Low	High	4 dB	
Low	Low	6 dB Max. Atten.	
Any combination of the above states will provide an attenuation			

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

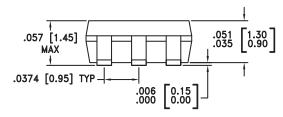
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS


Control & Bias Voltages


State	Bias Condition	
Low	0 to + 0.2V @ 20 uA Max	
High	Vdd ± 0.2V @ 50 uA Max	
Note: $Vdd = +3V$ to $5V \pm 0.2V$		

Absolute Maximum Ratings

Control Voltage (V1, V2)	Vdd + 0.5 Vdc
Bias Voltage (Vdd)	+ 8.0 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (0.7 - 4 GHz)	+28 dBm

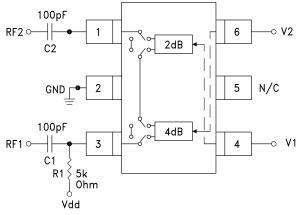

Outline Drawing

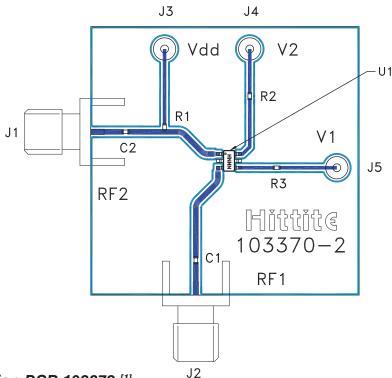
NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC290	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H290 XXXX
HMC290E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	290E XXXX


- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX


2 dB LSB GaAs MMIC 2-BIT DIGITAL ATTENUATOR, 0.7 - 4.0 GHz

Application Circuit

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = C2 = $100 \sim 300$ pF to allow lowest customer specific frequency to pass with minimal loss. R1 = 5K Ohm is required to supply voltage to the circuit through either PIN 3 or PIN 1.

Evaluation Circuit Board

* R2 = R3 = 100 Ohm. These resistors are optional and may be used to enhance decoupling of the RF path from the control inputs.

List of Materials for Evaluation PCB 103372 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J6	DC Pin
R1	5k Ohm Resistor, 0402 Chip
R2, R3	100 Ohm Resistor, 0402 Chip
C1, C2	0402 Chip Capacitor, Select for Lowest Frequency of Operation
U1	HMC290 / HMC290E Digital Attenuator
PCB [2]	103370 Evaluation PCB 1.5" x 1.5"

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite Microwave Corporation upon request.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

HMC290 HMC290E HMC290ETR