$$\label{eq:second} \begin{split} & SSM2141-SPECIFICATIONS \\ & ELECTRICAL CHARACTERISTICS \ (@V_{S}=\pm 18 \ V, \ T_{A}=+25^{\circ}C, \ unless \ otherwise \ noted) \end{split}$$

	~ • •	~ N.		SSM214	41	
Parameter	Symbol	Conditions	Min	Тур	Max	Units
OFFSET VOLTAGE	V _{OS}	$V_{CM} = 0 V$	-1000	25	1000	μV
GAIN ERROR		No Load, $V_{IN} = \pm 10$ V, $R_S = 0$ Ω		0.001	0.01	%
INPUT VOLTAGE RANGE	IVR	(Note 1)	±10			V
COMMON-MODE REJECTION	CMR	$V_{CM} = \pm 10 \text{ V}$	80	100		dB
POWER SUPPLY REJECTION RATIO	PSRR	$V_{\rm S} = \pm 6 \text{ V to } \pm 18 \text{ V}$		0.7	15	μV/V
OUTPUT SWING	Vo	$R_{\rm L} = 2 \ {\rm k}\Omega$	±13	±14.7		V
SHORT-CIRCUIT CURRENT LIMIT	I _{SC}	Output Shorted to Ground	+45/-15			mA
SMALL-SIGNAL BANDWIDTH (-3 dB)	BW	$R_{\rm L} = 2 \ {\rm k}\Omega$		3		MHz
SLEW RATE	SR	$R_{\rm L} = 2 \ {\rm k}\Omega$	6	9.5		V/µs
TOTAL HARMONIC DISTORTION	THD	$ \begin{array}{l} R_L = 100 \; k\Omega \\ R_L = 600 \; \Omega \end{array} $		0.001 0.01		%
CAPACITIVE LOAD DRIVE CAPABILITY	CL	No Oscillation		300		pF
SUPPLY CURRENT	I _{SY}	No Load		2.5	3.5	mA

NOTES

¹Input Voltage Range Guaranteed by CMR test.

Specifications subject to change without notice

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 18 V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
OFFSET VOLTAGE	V _{OS}	$V_{CM} = 0 V$	-2500	200	2500	μV
GAIN ERROR		No Load, $V_{IN} = \pm 10$ V, $R_S = 0$ Ω		0.002	0.02	%
INPUT VOLTAGE RANGE	IVR	(Note 1)	±10			V
COMMON-MODE REJECTION	CMR	$V_{CM} = \pm 10 \text{ V}$	75	90		dB
POWER SUPPLY REJECTION RATIO	PSRR	$V_{\rm S} = \pm 6 \text{ V to } \pm 18 \text{ V}$		1.0	20	μV/V
OUTPUT SWING	Vo	$R_L = 2 k\Omega$	±13	±14.7		V
SLEW RATE	SR	$R_L = 2 k\Omega$		9.5		V/µs
SUPPLY CURRENT	I _{SY}	No Load		2.6	4.0	mA

NOTES

¹Input Voltage Range Guaranteed by CMR test.

Specifications subject to change without notice

SSM2141

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage	±18 V
Input Voltage ¹	. Supply Voltage
Output Short-Circuit Duration	Continuous
Storage Temperature Range	
P Package	-65°C to +150°C
Lead Temperature (Soldering, 60 sec)	+300°C
Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C

Package Type	$\theta_{JA}{}^2$	θ _{JC}	Units
8-Pin Plastic DIP (P)	103	43	°C/W

NOTES

 $^1\mathrm{For}$ supply voltages less than $\pm\,18$ V, the absolute maximum input voltage is equal to the supply voltage.

 $^2\theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for P-DIP package.

Typical Performance Characteristics

 $V_{s}^{2} = \pm 15V$

Small Signal Transient Response

Common-Mode Rejection vs. Frequency

Total Harmonic Distortion vs. Frequency

Large Signal Transient Response

Power Supply Rejection vs. Frequency

Dynamic Intermodulation Distortion vs. Frequency

SSM2141–Typical Performance Characteristics

Input Offset Voltage vs. Temperature

Closed-Loop Gain vs. Frequency

Closed-Loop Output Impedance vs. Frequency

Gain Error vs. Temperature

Slew Rate vs. Temperature

Maximum Output Voltage vs. Output Current (Source)

Supply Current vs. Temperature

Maximum Output Voltage vs. Output Current (Sink)

Voltage Noise Density vs. Frequency

NOTE: EXTERNAL AMPLIFIER GAIN = 1000; THEREFORE, VERTICAL SCALE = 10µV/DIV.

Voltage Noise from 0 kHz to 1 kHz

0.1 TO 10Hz PEAK-TO-PEAK NOISE

Low Frequency Voltage Noise

NOTE: EXTERNAL AMPLIFIER GAIN = 1000; THEREFORE, VERTICAL SCALE = 10µV/DIV.

Voltage Noise from 0 kHz to 10 kHz

APPLICATIONS INFORMATION

The SSM2141 represents a versatile analog building block. In order to capitalize on fast settling time, high slew rate, and high CMR, proper decoupling and grounding techniques must be employed. For decoupling, place 0.1 μ F capacitor located within close proximity from each supply pin to ground.

Slew Rate Test Circuit

SSM2141

MAINTAINING COMMON-MODE REJECTION

In order to achieve the full common-mode rejection capability of the SSM2141, the source impedance must be carefully controlled. Slight imbalances of the source resistance will result in a degradation of DC CMR—even a 5 Ω imbalance will degrade CMR by 20 dB. Also, the matching of the reactive source impedance must be matched in order to preserve the CMRR over frequency.

Figure 1. Precision Difference Amplifier. Rejects Common-Mode Signal = $\frac{[E_1+E_2]}{2}$ by 100 dB

Figure 2. Precision Unity Gain Inverting Amplifier

Figure 3. Precision Summing Amplifier

Figure 4. Precision Summing Amplifier with Gain

Figure 5. Suitable Instrumentation Amplifier Requirements can be Addressed by Using an Input Stage Consisting of A_1 , A_2 , R_1 and R_2

070606-A

OUTLINE DIMENSIONS

Dimensions shown in millimeters and (inches)

SSM2141

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
SSM2141PZ	$-40^{\circ}C \le T_A \le +85^{\circ}C$	8-Lead PDIP	N-8
SSM2141SZ	$-40^{\circ}C \le T_A \le +85^{\circ}C$	8-Lead SOIC_N	R-8
SSM2141SZ-REEL	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$	8-Lead SOIC_N	R-8

 1 Z = RoHS Compliant Part.

REVISION HISTORY

6/11-Rev. B to Rev. C

Updated Outline Dimensions	7
Changes to Ordering Guide	8

5/91—Rev. A to Rev. B

©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10008-0-6/11(C)

www.analog.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: <u>SSM2141SZ-REEL</u> <u>SSM2141PZ</u> <u>SSM2141SZ</u>