ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC}....-0.5V to +5.0V Voltage at LOUT+, LOUT-,

OUT+, OUT-..... $(V_{CC} - 1.65V)$ to $(V_{CC} + 0.5V)$ Current Out of LOUT+, LOUT-, OUT+, OUT-..... $\pm 22mA$ Voltage at SEL, LIN+, LIN-, IN+, IN-....-0.5V to $(V_{CC} + 0.5V)$ Differential Voltage at (LIN+ - LIN-), (IN+ - IN-).... $\pm 2V$

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
16 QSOP (derate 8.3mW/°C above +70°C)	667mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	55°C to 150°C
Lead Soldering Temperature (soldering, 10s)	+300°C

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	MAX3750 (Note 1)		57	84	mA
	MAX3751 (Note 1)		54	78	
Data Input Voltage Swing	Total differential signal, peak-to-peak	200		2200	mV
Differential Input Impedance		132	150	172	Ω
Output Voltage at LOUT± and OUT±	150Ω load, total differential signal, peak-to-peak	1000		1600	mV
TTL Input Current		-10		10	μA
TTL Input Low		-0.3		0.8	V
TTL Input High		2		V _{CC} + 0.3	V

Note 1: Output currents included.

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Data Rate	MAX3750		2.125		Gbps	
	MAX3751		1.0625			
Data Input Voltage Swing	Total differential signal, peak-to-peak	200		2200	mV	
Output Edge Speed IN± →OUT±, IN± →LOUT±	MAX3750			160	ps	
	MAX3751			325		
Deterministic Jitter IN± →OUT±, IN± →LOUT±, LIN± →OUT±	MAX3750, peak-to-peak (Notes 2, 4)		10			
	MAX3751, peak-to-peak (Notes 3, 4)		10		ps	
Random Jitter IN± →OUT±, IN± →LOUT±, LIN± →OUT±	MAX3750, RMS (Note 2)			1.6	D 0	
	MAX3751, RMS (Note 3)			1.6	μs	
Prop Delay IN± →OUT±, IN± →LOUT±, LIN± →OUT±	MAX3750		300		ps	
	MAX3751		442			

Note 2: Input t_R and $t_F < 150$ ps, 20% to 80%.

Note 3: Input $t_{\rm R}$ and $t_{\rm F} < 300$ ps, 20% to 80%.

Note 4: Deterministic jitter is measured with 20 bits of the k28.5 pattern (00111110101100000101).

Typical Operating Characteristics

(V_{CC} = 3.3V, T_A = $+25^{\circ}$ C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1, 4, 5, 8, 16	GND	Electrical Ground
2	LOUT+	Noninverted Port Data Output
3	LOUT-	Inverted Port Data Output
6	OUT+	Noninverted Data Output
7	OUT-	Inverted Data Output
9	SEL	Select Input:SEL = Low: $IN \pm \rightarrow OUT \pm$ SEL = High: $LIN \pm \rightarrow OUT \pm$
10	LIN-	Inverted Port Data Input
11	LIN+	Noninverted Port Data Input
12, 13	Vcc	Positive Supply Voltage
14	IN-	Inverted Data Input
15	IN+	Noninverted Data Input

MAX3750/MAX3751

Circuit Description

A simplified block diagram of the single port bypass is shown in Figure 1. IN+ and IN- drive an input buffer (INBUFF) with 150 Ω of internal differential input termination. INBUFF drives an output buffer (LOBUFF) and an input to a multiplexer (MUX).

A low TTL input at SEL selects the signal path of INBUFF through MUX to the output buffer (OUTBUFF). When SEL has a high TTL logic level present the signal path is into LIBUFF, through MUX, to OUTBUFF.

Low-Frequency Cutoff

The low-frequency cutoff is determined by the input resistance and the coupling capacitor as illustrated by the following equation:

$f_{C} = 1 / (2\pi RC)$

In a typical system where R = 150 Ω and C = 100nF, resulting in fC = 10kHz.

Layout Techniques

The MAX3750/MAX3751 are high-frequency products. The performance of the circuit is largely dependent upon layout of the circuit board. Use a multilayer circuit board with dedicated ground and V_{CC} planes. Power supplies should be capacitively bypassed to the ground plane with surface-mount capacitors placed near the power-supply pins.

Figure 1. MAX3750/MAX3751 Block Diagram

Figure 2. LOUT/OUT Pins Internal Input/Output Schematic

Figure 3. SEL Pin Internal Input/Output Schematic

Figure 4. LIN/IN Pins Internal Input/Output Schematic

Figure 5. 50Ω Termination Applications

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Printed USA

_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2004 Maxim Integrated Products

6

is a registered trademark of Maxim Integrated Products.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated: MAX3750CEE+ MAX3750CEE+T