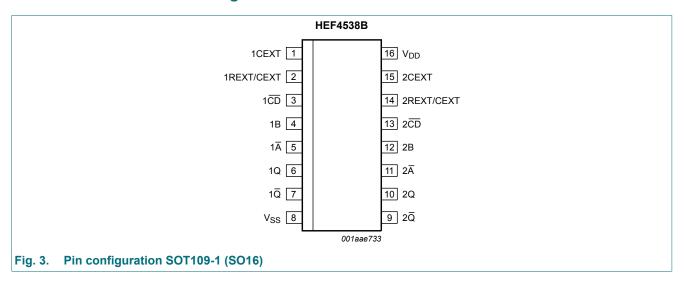

Dual precision monostable multivibrator

4. Functional diagram



Dual precision monostable multivibrator

5. Pinning information

5.1. Pinning

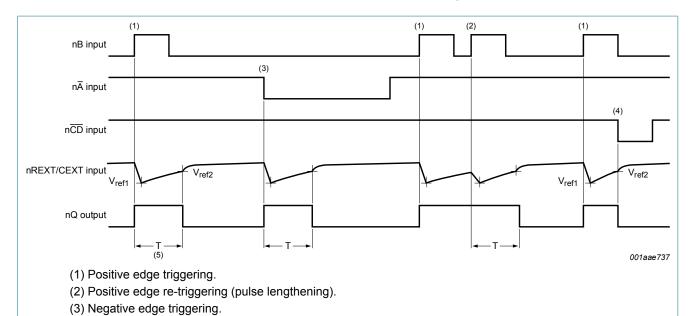
5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
1CEXT, 2CEXT	1, 15	external capacitor connection (always connected to ground)
1REXT/CEXT, 2REXT/CEXT	2, 14	external capacitor/resistor connection
1CD, 2CD	3, 13	direct reset input (active LOW)
1B, 2B	4, 12	input (LOW-to-HIGH triggered)
1 A , 2 A	5, 11	input (HIGH-to-LOW triggered)
1Q, 2Q	6, 10	output
1 Q , 2 Q	7, 9	complementary output (active LOW)
V _{SS}	8	ground supply voltage
V_{DD}	16	supply voltage

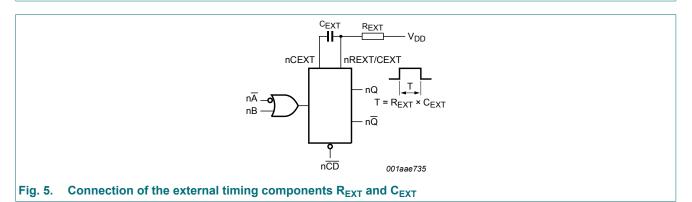
6. Functional description

Table 3. Function table


 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care; \ \uparrow = positive-going \ transition; \ \downarrow = negative-going \ transition;$

 Π = one HIGH level output pulse, with the pulse width determined by C_{EXT} and R_{EXT} ;

 \coprod = one LOW level output pulse, with the pulse width determined by C_{EXT} and R_{EXT} .


Inputs		Outputs		
nĀ	nB	nCD	nQ	nQ
\	L	Н	Л	丁
Н	↑	Н	Л	T.
X	Х	L	L	Н

Dual precision monostable multivibrator

- (4) Reset (pulse shortening).
 - (5) $T = R_{EXT} \times C_{EXT}$.

Fig. 4. **Timing diagram**

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 \text{ V}$ (ground)

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+18	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{DD} + 0.5 \text{ V}$	-	±10	mA
VI	input voltage		-0.5	V _{DD} + 0.5	V
I _{OK}	output clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{DD} + 0.5 \text{ V}$	-	±10	mA
I _{I/O}	input/output current		-	±10	mA
I _{DD}	supply current		-	50	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature		-40	+125	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C [1]	-	500	mW
Р	power dissipation	per output	-	100	mW

[1] For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 °C.

HEF4538B

Product data sheet

4/14

Dual precision monostable multivibrator

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		3	-	15	V
VI	input voltage		0	-	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{DD} = 5 V	-	-	3.75	μs/V
		V _{DD} = 10 V	-	-	0.5	μs/V
		V _{DD} = 15 V	-	-	0.08	μs/V

9. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0 \ V$; $V_I = V_{SS}$ or V_{DD} unless otherwise specified.

Symbol	Parameter	Conditions	V _{DD}	T _{amb} =	-40 °C	T _{amb} =	25 °C	T _{amb} =	85 °C	T _{amb} =	125 °C	Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V _{IH}	HIGH-level	I _O < 1 μΑ	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
V_{IL}	LOW-level	I _O < 1 μA	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V _{OH}	HIGH-level	I _O < 1 μΑ	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
	output voltage		10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V_{OL}	LOW-level output voltage	I _O < 1 μΑ	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
I _{OH}	HIGH-level	V _O = 2.5 V	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mA
	output current	V _O = 4.6 V	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mA
		V _O = 9.5 V	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mA
		V _O = 13.5 V	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mA
I _{OL}	LOW-level	V _O = 0.4 V	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
	output current	V _O = 0.5 V	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		V _O = 1.5 V	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
I _I	input leakage	nĀ, nB	15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μA
	current	nREXT/CEXT	15 V	-	±0.3	-	±0.1	-	±1.0	-	±1.0	μΑ
Cı	input capacitance		-	-	-	-	7.5	-	-	-	-	pF

5/14

Dual precision monostable multivibrator

Table 7. Typical static characteristics

 $V_{SS} = 0 \ V; \ V_I = V_{SS} \ or \ V_{DD}; \ T_{amb} = +25 \ ^{\circ}C.$

Symbol	Parameter	Conditions	V_{DD}	Тур	Unit
I _{DD}	supply current	active state	5 V [1]	55	μΑ
			10 V	150	μA
			15 V	220	μA
Cı	input capacitance	nREXT/CEXT	-	15	pF

^[1] Only one monostable is switching: for the specified current during the output pulse (output nQ is HIGH).

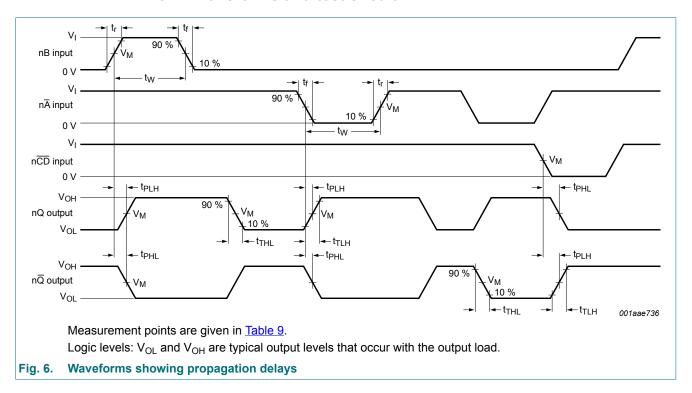
10. Dynamic characteristics

Table 8. Dynamic characteristics

 V_{SS} = 0 V; T_{amb} = 25 °C; for test circuit see Fig. 11.

Symbol	Parameter	Conditions	V _{DD}	Extrapolation formula[1]	Min	Тур	Max	Unit
t _{PHL}	HIGH to LOW	$n\overline{A}$, nB to $n\overline{Q}$; see Fig. 6	5 V	193 ns + (0.55 ns/pF) C _L	-	220	440	ns
	propagation delay		10 V	74 ns + (0.23 ns/pF) C _L	-	85	190	ns
	delay		15 V	52 ns + (0.16 ns/pF) C _L	-	60	120	ns
		nCD to nQ; see Fig. 6	5 V	98 ns + (0.55 ns/pF) C _L	-	125	250	ns
			10 V	44 ns + (0.23 ns/pF) C _L	-	55	110	ns
			15 V	32 ns + (0.16 ns/pF) C _L	-	40	80	ns
t _{PLH}	LOW to HIGH	nA, nB to nQ; see Fig. 6	5 V	173 ns + (0.55 ns/pF) C _L	-	200	460	ns
	propagation delay		10 V	79 ns + (0.23 ns/pF) C _L	-	90	180	ns
	delay		15 V	52 ns + (0.16 ns/pF) C _L	-	60	120	ns
		nCD to nQ; see Fig. 6	5 V	98 ns + (0.55 ns/pF) C _L	-	125	250	ns
			10 V	44 ns + (0.23 ns/pF) C _L	-	55	110	ns
			15 V	32 ns + (0.16 ns/pF) C _L	-	40	80	ns
t _t	transition time	see Fig. 6	5 V [2]	10 ns + (1.00 ns/pF) C _L	-	60	120	ns
			10 V	9 ns + (0.42 ns/pF) C _L	-	30	60	ns
			15 V	6 ns + (0.28 ns/pF) C _L	-	20	40	ns
t _{rec}	recovery time	nCD to nA, nB; see Fig. 7	5 V		-	20	40	ns
			10 V		-	10	20	ns
			15 V		-	5	10	ns
t _{rtrig}	retrigger time	nQ , $n\overline{Q}$ to $n\overline{A}$, nB ;	5 V		0	-	-	ns
		see Fig. 7	10 V		0	-	-	ns
			15 V		0	-	-	ns

Dual precision monostable multivibrator


Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula[1]	Min	Тур	Max	Unit
t _W	pulse width	nA LOW; minimum width;	5 V		90	45	-	ns
		see Fig. 7	10 V		30	15	-	ns
			15 V		24	12	-	ns
		nB HIGH;minimum width;	5 V		50	25	-	ns
		see Fig. 7	10 V		24	12	-	ns
			15 V		20	10	-	ns
		nCD LOW; minimum width;	5 V		55	25	-	ns
		see Fig. 7	10 V		25	12	-	ns
			15 V		20	10	-	ns
		nQ or $n\overline{Q}$; R_{EXT} = 100 kΩ;	5 V		218	230	242	μs
		C _{EXT} =2.0 nF; see Fig. 7	10 V		213	224	235	μs
			15 V		211	223	234	μs
		nQ or $n\overline{Q}$; R_{EXT} = 100 kΩ;	5 V		10.3	10.8	11.3	ms
		$C_{EXT} = 0.1 \mu F$; see Fig. 7	10 V		10.2	10.7	11.2	ms
			15 V		10.1	10.6	11.1	ms
		\overline{nQ} or \overline{nQ} ; R_{EXT} = 100 kΩ;	5 V		1.01	1.09	1.11	s
		$C_{EXT} = 10 \mu F$; see Fig. 7	10 V		0.99	1.04	1.09	s
			15 V		0.99	1.04	1.09	s
Δt_W	pulse width	nQ or nQ variation over	5 V		-	±0.2	-	%
	variation	temperature range; see Fig. 8	10 V		-	±0.2	-	%
		300 <u>1 lg. 0</u>	15 V		-	±0.2	-	%
		nQ or nQ variation over V _{DD} voltage range 5 V to 15 V; see Fig. 9			-	±1.5	-	%
		nQ or nQ variation	5 V		-	±1	-	%
		between monostables in the same device;	10 V		-	±1	-	%
		R_{EXT} = 100 kΩ; C_{EXT} = 2 nF to 10 μF	15 V		-	±1	-	%
R _{EXT}	external timing resistor				5	-	[3]	kΩ
C _{EXT}	external timing capacitor				2000	-	no Iimits	pF

The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_L in pF).

 t_t is the same as t_{THL} and t_{TLH} . The maximum permissible resistance R_{EXT} , which holds the specified accuracy of t_W (nQ, n \overline{Q} output), depends on the leakage current of the capacitor C_{EXT} and the leakage current of the HEF4538B.

Dual precision monostable multivibrator

10.1. Waveforms and test circuit

Table 9. Measurement points

Supply voltage	Input	Output
V_{DD}	V _M	V _M
5 V to 15 V	0.5V _{DD}	0.5V _{DD}

Dual precision monostable multivibrator

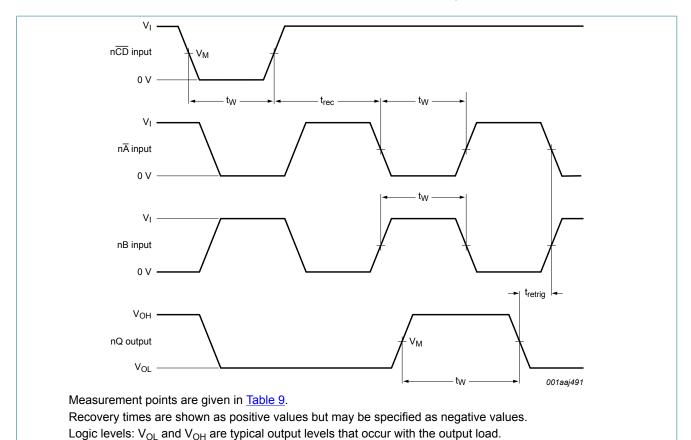
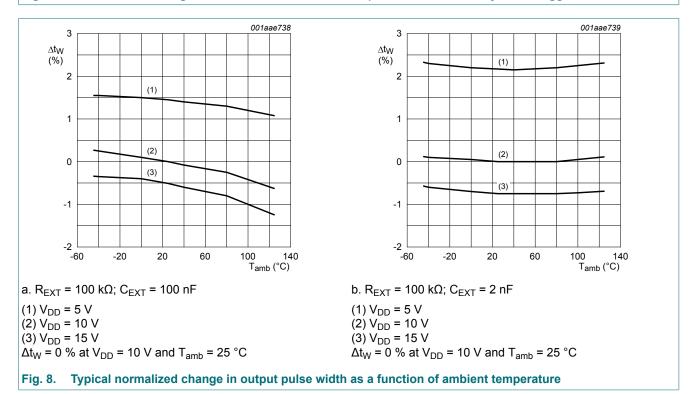
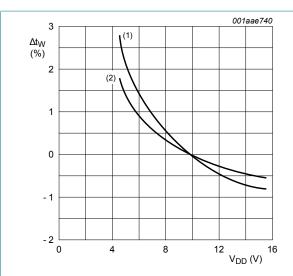
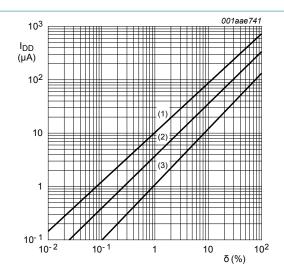




Fig. 7. Waveforms showing minimum nCD, nA, nB, and nQ pulse widths, recovery and retrigger times


Dual precision monostable multivibrator

 T_{amb} = 25 °C; Δt_W = 0 % at V_{DD} = 10 V; R_{EXT} = 100 k Ω

(1) $C_{EXT} = 2 nF$

(2) $C_{EXT} = 100 \text{ nF}$

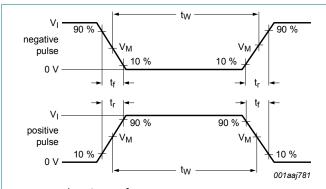
 R_{EXT} = 100 k Ω ; C_{EXT} = 100 nF; C_L = 50 pF; one monostable multivibrator switching only

 $(1) V_{DD} = 15 V$

(2) $V_{DD} = 10 \text{ V}$

(3) $V_{DD} = 5 V$

Typical normalized change in output pulse width as a function of the supply voltage


Fig. 10. Total supply current as a function of the output duty factor

 V_{DD}

b. Test circuit

V٥

001aag182

a. Input waveforms

Test data is given in Table 10.

Definitions for test circuit:

DUT = Device Under Test.

 C_L = load capacitance including jig and probe capacitance.

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

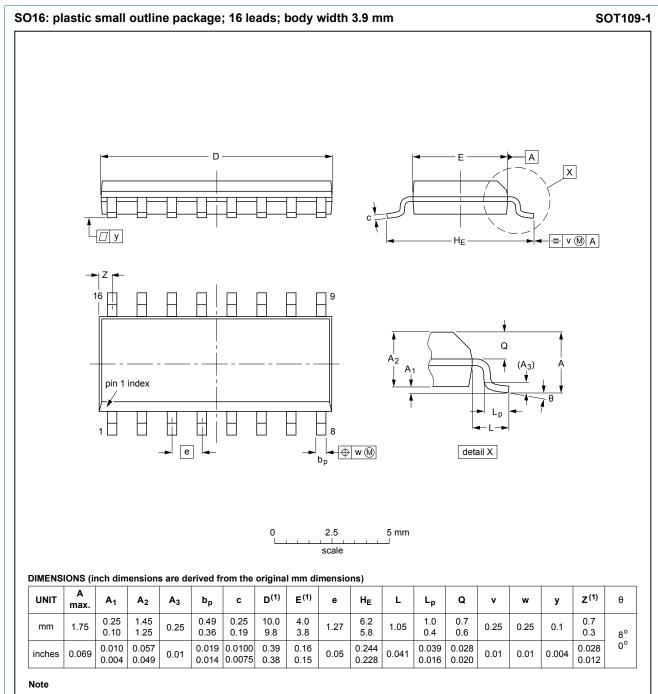

Fig. 11. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Input	Load	
V_{DD}	V_l t_r, t_f		CL
5 V to 15 V	V _{SS} or V _{DD}	≤ 20 ns	50 pF

Dual precision monostable multivibrator

11. Package outline

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012			99-12-27 03-02-19	

Fig. 12. Package outline SOT109-1 (SO16)

Dual precision monostable multivibrator

12. Abbreviations

Table 11. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test

13. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4538B v.11	20181019	Product data sheet	-	HEF4538B v.10
Modifications:	Nexperia.	his data sheet has been redes		. 0
HEF4538B v.10	20160401	Product data sheet	-	HEF4538B v.9
Modifications:	Type number I	HEF4538BP (SOT38-4) remov	ed.	
HEF4538B v.9	20131210	Product data sheet	-	HEF4538B v.8
Modifications:	• Fig. 8 and Fig.	9 updated to show output puls	se width over full tem	nperature range.
HEF4538B v.8	20111116	Product data sheet	-	HEF4538B v.7
HEF4538B v.7	20110217	Product data sheet	-	HEF4538B v.6
HEF4538B v.6	20091102	Product data sheet	-	HEF4538B v.5
HEF4538B v.5	20090304	Product data sheet	-	HEF4538B v.4
HEF4538B v.4	20090206	Product data sheet	-	HEF4538B_CNV v.3
HEF4538B_CNV v.3	19950101	Product specification	-	HEF4538B_CNV v.2
HEF4538B_CNV v.2	19950101	Product specification	-	-

injury, dea

Data sheet status

14. Legal information

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

Dual precision monostable multivibrator

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

HEF4538B

All information provided in this document is subject to legal disclaimers

© Nexperia B.V. 2018. All rights reserved

Dual precision monostable multivibrator

Contents

1.	General description	1
2.	Features and benefits	1
3.	Ordering information	. 1
4.	Functional diagram	.2
5.	Pinning information	3
5.1	. Pinning	. 3
5.2	Pin description	3
6.	Functional description	3
7.	Limiting values	4
8.	Recommended operating conditions	. 5
	Recommended operating conditions Static characteristics	
9.		.5
9. 10.	Static characteristics	.5 6
9. 10 . 10.	Static characteristics Dynamic characteristics 1. Waveforms and test circuit	. 5 6
9. 10. 10. 11.	Static characteristics Dynamic characteristics	.5 6 8
9. 10. 10. 11. 12.	Static characteristics	.5 6 8 11
9. 10. 10. 11. 12.	Static characteristics	.5 8 11

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 19 October 2018

[©] Nexperia B.V. 2018. All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

HEF4538BT,652 HEF4538BT,653