

Figure 2. NB4N507A Logic Diagram

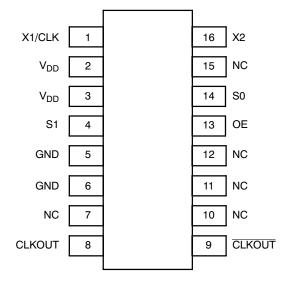


Figure 3. 16-Pin SOIC (Top View)

Table 1. CLOCK MULTIPLIER SELECT TABLE

S1	S0	Multiplier
L	L	9.72X*
L	М	10X
L	Н	12X
М	L	6.25X
M	М	8X
M	Н	5X
Н	L	NA
Н	М	3X
Н	Н	4X

^{*}Example Crystal = 16 MHz, f_{CLKOUT} = 155.52 MHz

Table 2. OE, OUTPUT ENABLE FUNCTION

OE	Function
0	Disable
1	Enable

L = GND

 $H = V_{DD}$ M = OPEN

Table 3. PIN DESCRIPTION

Pin # SOIC-16	Name	I/O	Description
1	X1/CLK	Crystal Input	Crystal or Clock Input
2,3	V_{DD}	Power Supply	Positive Supply Voltage (3.0 V to 5.5 V)
4	S1	Tri-Level Input	Multiplier Select Pin; When Left Open, Defaults to V _{DD} ÷ 2
5,6	GND	Power Supply	Negative Supply Voltage
7,10,11,12, 15	NC	No Connect	Pin 10 does not require an external resistor. The NB4N507A will function with or without a resistor on Pin 10.
8	CLKOUT	PECL Output*	Non-inverted differential PECL clock output.
9	CLKOUT	PECL Output*	Inverted differential PECL clock output.
13	OE	(LV)CMOS/(LV)TTL Input	Output Enable for the CLKOUT/CLKOUT Outputs. Outputs are enabled when HIGH or when left open; OE pin has internal pullup resistor. Disables both outputs when LOW. CLKOUT goes LOW, CLKOUT goes HIGH.
14	S0	Tri-Level Input	Multiplier Select Pin; When Left Open, Defaults to V _{DD} ÷ 2
16	X2	Crystal Input	Crystal Input

^{*}The PECL Outputs are 15 mA open collector and must be DC loaded and AC terminated. See Figures 4, 5 and 6.

Table 4. ATTRIBUTES

Charac	Value					
ESD Protection	> 1 kV > 150 V > 1 kV					
Moisture Sensitivity, Indefinite T	Level 1					
Flammability Rating	UL 94 V-0 @ 0.125 in					
Transistor Count	1145 Devices					
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test						

^{1.} For additional information, see Application Note AND8003/D.

Table 5. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		6	V
VI	Input Voltage			GND - $0.5 \le V_{I} \le V_{DD} + 0.5$	٧
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-16	100 60	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	(Note 2)	SOIC-16	33 to 36	°C/W
T _{sol}	Wave Solder Pb Pb-Free	< 3 sec @ 248°C < 3 sec @ 260°C		265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

^{2.} JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

Table 6. DC CHARACTERISTICS ($V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$, GND = 0 V, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ (Note 3))

Symbol	Characteristic		Min	Тур	Max	Unit
I _{DD}	Power Supply Current (does not include output load resistor current)	$V_{DD} = 5 V$ $V_{DD} = 3.3 V$	15 10	27 23	35 30	mA mA
V _{OH}	Output HIGH Voltage (Notes 5 & 6)	V _{DD} = 5 V V _{DD} = 3.3 V	3.95 2.57	4.05 2.67	4.15 2.77	V
V _{OL}	Output LOW Voltage (Notes 5 & 6)	$V_{DD} = 5 V$ $V_{DD} = 3.3 V$	3.12 1.90	3.20 2.00	3.30 2.10	V
V _{IH}	Input HIGH Voltage (Note 4)	S0, S1, X1/CLK OE	V _{DD} - 0.5 2.0		V _{DD}	V
V _{IL}	Input LOW Voltage,(Note 4)	S0, S1, X1/CLK OE	0		0.5 0.8	V
C _x	Internal Crystal Capacitance, X1 & X2			0		pF
C _{in}	Input Capacitance, S0, S1, OE			5.0		pF

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 3. PECL output parameters vary 1:1 with V_{DD} .
- 4. So and S1 default to $V_{DD} \div 2$ when left open.

Table 7. AC CHARACTERISTICS ($V_{DD} = 3.0 \text{ V}$ to 5.5 V, GND = 0 V, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ (Note 5))

Symbol	Characteristic	Min	Тур	Max	Unit
f _{Xtal}	Crystal Input Frequency (Note 7)	10		27	MHz
f _{CLK}	Input Clock Frequency (Note 8)	5		52	MHz
f _{OUT}	Output Frequency Range	50		200	MHz
V _{out pk-pk}	Output Amplitude	550	680		mV
DC	Clock Output Duty Cycle (Note 8)	48		52	%
PLL _{BW}	PLL Bandwidth (Note 8)	10			kHz
t _{jitter (pd)}	Period Jitter (RMS, 1σ, 10,000 Cycles)			10	ps
t _{jitter (pd)}	Period Jitter (Peak-to-Peak, 10,000 Cycles)			± 20	ps
tr/tf	Output Rise and Fall Times (Note 8)	50	270	500	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 5. PECL outputs loaded with external resistors for proper operation (see Figures 4, 5 and 6).
- 6. V_{OH} and \dot{V}_{OL} can be set by the external resistors, which can be modified.
- 7. The crystal should be fundamental mode, parallel resonant. Do not use third overtone. For exact tuning when using a crystal, capacitors should be connected from pins X1 to ground and X2 to ground. The value of these capacitors is given by the following equation, where CL is the specified crystal load capacitance: Crystal caps (pF) = (CL-5) x 2. So, for a crystal with 16 pF load capacitance, use two 22 pF caps, including board trace capacitance (see Figure 7).
- 8. Guaranteed by design and characterization.

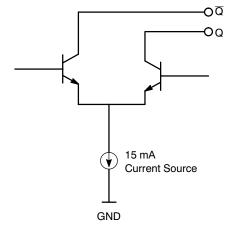


Figure 4. Output Structure

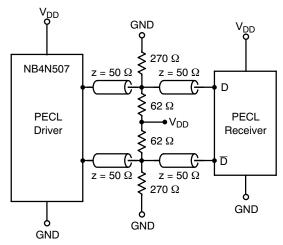


Figure 5. Evaluation Test Load for the NB4N507A

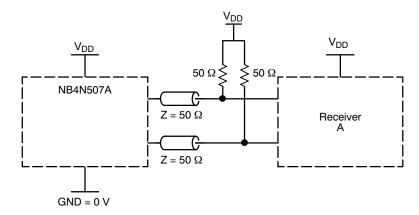


Figure 6. Alternate Termination for Output Driver and Device Evaluation

APPLICATIONS INFORMATION

High Frequency Differential PECL Oscillators: The NB4N507A, along with a low frequency fundamental mode crystal, can build a high frequency differential PECL output oscillator. For example, a 10 MHz crystal connected to the NB4N507A with the 12X output selected (S1 = 0, S0 = 1) produces a 120 MHz PECL output clock.

Crystal Oscillator Input Interface

The NB4N507A features an integrated crystal oscillator to minimize system implementation costs. The oscillator circuit is a parallel resonant circuit and thus, for optimum performance, a parallel resonant crystal should be used.

As the oscillator is somewhat sensitive to loading on its inputs, the user is advised to mount the crystal as close to the NB4N507A as possible to avoid any board level parasitics. Surface mount crystals are recommended, but not required.

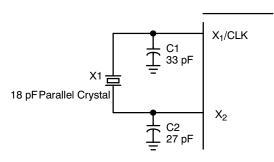


Figure 7. Crystal Input Interface

High Frequency VCXO: The bandwidth of the PLL is guaranteed to be greater than 10 kHz. This means that the PLL will track any modulation on the input with a frequency of less than 10 kHz. By using this property, a low frequency VCXO can be built. The output can then be multiplied by the NB4N507A, thereby producing a high frequency VCXO.

High Frequency TCXO: Extending the previous application, an inexpensive, low frequency TCXO can be built and the output frequency can be multiplied using the NB4N507A. Since the output of the chip is phase-locked to the input, the NB4N507A has no temperature dependence, and the temperature coefficient of the combined system is the same as that of the low frequency TCXO.

Decoupling and External Components

The NB4N507A requires a 0.01 µF decoupling capacitor to be connected between V_{DD} and GND on pins 2 and 5. It must be connected close to the NB4N507A. Other V_{DD} and GND connections should be connected to those pins, or to the V_{DD} and GND planes on the board. Another four resistors are needed for the PECL outputs as shown in Figure 4. Suggested values of these resistors are shown, but they can be varied to change the differential pair output swing, and the DC level.

ORDERING INFORMATION

Device	Package	Shipping [†]
NB4N507AD	SOIC-16	48 Units / Rail
NB4N507ADG	SOIC-16 (Pb-Free)	48 Units / Rail
NB4N507ADR2	SOIC-16	2500 / Tape & Reel
NB4N507ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

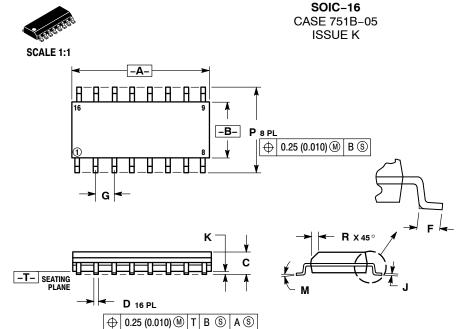
AN1405/D **ECL Clock Distribution Techniques** AN1406/D Designing with PECL (ECL at +5.0 V) ECLinPS™ I/O SPiCE Modeling Kit AN1503/D AN1504/D Metastability and the ECLinPS Family AN1568/D Interfacing Between LVDS and ECL

AN1672/D The ECL Translator Guide

AND8090/D - AC Characteristics of ECL Devices

Resource Reference of Application Notes

AND8001/D - Odd Number Counters Design


AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
7	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE	2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	CATHODE CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION	STYLE 3: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #3 BASE, #3 EMITTER, #3 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #3	STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	COLLECTOR, DYE #1 COLLECTOR, #1 COLLECTOR, #2 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #4 COLLECTOR, #4 COLLECTOR, #4 EMITTER, #4 BASE, #4 EMITTER, #3 BASE, #2 EMITTER, #2 BASE, #1		FOOTPRINT ×
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1		^{3X} 40 →
STYLE 5: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	DRAIN, DYE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #3 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #2 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1 SOURCE, #1	2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE	STYLE 7: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	SOURCE N-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT SOURCE N-CH	n n n n n n	16X 0.58	<u> </u>	16x 1.12
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NB4N507AD NB4N507ADG NB4N507ADR2 NB4N507ADR2G