

Block Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse VDD protection is not included. For reverse voltage protection, a 100Ω resistor in series with VDD is recommended.

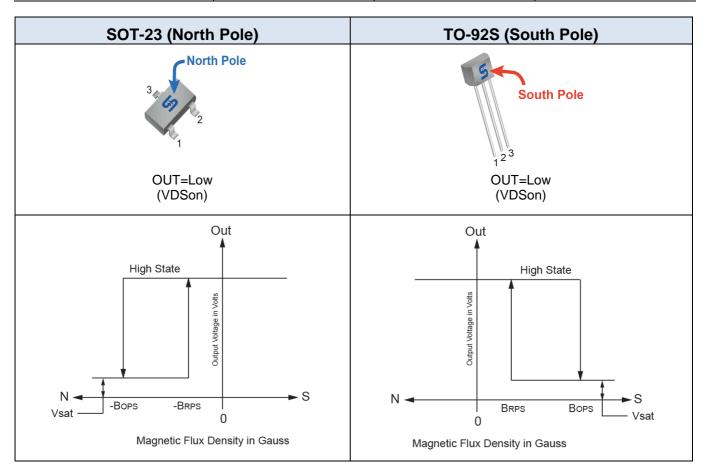
Typical Application Circuit

Electrical Specifications (DC Operating Parameters : T_A=+25°C,V_{CC}=12V)

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Operating	3.0		24	V
Supply Current	B <b<sub>OP</b<sub>		2.5	5.0	mA
Output Low Voltage	$I_{OUT} = 20$ mA, B>B _{OP}			500	mV
Output Leakage Current	I _{OFF} B <b<sub>RP, V_{OUT} = 20V</b<sub>			10	uA
Output Rise Time	$R_L=1k\Omega$, $C_L=20pF$		0.04		uS
Output Fall Time	$R_L=1k\Omega$; $C_L=20pF$		0.18		uS

Magnetic Specifications

DC Operating Parameters: TA=+25°C, V_{DD}=12V


Parameter	Symbol	Test condition	Min	Тур	Max	Unit
Operate Point	B _{OP}		45		100	Gauss
Release Point	B_RP		25		70	Gauss
Hysteresis	B _{HYS}			20		Gauss

Note: 1G (Gauss) = 0.1mT (millitesta)

Output Behavior versus Magnetic Pole

DC Operating Parameters Ta = -40 to 125° C, $V_{DD} = 3.0 \sim 24$ V

Parameter	Test condition	OUT(TO-92S)	OUT(SOT-23)		
South pole	B>Bop[(100)~(45)]	Low	Open(Pull-up Voltage)		
Null or weak magnetic field	-Brp ~ +Brp	Open(Pull-up Voltage)	Open(Pull-up Voltage)		
North pole	B< -Bop(-25~-70)	Open(Pull-up Voltage)	Low		

Characteristic Performance

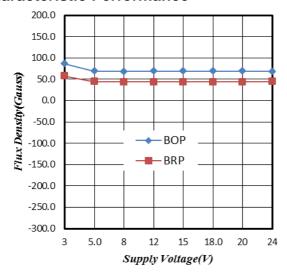


Figure 1. Supply Voltage vs. Flux Density

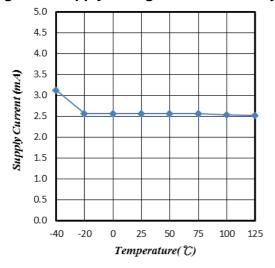


Figure 3. Supply Current vs. Temperature

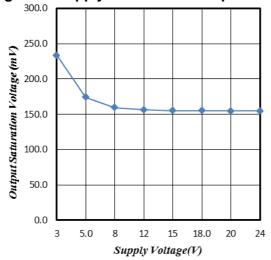


Figure 5. Output Saturation Voltage vs. Supply Voltage

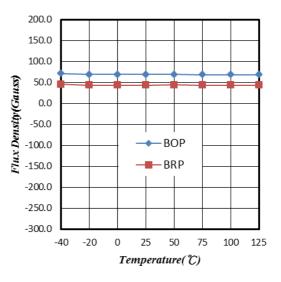


Figure 2. Temperature vs. Flux Density

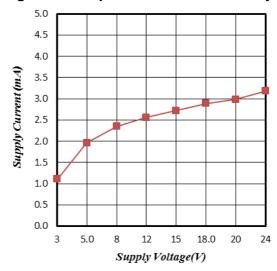


Figure 4. Supply Current vs. Supply Voltage

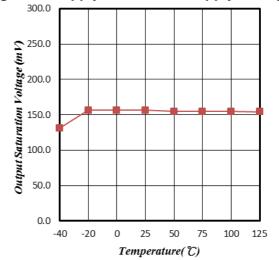


Figure 6. Output Saturation Voltage vs. Temperature

Characteristic Performance

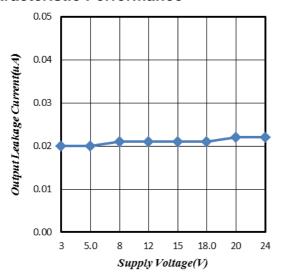


Figure 7. Output Leakage Current vs.
Supply Voltage

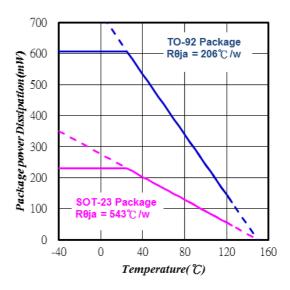
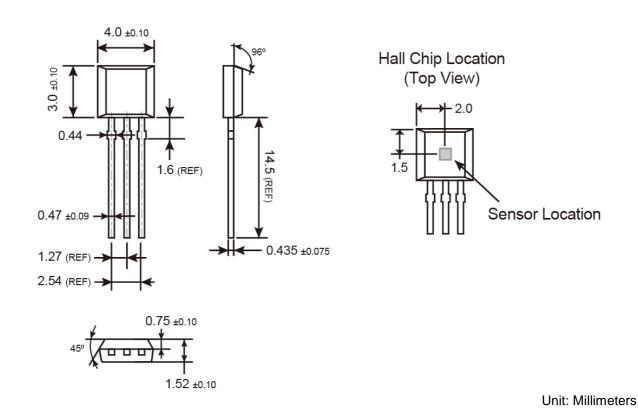
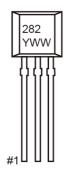



Figure 8. Power Dissipation vs. Temperature



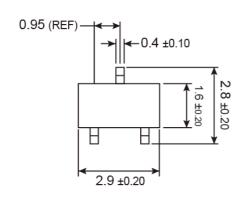
TO-92S Mechanical Drawing

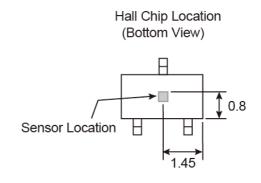
Marking Diagram

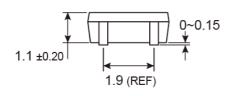
282 = Device Code

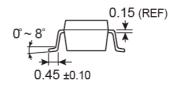
Y = Year Code (3=2013, 4=2014....)

6/8


WW = Week Code (01~52)


Version: B13





SOT-23 Mechanical Drawing

Unit: Millimeters

Marking Diagram

282 = Device Code

/W = Week Code Table

= vveek	Code	i abie	;										
week	1	2	3	4	5	6	7	8	9	10	11	12	13
code	OA	OB	OC	OD	OE	OF	OG	OH	OI	OJ	OK	OL	OM
week	14	15	16	17	18	19	20	21	22	23	24	25	26
code	ON	00	OP	OQ	OR	os	OT	OU	OV	OW	OX	OY	ΟZ
week	27	28	29	30	31	32	33	34	35	36	37	38	39
code	PA	PB	PC	PD	PE	PF	PG	PH	PI	PJ	PK	PL	PM
week	40	41	42	43	44	45	46	47	48	49	50	51	52
code	PNI	PΩ	PP	PΩ	PR	Pς	PT	PH	P\/	D/Λ/	PΥ	PΥ	P7

TSH282

Sensitivity Unipolar Hall Effect Switch

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Taiwan Semiconductor:

TSH282CT TSH282CX TSH282CX RFG TSH282CT B0G