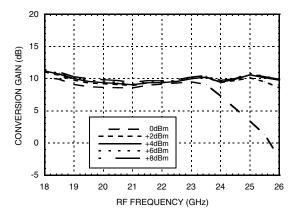
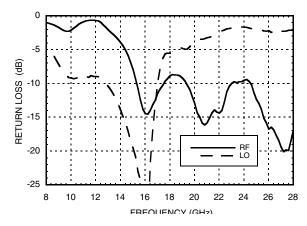

GaAs MMIC I/Q DOWNCONVERTER 21 - 25 GHz

Data Taken As IRM With External IF Hybrid


Conversion Gain vs. Temperature

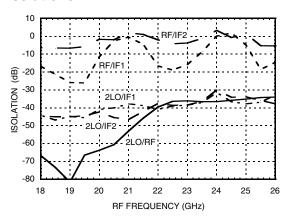

Image Rejection vs. Temperature

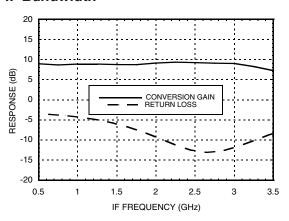

Conversion Gain vs. LO Drive


Return Loss

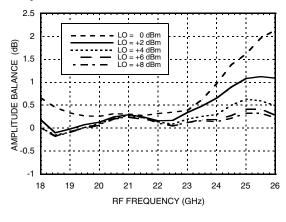
Input P1dB vs. Temperature

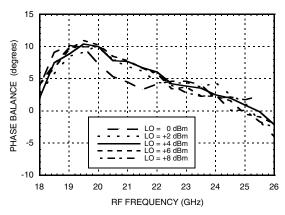
Input IP3 vs. LO Drive

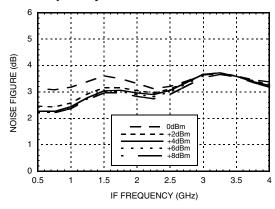


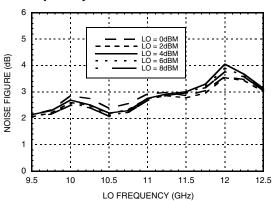

GaAs MMIC I/Q DOWNCONVERTER 21 - 25 GHz

Quadrature Channel Data Taken Without IF Hybrid


Isolations


IF Bandwidth*


Amplitude Balance vs. LO Drive


Phase Balance vs. LO Drive

Noise Figure vs. LO Drive, LO Frequency = 10.3 GHz

Noise Figure vs. LO Drive, IF Frequency = 100 MHz

^{*} Conversion gain data taken with external IF hybrid, LO frequency fixed at 10.3 GHz and RF varied

v08.0514

GaAs MMIC I/Q DOWNCONVERTER 21 - 25 GHz

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	31	19	25	38
1	20	32	0	31	48
2	xx	xx	72	62	43
3	xx	xx	xx	xx	81
4	xx	xx	xx	xx	xx

RF = 18 GHz @ -20 dBm LO = 8.5 GHz @ +4 dBm Data taken without IF hybrid

All values in dBc below IF power level (1RF -2LO = 1 GHz)

Absolute Maximum Ratings

RF	+2 dBm
LO Drive	+ 13 dBm
Vdd	5.5V
Channel Temperature	175°C
Continuous Pdiss (T=85°C) (derate 9.56 mW/°C above 85°C)	860 mW
Thermal Resistance (R _{TH}) (channel to package bottom)	104.6 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 1B

v08.0514

GaAs MMIC I/Q DOWNCONVERTER 21 - 25 GHz

Outline Drawing

BOTTOM VIEW 0.197±.005 PIN 32 .014 0.36 .009 0.24 .013 [0.32] [5.00±.13] 32 25 RĒF PIN 1 \Box 24 1 \Box H571 0.197±.005 [5.00±.13] \Box \square XXXX \Box \Box \Box 8 17 16 .138 [3.50] **EXPOSED** SQUARE LOT NUMBER **GROUND** 0.044 [1.12] .161 [4.10] PADDLE MAX SEATING PLANE -C-

NOTES:

- PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30 80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKLE
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

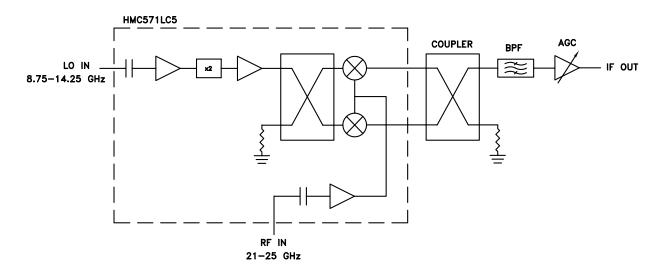
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC571LC5	Alumina, White	Gold over Nickel	MSL3 [1]	H571 XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

v08.0514

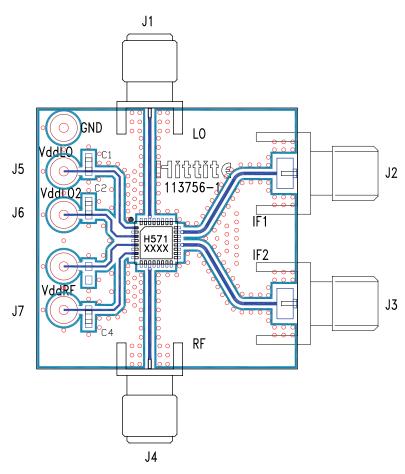


GaAs MMIC I/Q DOWNCONVERTER 21 - 25 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	VddLO	Power supply for first stage of LO amplifier.	VddLO ○ <u>↓</u> <u>↓</u>
2, 4 - 6, 8, 9, 12 - 18, 21, 22, 25 - 28, 31, 32	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
3	VddLO2	Power supply for second stage of LO amplifier.	VddLO2 ○
7	VddRF	Power supply for RF LNA.	VddRF ○──── ──── ───
10, 19, 24, 29	GND	These pins and ground paddle must be connected to RF/DC ground.	GND =
11	RF	This pin is AC coupled and matched to 50 Ohms.	RF ○
20	IF2	This pin is DC coupled for applications not requiring operation to DC. This port should be DC blocked externally using a series capacitor whose value has	IF1,IF2 O
23	IF1	been chosen to pass the necessary frequency range. For operation to DC, this pin must not sink / source more than 3 mA of current or part non-function and possible failure will result.	
30	LO	This pin is AC coupled and matched to 50 Ohms.	L0 ○— —

Typical Application



GaAs MMIC I/Q DOWNCONVERTER 21 - 25 GHz

Evaluation PCB

List of Materials for Evaluation PCB 113758 [1]

Item	Description	
C1 - C4	Capacitor 0603, 0.01 μF	
J1, J4	PCB Mount SMA RF Connector, SRI	
J2, J3	PCB Mount SMA Connector, Johnson	
J5 - J7	DC Pin	
U1	HMC571LC5	
PCB [2]	113756 Evaluation Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

ANALOGDEVICES

GaAs MMIC I/Q DOWNCONVERTER 21 - 25 GHz

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

 $\underline{\mathsf{HMC571LC5}} \ \ \underline{\mathsf{HMC571LC5TR}} \ \ \underline{\mathsf{113758\text{-}HMC571LC5}}$