
Pin Configuration⁽¹⁾

SOJ Top View 2964 drw 02

NOTE:

1. This text does not indicate orientation of actual part-marking.

Truth Table (1,3)

Inputs					
WE	CS ₁	CS ₂	ŌĒ	I/O	Function
Х	Н	Х	Х	High-Z	Deselected – Standby (ISB)
Х	VHC ⁽²⁾	Х	Χ	High-Z	Deselected – Standby (ISB1)
Х	Х	L	Χ	High-Z	Deselected – Standby (ISB)
Х	Χ	VLC ⁽²⁾	Χ	High-Z	Deselected – Standby (IsB1)
Н	L	Н	Н	High-Z	Outputs Disabled
Н	L	Н	L	DATAout	Read Data
L	L	Н	Χ	DATAIN	Write Data

NOTES:

- 1. $H = V_{IH}, L = V_{IL}, X = Don't care.$
- 2. VLC = 0.2V, VHC = VCC 0.2V.
- 3. Other inputs \geq VHC or \leq VLC.

2964 tbl 01

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	GND	V cc	
Commercial	0°C to +70°C	0V	$5.0V \pm 0.5V$	
Industrial	–40°C to +85°C	0V	5.0V ± 0.5V	

2964 tbl 05

Absolute Maximum Ratings(1)

Symbol	Rating	Value	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	٧
TBIAS	Temperature Under Bias	-55 to +125	۰C
Tstg	Storage Temperature	-55 to +125	٥C
Рт	Power Dissipation	1.25	W
Іоит	DC Output Current	50	mA

NOTES:

2964 tbl 02

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation
 of the device at these or any other conditions above those indicated in the operational
 sections of this specification is not implied. Exposure to absolute maximum rating
 conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 0.5V.

Capacitance

 $(TA = +25^{\circ}C, f = 1.0MHz, SOJ package)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	7	pF
Ci/o	I/O Capacitance	Vout = 3dV	8	pF

2964 tbl 03

2964 tbl 04

NOTE:

1. This parameter is guaranteed by device characterization, but is not production tested.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	٧
GND	Ground	0	0	0	٧
VIH	Input High Voltage	2.2	_	Vcc+0.5	٧
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

NOTE:

1. V_{IL} (min.) = -1.5V for pulse width less than 10ns, once per cycle.

DC Electrical Characteristics

(Vcc = 5.0V ± 10%, Commercial and Industrial Temperature Ranges)

			IDT7		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
111	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	-	5	μΑ
lLO	Output Leakage Current	Vcc = Max., $\overline{\text{CS}}_1$ = V _{IH} , Vout = GND to Vcc	_	5	μA
Vol	Output Low Voltage	IoL = 8mA, Vcc = Min.	-	0.4	٧
Vон	Output High Voltage	Iон = -4mA, Vcc = Min.	2.4	_	V

2964 tbl 06

DC Electrical Characteristics(1)

 $(VCC = 5.0V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

		71024S12		71024S15		71024S20			
Symbol	Parameters	Com'l.	Ind.	Com'l.	Ind.	Com'l.	Ind.	Unit	
Icc	Dynamic Operating Current, $CS_2 \ge V_{IH}$ and $\overline{CS}_1 \le V_{IL}$, Outputs Open, $VCC = Max.$, $f = f_{MAX}^{(2)}$	160	160	155	155	140	140	mA	
ISB	Standby Power Supply Current (TTL Level) $\overline{CS}_1 \ge V_{IH}$ or $CS_2 \le V_{IL}$, Outputs Open, $Vcc = Max.$, $f=f_{Max}^{(2)}$	40	40	40	40	40	40	mA	
ISB1	Full Standby Power Supply Current (CMOS Level), $\overline{CS}_1 \ge V$ HC or $CS_2 \le V$ LC, Outputs Open, V CC = Max., $f = 0^{(2)}$, V IN $\le V$ LC or V IN $\ge V$ HC	10	10	10	10	10	10	mA	

NOTES:

- 1. All values are maximum guaranteed values.
- fMAX = 1/trc (all address inputs are cycling at fMAX): f = 0 means no address input lines are changing.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2964 tbl 08

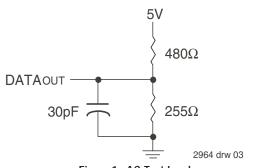
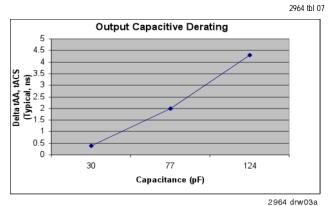



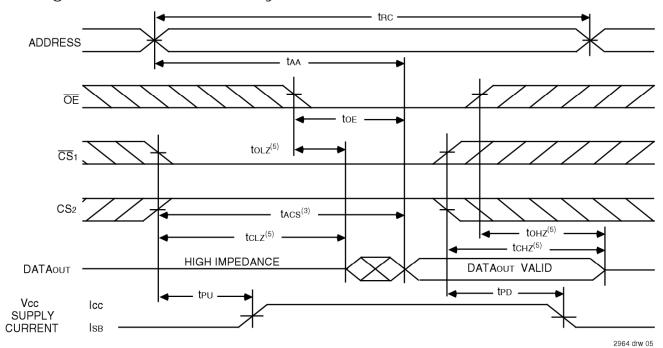
Figure 1. AC Test Load

DATAOUT 480Ω $5pF^*$ 255Ω 2964 drw 04

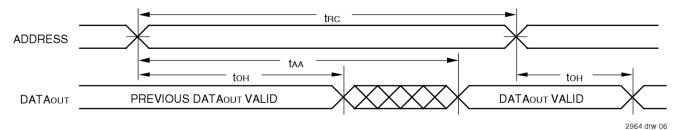
*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

AC Electrical Characteristics

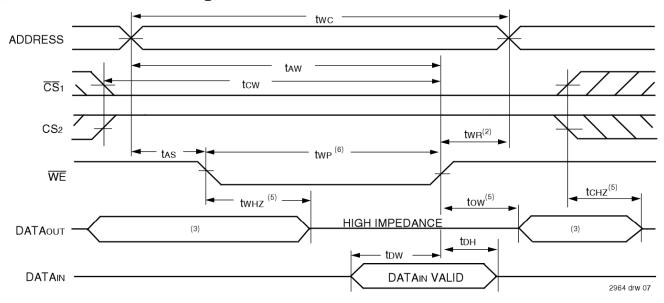

(Vcc = 5.0V ± 10%, Commercial and Industrial Temperature Ranges)

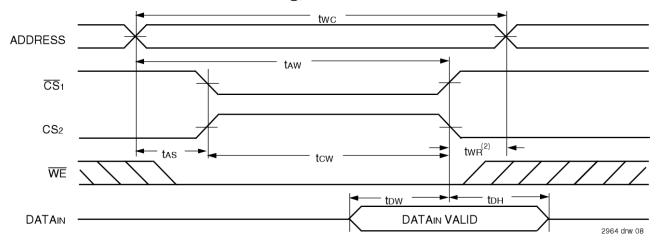
		7102	24S12	71024S15		71024S20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle		•	•	•	•	•		
trc	Read Cycle Time	12	_	15	_	20	_	ns
taa	Address Access Time	_	12	_	15	_	20	ns
tacs	Chip Select Access Time	_	12	_	15	_	20	ns
tclz ⁽¹⁾	Chip Select to Output in Low-Z	3	_	3	_	3	_	ns
tcHz ⁽¹⁾	Chip Deselect to Output in High-Z	0	6	0	7	0	8	ns
toe	Output Enable to Output Valid	_	6	_	7	_	8	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	0	_	0	_	0	_	ns
tonz ⁽¹⁾	Output Disable to Output in High-Z	0	5	0	5	0	7	ns
tон	Output Hold from Address Change	4	_	4	_	4	_	ns
tpu ⁽¹⁾	Chip Select to Power-Up Time	0	_	0	_	0	_	ns
tPD ⁽¹⁾	Chip Deselect to Power-Down Time	_	12	_	15	_	20	ns
Write Cycle								
twc	Write Cycle Time	12	_	15	_	20	_	ns
taw	Address Valid to End-of-Write	10	_	12	_	15	-	ns
tcw	Chip Select to End-of-Write	10	_	12	_	15	_	ns
tas	Address Set-Up Time	0	_	0	_	0	_	ns
twp	Write Pulse Width	8	_	12	_	15	_	ns
twr	Write Recovery Time	0	_	0	_	0	_	ns
tow	Data Valid to End-of-Write	7	_	8	_	9	-	ns
tDH	Data Hold Time	0	_	0	_	0	_	ns
tow ⁽¹⁾	Output Active from End-of-Write	3	_	3	_	4	-	ns
twHz ⁽¹⁾	Write Enable to Output in High-Z	0	5	0	5	0	8	ns


NOTE: 2964 tbl 09

 $^{1. \}quad \text{This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.} \\$

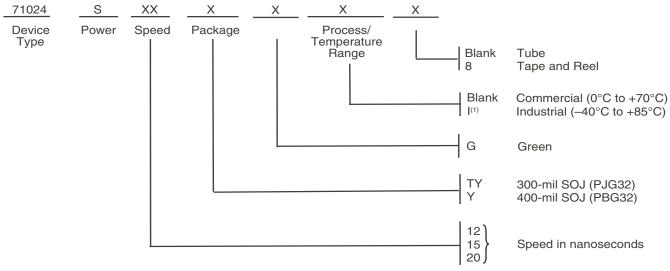
Timing Waveform of Read Cycle No. 1(1)


Timing Waveform of Read Cycle No. 2(1,2,4)


NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected, $\overline{\text{CS}}_1$ is LOW, CS2 is HIGH.
- 3. Address must be valid prior to or coincident with the later of \overline{CS}_1 transition LOW and CS2 transition HIGH; otherwise tAA is the limiting parameter.
- 4. $\overline{\mathsf{OE}}\mathsf{isLOW}.$
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 1 (**WE** Controlled Timing)^(1,4,6)


Timing Waveform of Write Cycle No. 2 (**CS**₁ AND CS₂ Controlled Timing)^(1,4)

NOTES:

- 1. A write occurs during the overlap of a LOW \overline{CS}_1 , HIGH CS₂, and a LOW \overline{WE} .
- 2. twn is measured from the earlier of either $\overline{\text{CS}}_1$ or $\overline{\text{WE}}$ going HIGH or CS2 going LOW to the end of the write cycle.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS1 LOW transition or the CS2 HIGH transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance state. CS1 and CS2 must both be active during the tcw write period.
- 5. <u>Transition is measured ±200mV from steady state</u>.
- 6. \overline{OE} is continuously HIGH. During a \overline{WE} controlled write cycle with \overline{OE} LOW, twp must be greater than or equal to twHz + tbw to allow the I/O drivers to turn off and data to be placed on the bus for the required tbw. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.

Ordering Information

NOTE:

2964 drw 09

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
12	71024S12TYG	PJG32	SOJ	С
	71024S12TYG8	PJG32	SOJ	С
	71024S12TYGI	PJG32	SOJ	I
	71024S12TYGl8	PJG32	SOJ	I
	71024S12YG	PBG32	SOJ	С
	71024S12YG8	PBG32	SOJ	С
	71024S12YGI	PBG32	SOJ	-
	71024S12YGl8	PBG32	SOJ	-
15	71024S15TYG	PJG32	SOJ	С
	71024S15TYG8	PJG32	SOJ	С
	71024S15TYGI	PJG32	SOJ	_
	71024S15TYGl8	PJG32	SOJ	_
	71024S15YG	PBG32	SOJ	С
	71024S15YG8	PBG32	SOJ	С
	71024S15YGI	PBG32	SOJ	_
	71024S15YGl8	PBG32	SOJ	-
20	71024S20TYG	PJG32	SOJ	С
	71024S20TYG8	PJG32	SOJ	С
	71024S20TYGI	PJG32	SOJ	_
	71024S20TYGI8	PJG32	SOJ	-
	71024S20YG	PBG32	SOJ	С
	71024S20YG8	PBG32	SOJ	С
	71024S20YGI	PBG32	SOJ	I
	71024S20YGl8	PBG32	SOJ	Ι

^{1.} Contact your local sales office for Industrial temp range for other speeds, packages and powers.

Datasheet Document History

9/30/99		Updated to new format
	Pg. 1, 3, 4, 7	Added 12ns industrial speed grade offering
	Pg. 1–4, 7	Removed military temperature offerings
		Removed 17ns and 25ns speed grades
	Pg. 3	Revised Icc and IsB1 for 15ns and 20ns industrial speed grades
	Pg. 6	Removed Note 1, reordered notes and footnotes
	Pg. 8	Added Datasheet Document History
1/6/2000	Pg. 4	Changed twp(min) for 12ns speed grade from 10ns to 8ns.
2/18/00	Pg. 3	Revised Icc and IsB for Industrial Temperature offerings to meet commercial specifications
3/14/00	Pg. 3	Revised IsB to accommodate speed functionality
08/09/00		Notrecommended for new designs
02/01/01		Removed "Not recommended for new designs"
01/30/04	Pg. 7	Added "Restricted hazardous substance device" to the ordering information.
05/22/06	Pg.3	Added drawing Output Capacitive Derating drawing.
02/13/07	Pg.7	Added M generation die step to data sheet ordering information.
08/13/09	Pg.2	Corrected note reference.
02/05/13	Pg.1	Removed /MS from datasheet header. Removed IDT's reference to fabrication.
	Pg.7	Updated ordering information by adding Tape and Reel, updated Restricted Hazardous Substance
		Device wording to Green and removed the Die Stepping Revision, the "M" designator.
03/30/21	Pg.1 & 7	Updated Industrial temp and green availability
	Pg.2 & 7	Updated package codes
	Pg.7	Added Orderable Part Information table

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

71024S25YG8 71024S12TYGI 71024S15YG8 71024S15YG 71024S25TYG8 71024S25TYGI 71024S12YG
71024S15YGI 71024S15TYG 71024S15YGI8 71024S25TYGI 71024S20TYG8 71024S25TYG 71024S12YGI8
71024S15TYGI8 71024S25TYGI8 71024S20TYG 71024S12TYG 71024S20YGI 71024S20TYGI8 71024S15TYGI
71024S12YGI 71024S20YGI8 71024S12TYGI8 71024S12TYG8 71024S15TYG8 71024S20YG8 71024S20YG8 71024S20YG8
71024S20YG 71024S25YG