
power-up and via pushbutton input, power-fail status signals for the processor, and low battery warning signals. The DS1632 is capable of detecting power failure at both the 5% and 10% power supply tolerances, and the reset pulse width can be set for either 95 ms or 190 ms. The device is designed to connect directly to popular laptop and notebook chip sets which eliminates the need for discrete components and reduces cost.

BLOCK DIAGRAM Figure 1

OPERATION - CRYSTAL OSCILLATOR SECTION

The DS1632 crystal oscillator is designed to be hooked directly to a 32.768 kHz crystal. By using the Daiwa Part No. DT26S, Seiko Part No. DS-VT-200 or equivalent, the oscillator will be accurate enough to run a real time clock to within ± 2 minutes per month. If another crystal is to be selected, it should have a specified load capacitance (C_L) of 6 pF. The crystal oscillator will run as long as either V_{CC} or V_{BAT} is present, providing that V_{BAT} is greater than 2.3V. The oscillator output provides a rail to rail swing with regards to V_{CC} or V_{BAT} , whichever is greater. The crystal oscillator is also used internally as a time base.

OPERATION - POWER-FAIL, BATTERY BACKUP

The DS1632 provides a switch to direct power from the battery (V_{BAT}) or the incoming supply (V_{CC}) , depending on which is greater. This switch has a voltage drop of less than 0.3 volts. The V_{CC} input is constantly monitored by a precision comparator for an out-of-tolerance condition. When such a condition occurs, the power-fail signals are driven to their active state immediately. The reset signals are also driven active, but this action is delayed by a time determined by the level of the input on the reset duration pin (RD). If RD is tied to ground then reset signals will become active after 9 ms. If RD is tied to V_{CC} , then reset signals will become active after 18 ms. Once active, both the reset signals and the power-fail signals will remain active as long as a (V_{CC}) out-of-tolerance condition persists. If an out-of-tolerance condition is not long enough to activate the reset signals, then only the power-fail signals would be affected. When power returns to within nominal limits the power-fail signals will return immediately to the inactive state. However, the reset signals remain in the active state for a time which is dependent on the state of the RD pin. If RD is tied to ground, the reset signals will remain active for 95 ms. If RD is tied to V_{CC}, then the reset signals will remain active for 190 ms after power is within nominal limits. The delay action on the reset signals allows time for the power supply and microprocessor clock oscillators to stabilize. The tolerance pin (TOL) selects the point at which power-fail detection occurs. With the tolerance pin grounded, power-fail detection occurs in the range of 4.75V to 4.5V. If the tolerance pin is connected to V_{CC}, then power-fail detection occurs in the range of 4.5V to 4.25V. During most power supply conditions the V_{CC} input will supply power to all functions within the chip and also to the V_{CCO} pin. The battery pin (V_{BAT}) only supplies power when V_{CC} is less than V_{BAT}. When V_{CC} is below the level of V_{BAT} only the V_{CCO} and the OSC OUT pin remain powered by V_{BAT}. All other outputs will be driven to ground when in a logic low state and will be driven to V_{CC} when in a logic high state. This is done to preserve battery capacity by avoiding battery drain resulting from loads on these outputs. The output ground level will be maintained for all levels of V_{CC} , even $V_{CC} = GND$. However, the output V_{CC} level will be maintained only for $V_{CC} > 2.0V$. Internal battery power consumption is less than 2 μA while V_{BAT} is supplying power. The external load on OSC OUT and V_{CCO} must be added to internal consumption to determine the total load on the battery.

OPERATION - PUSHBUTTON RESET

The DS1632 provides an input pin for direct connection to a pushbutton. The pushbutton reset input \overline{PBRST} requires an active low level input. While TTL levels are sufficient to properly activate this input, it has been primarily designed for contact closure. Internally, this input is debounced and timed such that RST and \overline{RST} signals of 95ms or 190 ms minimum are generated. If RD is tied to ground, then a reset pulse of 95 ms is generated. If RD is tied to V_{CC} then a reset pulse of 190 ms is generated. The delay time is started as the pushbutton reset input is released from low level.

OPERATION - LOW BATTERY WARNING

The DS1632 provides outputs which warn of a low battery condition. Whenever V_{CC} is within nominal limits, the V_{BAT} input is continuously monitored. If the V_{BAT} input is out of tolerance, the low battery outputs are driven to their active states, and will remain in the active state as long as V_{CC} is within nominal limits or until the battery input is restored to an in limit status. On power-up, if the V_{BAT} input is out of tolerance, the low battery outputs are not guaranteed active until power-fail is deactivated, but guaranteed active prior to reset inactive. When V_{CC} is below the V_{CC} fail trip point both LB and \overline{LB} will be driven to ground.

For application information, please reference Application Note 64, published separately.

ABSOLUTE MAXIMUM RATINGS*

Voltage on V_{CC} Pin Relative to Ground -0.5V to +7.0V Voltage on I/O Relative to Ground -0.5V to V_{CC} + 0.5V Operating Temperature 0°C to 70°C Storage Temperature -55°C to +125°C Soldering Temperature 260°C for 10 seconds

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

(0°C to 70°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	V_{CC}	4.5	5.0	5.5	V	1
PBRST Input High Level	V_{IH}	2.0		V _{CC} +0.3	V	1, 3
PBRST Input Low Level	V_{IL}	-0.3		+0.8	V	1, 3
Battery Supply Voltage	V_{BAT}	2.3	3.0	3.5	V	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}\text{C to } 70^{\circ}\text{C}; V_{\text{CC}} = 4.5 \text{ to } 5.5\text{V})$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Output Current @ 2.4V	I_{OH}	1			mA	5, 7
Output Current @ 0.4V	I_{OL}	4			mA	7
Output Voltage @ -500 μA	V_{OH}	V _{CC} -0.5V	V _{CC} -0.1V		V	1, 6
Low Level @ RST	V_{OL}			0.4	V	1
Operating Current	I_{CC}		0.5	2.0	mA	2
V _{CC} Trip Point (TOL=GND)	V_{CCTP}	4.50	4.62	4.75	V	1
V _{CC} Trip Point (TOL=V _{CC})	V_{CCTP}	4.25	4.37	4.50	V	1
Battery Fail Trip Point	V_{BATTP}	2.30	2.45	2.55	V	1
Supply Voltage Output	V_{CCO}	V _{CC} -0.3			V	
Supply Current Output	I _{CCO1}			100	mA	4

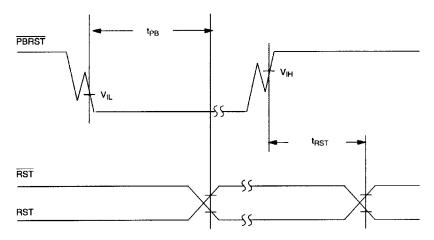
DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C; V_{CC} = < V_{BAT})$

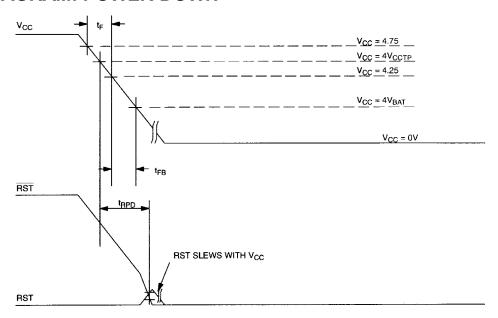
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Battery Current	I_{BAT}			2	μΑ	
Battery Backup Current	I _{CCO2}			500	μΑ	4

CAPACITANCE

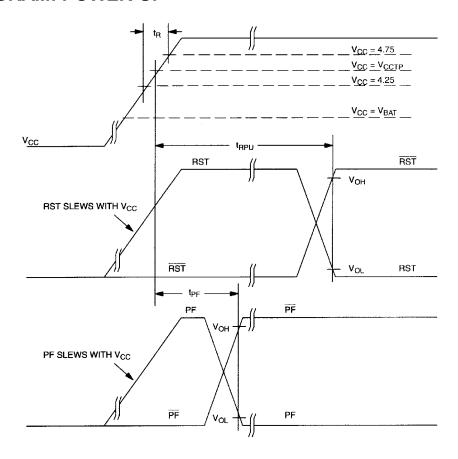
 $(t_A=25^{\circ}C)$


PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C_{IN}			5	pF	
Output Capacitance	C _{OUT}			7	pF	

AC ELECTRICAL CHARACTERISTICS


(0°C to	70°C:	V _{CC} =5\	$/ \pm 10\%$)

			(0 0 10 10 0, 100 01 = 1070)			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
$\overline{PBRST} = V_{IL}$	t_{PB}	t_{RPD}			ms	
Reset Pulse Width	t_{RST}	95		105	ms	RD=GND
Reset Pulse Width	t_{RST}	190		210	ms	RD=V _{CC}
Reset Active on Power-Up	$t_{ m RPU}$	95		105	ms	RD=GND
Reset Active on Power-Up	$t_{ m RPU}$	190		210	ms	RD=V _{CC}
Reset Active on Power-Down	$t_{ m RPD}$	9		11	ms	RD=GND
Reset Active on Power-Down	$t_{ m RPD}$	18		22	ms	RD=V _{CC}
V _{CC} Slew Rate Power-Down	t_{F}	300			μs	
V _{CC} Slew Rate Power-Down	t_{FB}	10			μs	
V _{CC} Slew Rate Power-Up	t_{R}	10			μs	


TIMING DIAGRAM: PUSHBUTTON RESET

TIMING DIAGRAM: POWER-DOWN

TIMING DIAGRAM: POWER-UP

NOTES:

- 1. All voltages are referenced to ground.
- 2. Measured with outputs open.
- 3. The \overline{PBRST} input has an internal pull-up of $10k\Omega$ to V_{CC} .
- 4. Supply current output is specified with 0.3V drop from V_{BAT} or V_{CC} .
- 5. \overline{RST} , \overline{PF} , and \overline{LB} are open-drain outputs.
- 6. RST and PF remain within 0.5 volts of V_{CC} on power down until V_{CC} drops below 2.0V.
- 7. Sink and source currents apply to all outputs except OSC OUT which has a drive capability of sourcing 500 μ A at $V_{OH} = V_{CCO}$ 0.5V and sinking 1 mA at $V_{OL} = 0.5$ V.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

DS1632 DS1632S DS1632S+T&R DS1632+ DS1632S+ DS1632S/T&R