

Figure 2. Logic Symbol

Figure 3. IEC Logic Symbol

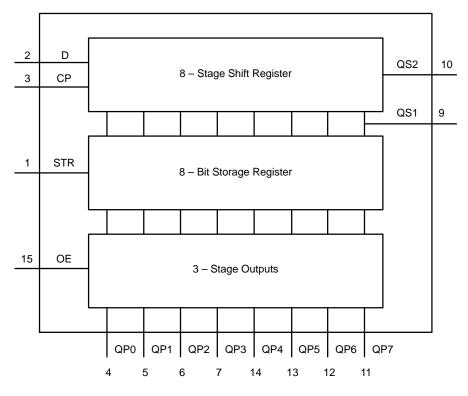


Figure 4. Functional Diagram

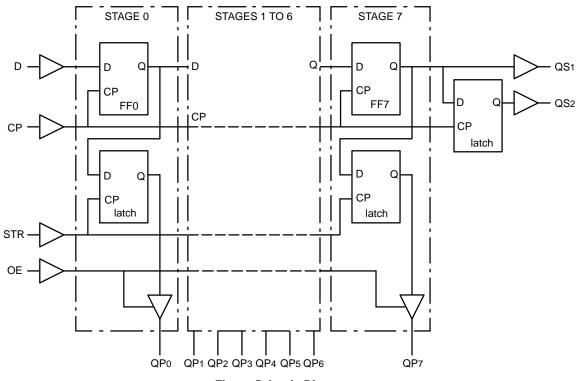


Figure 5. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V	
V _{in}	DC Input Voltage (Referenced to GND)		-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V	
l _{in}	DC Input Current, per Pin	± 20	mA	
l _{out}	DC Output Current, per Pin		± 35	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pins		± 75	mA
PD	Power Dissipation in Still Air, SOIC Package† TSSOP Package†		500 450	mW
T _{stg}	Storage Temperature		– 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating – SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.0 \text{ V}$ (Figure 1) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0	1000 500 400	ns

FUNCTIONAL TABLE

	INPUTS			PARALLEL	OUTPUTS	SERIAL O	DUTPUTS
СР	OE	STR	D	QP0	QPn	QS1	QS2
↑	L	Х	Х	Z	Z	Q'6	NC
\downarrow	L	Х	Х	Z	Z	NC	QP7
\uparrow	н	L	Х	NC	NC	Q'6	NC
↑	Н	н	L	L	QPn-1	Q'6	NC
\uparrow	н	Н	Н	Н	QPn-1	Q'6	NC
\downarrow	Н	Н	Н	NC	NC	NC	QP7

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

NC = no change \uparrow = LOW-to-HIGH CP transition \downarrow = HIGH-to-LOW CP transition

Q'6 = the information in the seventh register stage is transferred to the 8th register stage and QSn output at the positive clock edge

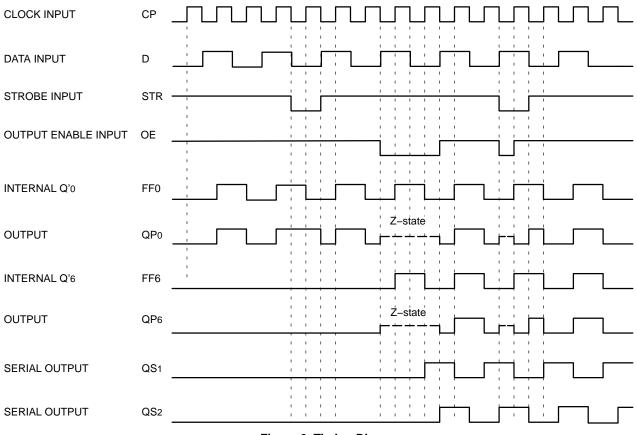


Figure 6. Timing Diagram

DC CHARACTERISTICS

				Guaranteed Limits			
Symbol	Parameter	Test Conditions	V _{CC} (V)	–55°C to 25°C	≤ 85°C	≤ 125°C	Uni
V _{IH}	Minimum High-Level Input	$V_{OUT} = 0.1 V \text{ or } V_{CC} - 0.1 V$	2.0	1.5	1.5	1.5	V
	Voltage	I _{OUT} I≤ 20 μA	3.0	2.1	2.1	2.1	
			4.5	3.15	3.15	3.15	
			6.0	4.2	4.2	4.2	
V _{IL}	Maximum Low-Level Input	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	2.0	0.5	0.5	0.5	V
	Voltage	I _{OUT} I≤ 20 μA	3.0	0.9	0.9	0.9	
			4.5	1.35	1.35	1.35	
			6.0	1.8	1.8	1.8	
V _{OH}	Minimum High-Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0	1.9	1.9	1.9	V
Volt	Voltage	Ι _{ΟUT} ≤ 20 μΑ	3.0	2.9	2.9	2.9	
			4.5	4.4	4.4	4.4	
			6.0	5.9	5.9	5.9	
		$V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 2.4 \text{ mA}$	3.0	2.75	2.7	2.6	
		$V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 4 \text{ mA}$	4.5	4.25	4.2	4.1	
		$V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 5.2 \text{ mA}$	6.0	5.75	5.7	5.6	
V _{OL}	Maximum Low-Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} \le 20 \ \mu\text{A}$	2.0	0.1	0.1	0.1	V
	Voltage		3.0	0.1	0.1	0.1	
			4.5	0.1	0.1	0.1	
			6.0	0.1	0.1	0.1	
		$V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 2.4 \text{ mA}$	3.0	0.25	0.3	0.4	
		$V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 4 \text{ mA}$	4.5	0.25	0.3	0.4	
		$V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 5.2 \text{ mA}$	6.0	0.25	0.3	0.4	
I _{IN}	Maximum Input Leakage Current	$V_{IN} = V_{CC}$ or GND	6.0	±0.1	±1	±1	μ
I _{OZ}	Maximum Tri–State Output Leakage Current	$V_{IN} = V_{CC} \text{ or GND}$ $V_{OUT} = V_{CC} \text{ or GND}$	6.0	±0.5	±5	±10	μ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	6.0	4.0	40	80	μ

AC CHARACTERISTICS ($t_f = t_r = 6 \text{ ns}, C_L = 50 \text{ pF}$)

				Guar	anteed Limi	ts	
Symbol	Parameter	Test Conditions	V _{CC} (V)	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay	Figure 7	2.0	120	150	170	ns
	CP to QS ₁		3.0	90	100	110	
			4.5	30	38	45	
			6.0	26	33	38	
t _{PHL} , t _{PLH}	Maximum Propagation Delay CP to QS ₂	Figure 7	2.0	120	150	170	ns
			3.0	90	100	110	
			4.5	27	34	41	
			6.0	23	29	35	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	Figure 7	2.0	120	150	170	ns
	CP to QP _n		3.0	90	100	110	
			4.5	39	49	59	
			6.0	33	42	50	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	Figure 8	2.0	120	150	170	ns
	STR to QP _n		3.0	90	100	110	-
			4.5	36	45	54	
			6.0	31	38	46	
t _{PZH} , t _{PZL}	Maximum 3–State Output Enable Time OE to QP _n	Figure 9	2.0	120	140	160	ns
			3.0	80	100	120	
			4.5	35	44	53	-
			6.0	30	37	45	
t _{PHZ} , t _{PLZ}	Maximum 3-State Output Enable Time	n 3-State Output Enable Time Figure 9 Pn	2.0	100	120	140	ns
	OE to QP _n		3.0	70	90	110	
			4.5	25	31	38	
			6.0	21	26	32	
t _{THL} , t _{TLH}	Maximum Output Transition Time	Figure 7	2.0	70	90	110	ns
			3.0	40	60	80	
			4.5	18	22	25	
			6.0	16	19	22	
t _W	Minimum Clock Pulse Width	Figure 7	2.0	80	100	120	ns
	High or Low		3.0	50	60	80	
			4.5	16	20	24	
			6.0	14	17	20	
t _W	Minimum Strobe Pulse Width	Figure 8	2.0	80	100	120	ns
	High		3.0	50	60	80	
			4.5	16	20	24	
			6.0	14	17	20	
t _{SU}	Minimum Set–up Time	Figure 10	2.0	50	65	75	ns
	D to CP		3.0	30	35	45	1
			4.5	10	13	15	
			6.0	9	11	13	1

				Guar	anteed Limit	ts	
Symbol	Parameter	Test Conditions	V _{CC} (V)	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
t _{SU}	Minimum Set–up Time	Figure 8	2.0	100	125	150	ns
	CP to STR		3.0	60	75	90	
			4.5	20	25	30	
			6.0	17	21	26	
t _h	Minimum Hold Time	Figure 10	2.0	3	3	3	ns
	D to CP		3.0	3	3	3	
			4.5	3	3	3	
			6.0	3	3	3	
t _h	Minimum Hold Time	Figure 8	2.0	0	0	0	ns
	P to STR		3.0	0	0	0	
			4.5	0	0	0	
			6.0	0	0	0	
f _{MAX}	Minimum Clock Pulse Frequency	Figure 7	2.0	6	5	4	MHz
			3.0	18	14	12	
			4.5	30	24	20	
			6.0	35	28	24	
C _{in}	Maximum Input Capacitance		-	10	10	10	pF
Cout	Maximum Output Capacitance		-	15	15	15	pF
C _{PD}	Power Dissipation Capacitance (Note 2)		-	140	140	140	pF

AC CHARACTERISTICS ($t_f = t_r = 6 \text{ ns}, C_L = 50 \text{ pF}$)

2. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC} (operating) $\approx C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$ where N_{SW} = total number of outputs switching and f_{IN} = switching frequency.

AC WAVEFORMS

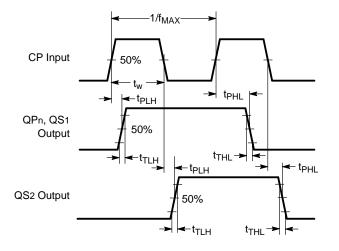


Figure 7. Waveforms showing the clock (CP) to output (QPn, QS1, QS2) propagation delays, the clock pulse width and the maximum clock frequency.

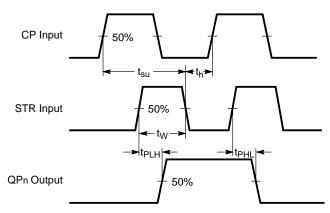


Figure 8. Waveforms showing the strobe (STR) to output (QPn) propagation delays, the strobe pulse width, the clock set-up and hold times for the strobe input.

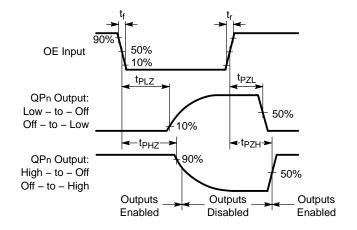
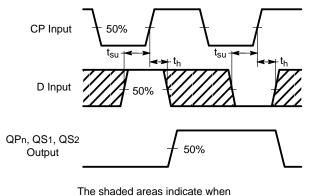
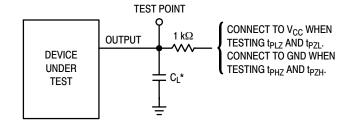
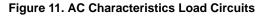



Figure 9. Waveforms showing the 3-state enable and disable times for input OE.



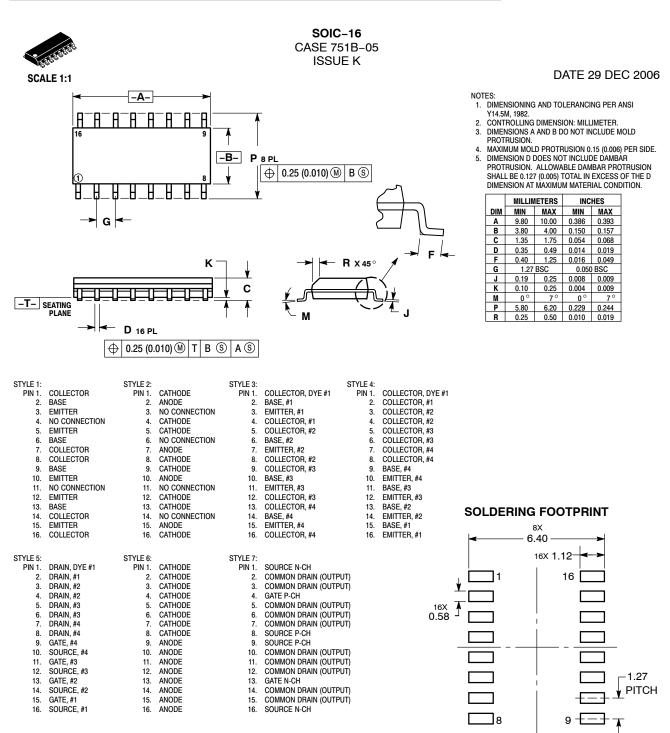
The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 10. Waveforms showing the data set-up and hold times for the data input.


TEST CIRCUITS

*Includes all probe and jig capacitance

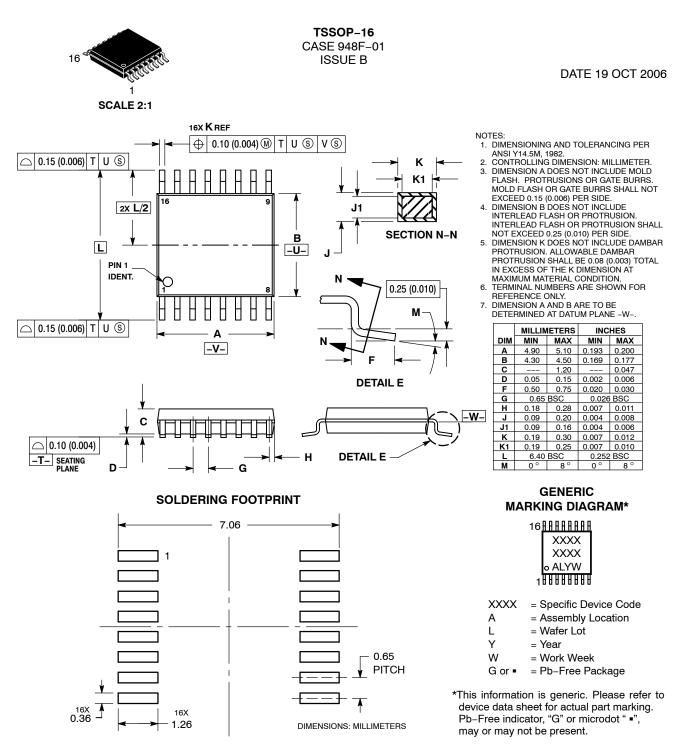
*Includes all probe and jig capacitance


ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC4094ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC4094ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC74HC4094ADTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74HC4094ADTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLVHC4094BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16		PAGE 1 OF 1			
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-16	-	PAGE 1 OF 1			
ON Semiconductor and up are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

MC74HC4094ADG MC74HC4094ADR2G MC74HC4094ADTG MC74HC4094ADTR2G NLV74HC4094BDR2G NLVHC4094BDTR2G